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Supplementary Figure 1: Coherence of the NV electron spin by dynamical decoupling with 256 pulses. The
spin is decoupled from the nuclear spin bath by applying a sequence of 256 π-pulses with alternating phases. The time
between the pulses is chosen to be a multiple of the Larmor period of the 13C spins. This result shows no significant decay on
the relevant timescale of our experiments. Error bars are one statistical s.d.
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Supplementary Figure 2: Optical readout and initialization of the ancilla NV electron spin. The electron spin is
initialized and read out by spin-selective resonant excitation [2]. To initialize or reset the electron spin state we apply a laser
pulse that excites only the ms = ±1↔ E′ms=±1 transitions (Reset). Due to spin mixing in the excited state this prepares the
electron spin in the ms = 0 state (fidelity > 0.98) [2]. To measure the spin state we apply a laser pulse resonant with the
ms = 0↔ Ex transition (Readout). Ideally, this results in the detection of 1 or more photons for the ms = 0 state, and no
detected photons for ms = ±1. The resulting readout fidelities are asymmetric: F0 = 0.890(4) for ms = 0 (limited by the
detection efficiency and number of cycles before a spin flip) and F1 = 0.988(2) for ms = ±1 (limited by background counts
and unwanted excitations). Because uncontrolled spin flips in the excited state decohere nearby nuclear spins, we minimize
the number of unnecessary optical excitations by using a weak readout pulse with a maximum duration of 114 µs (∼ 100
excitations) and by switching off the laser within 2 µs (∼ 2 excitations) once a photon is detected [3]. The resulting
measurement is non-destructive: the probability that the spin prepared in ms = 0 is still in that state after a measurement
with outcome ms = 0 is 0.992. In contrast, without dynamically stopping the laser the spin would be pumped almost
completely to ms = ±1. For the final readout at the end of the experiment, which is allowed to be destructive, we use a
stronger readout pulse of maximum duration 35 µs.
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Supplementary Figure 4: Tomography sequences for three-qubit states. Examples of three-qubit expectation
values that are measured by mapping the required correlation on the ancilla before reading it out. a, 〈X1, I2, I3〉, b,
〈X1, X2, I3〉, c, 〈−X1, Y2, Z3〉. Note that the phase of the last π/2-pulse on the ancilla depends on the number of qubits read
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expectation values can be translated to any of the 63 measurements in the full three-qubit state tomography.
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Supplementary Figure 5: Experimental sequence and logic for the QEC experiments. Example for a single round
of quantum error correction by stabilizer measurements (as in Fig. 3). The order of the sequence is controlled in real-time by
an ADwin microprocessor. I - The NV center is prepared in its negative charge state and on resonance with the readout and
reset lasers (Supplementary Fig. 2) by turning on both lasers, counting the fluorescence photons and requiring a threshold to
be passed (“CR Check”). The 14N nuclear spin is initialized by measuring it and continuing only for outcome mI = −1
(“MBI N”, success probability 0.073(7)). II - The qubits are sequentially deterministically initialized following
Supplementary Fig. 3. III - The encoding of the logic state is a probabilistic process (success probability 0.41(1)), as shown
in Fig. 2a. When the wrong outcome is obtained the preparation of the experiment starts over. IV - Errors are detected by
two stabilizer measurements. Depending on the outcome (−1 or +1) of each measurement, the next sequence to execute is
communicated to the waveform generator in real time. V - Depending on which of the 4 outcomes is obtained, a set of gates
is performed to correct errors and to map the desired expectation value onto the ancilla (Supplementary Fig. 4). VI - Finally
the ancilla is read out. Each outcome is taken into account without post processing or post selection. Note that for the
experiment with three rounds of error correction (two rounds of stabilizer measurements QEC, Fig. 4b), the sequence
branches in 16 paths instead.
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Supplementary Figure 6: Deterministic entanglement by stabilizer measurements including post-selected
results. a, For qubits 1 and 2. b, For qubits 2 and 3. First the qubits are initialized following Supplementary Fig. 3 in |00〉
with fidelity 0.878(6) for (a) and 0.910(6) for (b) (left column). Then a XX measurement is performed (Fig. 1d). Depending
on the measurement outcome feedback is applied, so that independent of the outcome the same two-qubit state is obtained,
as can be seen by post-selecting on the two outcomes (middle column). The full result is a deterministically entangled state
(right column). The fidelity with the desired two-qubit entangled state is 0.776(7) in (a) and 0.824(7) in (b).All error bars are
one statistical s.d.
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Supplementary Figure 7: Three-qubit state tomography for |000〉 and the six logical states. The three qubits are
initialized as in Supplementary Fig. 3 and encoded following Fig. 2a. The fidelities F shown are the three-qubit state
fidelities and the shaded bars indicate the ideal states. Ideally, the 6 encoded states are all eigenstates of the XX stabilizers
with eigenvalues +1, in agreement with the high values for 〈X1, X2, I3〉, 〈X1, I2, X3〉 and 〈I1, X2, X3〉 for all states and an
average fidelity with this code subspace of 0.839(3). The logical qubit is encoded as α|0〉L + β|1〉L, with
|0〉L = 1√

2
(|+X,+X,+X〉+ |-X,-X,-X〉) and |1〉L = 1√

2
(|+X,+X,+X〉 − |-X,-X,-X〉). The logical state expectation values are

given by: 〈X〉L = 〈X1, I2, I3〉, 〈Y 〉L = 〈Y1, Z2, Z3〉, 〈Z〉L = 〈Z1, Z2, Z3〉 or cyclic permutations. The logical qubit fidelities for
the states are |+X〉L : 0.916(6), | −X〉L : 0.911(6), |+ Y 〉L : 0.822(7), | − Y 〉L : 0.828(7), |0〉L : 0.813(9) and |1〉L : 0.808(9).
All error bars are one statistical s.d.
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Supplementary Figure 8: Process fidelity and error syndrome probabilities for different ancilla assignments.
Left: comparison of the process fidelities for the quantum error correction experiment in Fig. 3 for all four possible
assignments of the ancilla states to the +1,+1 outcome of the stabilizer measurements. In Fig. 3b we average over these four
curves. In Fig. 3c the optimal result is used (assignment {|1〉a, |1〉a}). Solid lines are fits to Eq. 3 taking into account Eq. 4
and yield: w = 0.8(1), w = 0.71(7), w = 0.95(7) and w = 0.84(9) for the four assignments. Right: the probabilities for the
error syndromes for each of the four ancilla state assignments. Solid lines are expected curves similar to Eqs. 24-27, based on

the estimated initial errors in the encoded states: p
(1)
in = 0.091(2), p

(2)
in = 0.064(2), p

(3)
in = 0.077(2) obtained from Fig. 7. The

theoretical probabilities are in good agreement with the experimental values (no free parameters). The probabilities are the
normalized occurrences in 84000 samples for the assignments {|0〉a, |0〉a} and {|0〉a, |1〉a} and in 28000 samples for the
assignments {|1〉a, |1〉a} and {|1〉a, |0〉a}. All error bars are one statistical s.d.
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Supplementary Figure 9: Error syndrome probabilities for naturally occurring errors. Corresponding to Fig. 4d.
Solid lines are theoretical predictions from the unique coherence times T ∗2 of the individual qubits and the initial error (pin)
determined from this data. As the stabilizer measurements are performed halfway the waiting time, the error probability for
each qubit is: pe( t

2
) = 1

2
(1− Exp[−( t

2T∗
2

)2]). Using Eqs. 24-27 and the measured error outcome probabilities at the first

datapoint (t = 2.99 ms), we estimate the input errors at t = 0 to be p
(1)
in = 0.049(2), p

(2)
in = 0.0804(4) and p

(3)
in = 0.110(2).

Dashed lines show the expected probabilities for complete dephasing. The probabilities are based on the normalized
occurrences in 12000 samples.
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Supplementary Figure 10: Zoom of data of Fig. 4b (a) and numerical simulation of Fig 4d (b). a, A zoom-in of
the area of the data in Fig. 4b in which additional rounds of error-correction are advantageous. b, Numerical Monte-Carlo
simulations for the error correction experiment of Fig 4d. Sequence. The initial state is |X〉L. Each qubit then coherently
evolves with a constant detuning randomly drawn from a Gaussian probability distribution with σ =

√
2/T ∗2 for that qubit.

Halfway the evolution time the stabilizer measurements instantaneously project the quantum state, taking into account the
asymmetric fidelity of the ancilla readout and the error-dependent readout fidelity (Eqs. 3-8). After letting the state evolve
for the second period with the same detuning, detected errors are corrected (this final step is omitted for “No feedback”).
Longitudinal relaxation. The qualitative behavior of the simulations is dominated by the dephasing times T ∗2 . We
additionally take into account the measured longitudinal relaxation of each qubit, which approximately decays with

e−(t/T1)
0.5

for ancilla state |0〉a (See Tab. I), and of the ancilla (time-constant 300 ms, due to MW and laser background).
The longitudinal decay results in a small quantitative correction, but does not alter the qualitative behavior observed.
Results & discussion. The simulation results qualitatively match all the main features of the observed dephasing curves
(Fig. 4d). For short times, the stabilizer measurements suppress errors by stopping small errors from building up coherently
and error correction further reduces the remaining errors. For long times, the stabilizer measurements halfway the sequence
preferentially suppress coherent evolutions that would result in an error at the end of the sequence. As a result the fidelity at
long times exceeds 0.5 and decays only slowly. Moreover, for long times, applying error correction becomes detrimental: at
the moment the stabilizer measurements are applied the state is essentially random and no useful information about errors is
extracted so that applied corrections further dephase the final state. A complete quantitative comparison would require
detailed modeling of the full evolution of the 4-qubit system during the gates, initialization, stabilizer measurements, and
readout sequences as well as of the longitudinal decay at short times. All error bars are one statistical s.d.
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Supplementary Figure 11: Data of Fig. 3b (a) 3c (b), 4b (c) and 4d (d), without correction for the final
readout gates. a, b, The fitted value for w is identical as in the main text (curve shapes are not influenced by the readout
calibration). c, Corresponding fit values for the unencoded qubit: w = −0.02(2), for 1 round: w = 0.56(6), for 2 rounds
w = 0.64(4) and for three rounds w = 0.70(2). d, The logical qubit follows Eq. 12 with T = 13.7(1) ms and n = 2.35(8). All
error bars are one statistical s.d.
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SUPPLEMENTARY TABLES

Qubit 1 Qubit 2 Qubit 3

A‖ (kHz) 2π·20.6 2π·-36.4 2π·24.4
A⊥ (kHz) 2π·43 2π·25 2π·26
ω0 (kHz) 2π·431.874(3) 2π·431.994(3) 2π·431.934(3)
ω1 (kHz) 2π·413.430(3) 2π·469.025(3) 2π·408.303(3)
τ (µs) 13.616 4.996 11.312

N 32 34 48
gate time (µs) 980 400 1086

T ∗2 , ms = 0 (ms) 12.0(9) 9.1(6) 18.2(9)
T ∗2 , ms = −1 (ms) 12.8(6) 9.8(4) 21(1)
T1, ms = 0 (ms) 110(10) 100(10) 330(30)

Supplementary Table I: Qubit and gate parameters. A‖ and A⊥ are the estimated hyperfine interaction components
parallel and perpendicular to the applied magnetic field. ω0 and ω1 are the nuclear precession frequencies for ms = 0 (|0〉a)
and ms = −1 (|1〉a). τ is half the inter pulse delay, N the number of pulses and gate time the total duration for the
conditional ±x-gates. These values vary slightly over the experiment as they are calibrated every ∼ 36 hours. T ∗2 is the
(natural) dephasing time and T1 the longitudinal relaxation time.

Fig. 3b (logical qubit with QEC) Fig. 4b (three rounds)

Two-qubit gates 19 20
Ancilla refocusing pulses 698 808
Ancilla read-out and reset 7 9

Supplementary Table II: Experimental complexity. Number of operations in the entire sequence, starting from the
initialization of the nuclear spins as qubits. All qubit (13C) gates are composed of ancilla (NV electron spin) refocusing pulses
and the ancilla is read-out and reset multiple times. We give values for two examples: a single round of QEC with
measurement of 〈Z1Z2Z3〉 (Fig. 3b) and three rounds of QEC with measurement of 〈X1X2X3〉 (Fig. 4b).

SUPPLEMENTARY NOTES

Supplementary Note 1: Theoretical analysis: state and process fidelities

For ideal error correction the process fidelity to the identity as a function of error probability pe for a single round
of quantum error correction (QEC) is

FQEC(pe) = O +A(1− 3p2e + 2p3e). (1)

The offset O and amplitude A account for the finite experimental state fidelities. Note that the value at pe = 0.5,
FQEC(pe = 0.5) = O + A/2, is determined by the fidelity of the logical states |0〉L and |1〉L, which are insensitive to
phase errors. Without error correction a linear function

(2)

is expected. The experimental data can be fitted to a weighted sum of the two functions by:

(3)

The shape of the curve is set by w, which gives the relative weights of the equations for ideal error correction and for
no error correction.

Assignment of ancilla states to the error syndrome: effective measurement fidelity FM

In our experiment, the ancilla readout fidelity is asymmetric: |1〉a has a higher readout fidelity (F1 = 0.988(2))
than |0〉a (F0 = 0.890(4)). The effective measurement fidelity for error correction FM is therefore determined by the
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probabilities to obtain |0〉a or |1〉a, which depend on the assignment of the ancilla states (|0〉a or |1〉a) to each stabilizer
measurement outcome (+1 or -1) and the probabilities for different errors to occur. There are four different ways to
assign the ancilla states to the error syndromes: the +1,+1 outcome (no error) can be set to result in {|0〉a, |0〉a},
{|0〉a, |1〉a}, {|1〉a, |0〉a} or {|1〉a, |1〉a}. The probability to obtain outcome +1,+1 (no error) ideally is 1 − 3pe + 3p2e,
while the probability to detect an error on a given qubit is pe − p2e. With these probabilities, we obtain the effective
QEC measurement fidelity as function of error probability:

FM = F (0)(1− 3pe + 3p3e) + (F (1) + F (2) + F (3))(pe − p2e) = F (0) + (F (1) + F (2) + F (3) − 3F (0))(pe − p2e), (4)

with F (0), F (1), F (2) and F (3), the readout fidelities for 0 errors, an error on qubit 1, an error on qubit 2 and an
error on qubit 3, respectively. For example, for assignment {|1〉a, |1〉a} to stabilizer outcomes +1,+1 (no error), these
readout fidelities are

F (0) = F 2
1 , (5)

F (1) = F (3) = F1F0, (6)

F (2) = F 2
0 , (7)

In a similar way, the fidelities for the other three assignments can be calculated.

Finally, if we assume that an erroneous ancilla readout decoheres the logical state, the dependence of the
effective readout fidelity on pe can be taken into account by setting:

A = A′FM (8)

in Eqs. 1&2 for the process fidelity, with A′ a constant.

Fitting of Figs. 3b, 3c and 8

In Fig. 3b, the ancilla readout is symmetrized by averaging over all four assignments, so that FM equals the
average readout fidelity 0.939(2) and is independent of pe. We can therefore simply fit the data in Fig. 3b to Eq. 3,
with A constant. We find w = 0.81(3), corresponding to an average probability to successfully correct single-qubit
errors of 〈Pn〉 = 1

3 (w + 2) = 0.94(1) [1]. We obtain A = 0.557(2) and O = 0.086(1). For the unencoded qubit, the
encoded qubit without stabilizer measurements, and the encoded qubit without feedback, we find a linear function
and w ≈ 0 (〈Pn〉 ≈ 2/3) as expected without error correction (exact values: w = −0.06(3),−0.03(3) and −0.07(3),
A = 0.882(4), 0.734(3) and 0.543(2), and O = 0.019(3), 0.051(3) and 0.092(1), respectively for the three cases). In
Supplementary Fig. 8 the separate process fidelities for the different assignments are shown. Switching between
assignments is done by adding or omitting a π-pulse before the ancilla readout.

In Fig. 3c, we assign the ancilla state |1〉a to the +1 outcome for all stabilizer measurements. This assign-
ment is optimal because it associates the best readout fidelity with the most likely outcome: +1,+1 (no error, inset
in Fig. 3b). We fit the data in Fig. 3c and Supplementary Fig. 8 to Eq. 3, with A now error-dependent according to
Eq. 8 and obtain w = 0.8(1), corresponding to 〈Pn〉 = 0.93(3) (A′ = 0.666(8) and O = 0.038(6)). The values for w
and 〈Pn〉 are in good agreement with the result of Fig. 3b, indicating that the treatment in Eqs. 4&8 is accurate.

Multiple rounds of error correction (incoherent errors), Fig. 4b

For multiple rounds of QEC with incoherent errors and with the total error with probability pe equally distributed
over n rounds, the error-probability per round is pn = 1

2 (1 − n
√

1− 2pe), for pe < 0.5. Ideally, the (average) state
fidelity is then described by:

F =
1

2
[1 + (1− 6p2n + 4p3n)n]. (9)

As before we fit the data to a weighted sum of the equations for ideal error correction and for a linear error-dependence
(no error correction). We use the optimal ancilla state assignment (FM(pe) from Eq. 4). For two rounds of error
correction we obtain

F2 =
1

2
w[1 +A′FM(1− 6p22 + 4p32)2] +

1

2
(1− w)[1 +A′FM(1− 2pe)], (10)
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giving w = 0.66(4) and A′ = 0.850(9). For three rounds it becomes

F3 =
1

2
w[1 +A′F 2

M(1− 6p23 + 4p33)3] +
1

2
(1− w)[1 +A′F 2

M(1− 2pe)], (11)

giving w = 0.71(2) and A′ = 0.810(5). Importantly, the data for multiple rounds cannot be accurately described by
the expected shape for a single round of error correction (Eq. 3).

Naturally occurring decoherence (coherent errors), Fig. 4d

The experiments for the best unencoded qubit, the logical qubit with QEC and without QEC (majority vote only)
are fitted to a general exponentially decaying function:

F =
1

2
(1 +Ae−(t/T )n). (12)

Here, we obtain for the error-corrected logical qubit: T = 24.2(2) ms and n = 2.03(7), while for the best qubit we
find: T = 17.3(2) ms and n = 2.09(7). For the encoded qubit with majority voting we obtain: T = 13.7(1) ms and
n = 2.37(8).

To get a better understanding of quantum error correction and the projection of errors in the experiments
with stabilizer measurements at half the free evolution time in Fig. 4d we turn to numerical Monte Carlo simulations,
see Fig. 10 for details and results.

Supplementary Note 2: Theoretical analysis: error probabilities

The probability to detect no error (P (0)) is the sum of the probability to have no error (no qubits flipped) or three
errors (all qubits flipped) and is described by:

P (0) = (1− p(1)tot)(1− p(2)tot)(1− p(3)tot) + p
(1)
totp

(2)
totp

(3)
tot, (13)

where p
(i)
tot is the error probability for qubit i. The probability to detect an error on one of the three qubits (P (i)) is

the probability to have an error on qubit i, or an error on both of the other qubits, which for example for qubit 1 is
described by:

P (1) = p
(1)
tot(1− p(2)tot)(1− p(3)tot) + (1− p(1)tot)p

(2)
totp

(3)
tot. (14)

With finite input error probability p
(i)
in for qubit i (errors already present in the initially prepared state), the total

error as function of the applied error probability pe, becomes:

p
(i)
tot = p

(i)
in + pe − 2p

(i)
in pe (15)

Finally we can take imperfect ancilla readout into account and obtain the probability to detect one of the error

outcomes P
(i)
D (i=0 for no detected error) as function of the applied error pe:

P
(0)
D = P (0)F 2 + (P (1) + P (3))F (1− F ) + P (2)(1− F )2 (16)

P
(1)
D = P (1)F 2 + (P (0) + P (2))F (1− F ) + P (3)(1− F )2 (17)

P
(2)
D = P (2)F 2 + (P (1) + P (3))F (1− F ) + P (0)(1− F )2 (18)

P
(3)
D = P (3)F 2 + (P (0) + P (2))F (1− F ) + P (1)(1− F )2 (19)
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The XX stabilizers in the encoded state tomography (Fig. 2) detect errors present in the encoded state, we
obtain:

P (0) =〈1
4

(1 +X1, X2, I3)(1 +X1, I2, X3)〉 =
1

4
(1 + 〈X1, X2, I3〉+ 〈I1, X2, X3〉+ 〈X1, I2, X3〉) = 0.785(2) (20)

P (1) =〈1
4

(1−X1, X2, I3)(1−X1, I2, X3)〉 =
1

4
(1− 〈X1, X2, I3〉+ 〈I1, X2, X3〉 − 〈X1, I2, X3〉) = 0.060(2) (21)

P (2) =〈1
4

(1−X1, X2, I3)(1 +X1, I2, X3)〉 =
1

4
(1− 〈X1, X2, I3〉 − 〈I1, X2, X3〉+ 〈X1, I2, X3〉) = 0.083(2) (22)

P (3) =〈1
4

(1 +X1, X2, I3)(1−X1, I2, X3)〉 =
1

4
(1 + 〈X1, X2, I3〉 − 〈I1, X2, X3〉 − 〈X1, I2, X3〉) = 0.071(2) (23)

which are uncorrected for qubit readout. These results can be translated to the input errors, as these outcomes refer

to Eqs. 13&14 with no additional applied error pe, giving p
(1)
in = 0.064(2), p

(2)
in = 0.091(2), p

(3)
in = 0.077(2).

Using these values we estimate the expected total error detection probabilities P
(0)
D , P

(1)
D , P

(2)
D and P

(3)
D as

function of applied error probability pe according to Eqs. 13-19. The expected error-dependent QEC measurement
outcomes are shown by the solid lines in the inset of Fig. 3b.

Error syndrome assignment

For the different error assignments, the asymmetry in the ancilla readout complicates the error detection curves:
the QEC measurement fidelity is dependent on the error probability. If, for instance, both stabilizer measurements
giving +1 are assigned to {|1〉a, |1〉a}, Eqs. 16-19 become:

P
(0)
11 = P (0)F 2

1 + (P (1) + P (3))F1(1− F0) + P (2)(1− F0)2 (24)

P
(1)
11 = P (1)F1F0 + P (0)F1(1− F1) + P (2)F0(1− F0) + P (3)(1− F1)(1− F0) (25)

P
(2)
11 = P (2)F 2

0 + (P (1) + P (3))F0(1− F1) + P (0)(1− F1)2 (26)

P
(3)
11 = P (3)F1F0 + P (0)F1(1− F1) + P (2)F0(1− F0) + P (2)(1− F1)(1− F0) (27)

All error detection curves for the four error assignments using similar equations are plotted in Supplementary Fig. 8.

Multiple rounds of error correction, Fig. 4b

For multiple rounds we now calculate the average input error p
(avg)
in from the detection probability for no additional

applied error (pe = 0). We simplify Eq. 13 to

P (0) = 1− 3p
(avg)
tot + 3(p

(avg)
tot )2 (28)

and use Eq. 24 to obtain the following average input error for round 1: p
(avg)
in = 0.092(1) and for round 2: p

(avg)
in =

0.086(1). The resulting curves according to Eq. 24 are shown in the inset of Fig. 4b.

Supplementary Note 3: Qubit readout calibration

To obtain best estimates for the actual states, the results are corrected for the fidelity of the gates used in the final
readout (tomography). We distinguish between reading out single- two- and three-qubit expectation values.

For a single qubit i that is initialized and readout immediately, the measured expectation value 〈Zi〉 is set by
the initialization fidelity of the nitrogen spin (FN = 0.94(3)) and by factors due to the initialization (Cinit,Qi) and
readout (CQi

) of the qubit. Because the initialization and readout consist of the same set of gates, we assume that
Cinit,Qi = CQi

for this experiment and obtain:

〈Zi〉 = FNC
2
Qi
, (29)
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from which a readout correction factor 1/CQi can be determined.

To calibrate the multi-qubit readouts we initialize the three qubits in separable states. For example, for state
|000〉, the measured three-qubit expectation value 〈Z1Z2Z3〉 is set by the nitrogen initialization FN, by factors Cinit,Qi

due to the individual initialization fidelities of the three-qubits and by a factor CQ1,Q2,Q3
due to the three-qubit

readout:

〈Z1Z2Z3〉 = FNCinit,Q1Cinit,Q2Cinit,Q3CQ1,Q2,Q3
→ CQ1,Q2,Q3

=
〈Z1Z2Z3〉

FNCinit,Q1Cinit,Q2Cinit,Q3
. (30)

This equation assumes that the initialization errors, other than those due to the nitrogen initialization, are uncorre-
lated. The initialization fidelities are obtained using the single-qubit expectation values and single qubit CQi

for the
corresponding qubit, i.e. for qubit 1:

〈Z1I2I3〉 = FNCinit,Q1CQ1
→ Cinit,Q1 =

〈Z1I2I3〉
FNCQ1

(31)

with CQ1 from Eq. 29. In a similar way, the two-qubit readout is calibrated using two-qubit expectation values of
two- and three-qubit states. We obtain the following values:

CQ1 = 0.95(1) CQ1Q2 = 0.94(2) CQ1Q2Q3 = 0.92(5)

CQ2 = 0.94(1) CQ1Q3 = 0.88(4)

CQ3 = 0.95(1) CQ2Q3 = 0.90(2)

which are used to calibrate the final readouts for tomography. Note that the uncertainty in the readout calibration
potentially creates a small systematic error (a rescaling of all y-axes). For this reason we also provide all raw
(uncalibrated) data for the error correction in Supplementary Fig. 11.

Although our data do not yield a rigorous value of the two-qubit gate fidelity, the qubit readout fidelities de-
rived here, F = (1 + CQi

)/2 ≈ 0.97 give an indication of the two-qubit gate fidelity as readout consists of two single
qubit gates and one two-qubit gate.
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