Additional file 2

Figure S1. Schematic design of the MyVariant.info architecture. Colors depict different

update frequencies. Small grey circles indicate multiple nodes for scalability.

Variant retrieval APT ;)
T ! Variant query| APT
/v1/variant/<id> vl/aue
Python/Tornado | — — — Web Frontend Pl
(n)(n)(n) (n)(n)(n)
A — - 7 —
L)
ElasticSearch [n)(n)in) IndexingEngine (n)(n (n)
)
E‘/ “\‘i
Merged "VariantDoc"
MongoDB | - A N

i| dbSNP
'| VariantDoc

Loading Scripts III,.-""'dbSNp

ClinVar

Cosmic CADD

VariantDoc

VariantDoc

VariantDoc

dbNSFP .
VariantDoc |!

dbNSFP

Figure S2. Histograms of the request time in millisecond for actual user

requests to the gene query service (top) and the gene annotation service (bottom) of
MyGene.info. The number on each bar indicates the actual count. The data were
extracted from the logs of server nodes during recent 30-day period

(08/01/2015-09/01/2015).

Gene query services (/v2/query)

250000 237829
214919

200000

150000

100000

Frequency

49447
50000 - 40801

17803 13305

9060 5933 4338 3597 3137 2470

10 20 30 40 50 60 70 80 90 100 1000 more
request time in ms

Gene annotation service (/v2/gene)
1600000

J

1407450
1400000 -

1200000 -
1000000 -

)

[5)

=

S 800000 -
&) 630545
=

600000 -

400000 -
215099

200000 - 46767
>/ 16657 9155 6371 4412 3303 2288 14629 7135

0 - T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100 1000 more

request time in ms

Figure S3. Two examples of JSON annotation objects stored and indexed at a)

MyGene.info and b) My Variant.info. Some contents are collapsed and the full objects can be
viewed at the links above. Additional gene and variant query examples can be found at:
https://gist.github.com/kevinxin90/7edb38903ff997b5d670 (MyGene.info) and
https://gist.github.com/kevinxin90/b8e88cbct23d45479ede (MyVariant.info).

a) http://MyGene.info/v2/gene/7157 b) http://MyVariant.info/v1/variant/
{ chr7:q.55241707G>T
id: "/157",
» accession: {wl}, {
e _id: "chr7:9.55241707G>T",
entrezgene: 7157, _version: 1,
rexons: {..}, » cadd: {};

» exons_hgl9: {..},

» generif: [..], > Glln‘var: { - } r

» genomic pos: {..}, ¥ cosmic: |

4 genomic_pos_hgl9: {..}, alt: """ ,

" go: (s h - ||'I|r||
HGNC: "11998", chrom: '

* homologene: {..}, cosmic id: "COSMozZ53",
HPRD: "01859", * hgl9: T

» interpro: |[..],

»ipi: [..1, end: 55241707,
map_location: "17pl3.1", start: 55241707
MIM: "191170",
name: "tumor protein pb3", } r

» pathway: (..}, mut freq: 0.04,

> pdb: .1, mut nt: "G>T",

»pfam: [..], =
pharmgkb: "PA3I6679", ref: "G",
pir: "A25224", tumor site: "lung"

» reagent: { ..}, } -

» refseq: {..}, r

» reporter: { ..}, » dbnsfp: {..},

» retired: [..], » dbsnp: {] ;
summary: "This gene encodes a tumor .
suppressor protein containing > docm: { - } ’
transcriptional activation, DNA binding, » mutdb: { } '
symbol: "TP53", * snpedia: { ..},
taxid: 9606, » snpeff: { .},
type of gene: "protein-coding", rvef: ..}

» unigene: [..],

» uniprot: {..}, }

Vega: "OTTHUMG00000162125",
» wikipedia: {..]
}

Table S1. Gene-specific annotation fields available from MyGene.info web

services. The first column is the field name; the second column indicates if the field is indexed
(therefore it can be queried on); the third column is the data type of the field (like string, integer,
object, etc.).

(See provided supplementary excel file: Supplementary table 1_mygene_fields.xlsx)

Table S2. Variant-specific annotation fields available from MyVariant.info web

services. The first column is the field name; the second column indicates if the field is indexed
(therefore it can be queried on); the third column is the data type of the field (like string, integer,
object, etc.).

(See provided supplementary excel file: Supplementary table 2_myvariant_fields.xlsx)

Table S3. Examples of HGVS (Human Genome Variation Society) nomenclature.

Variant HGVS nomenclature Notes

types

Substitution chrl:g.241T>C single nucleotide substitution

Deletion chrl:g.413del single nucleotide deletion
chrl:g.290_297del >1 nucleotide deletion

Duplication chrl:g.413dup single nucleotide duplication
chrl:g.692_694dup several nucleotide duplication

Insertion chrl:g.451_452insT single nucleotide insertion
chrl:g.451 452insGAGA several nucleotide insertion
chrl:g.777_778insAB012345.1 large insertion with a

submitted sequence
Inversion chrl:g.1077_1080inv short inversion

chrl:g.1458 0XYZ:457inv

large inversion

Supplementary note 1. This is the print out of the jupyter notebook at:
https://github.com/sulab/myvariant.info/blob/master/docs/ipynb/myvariant_R_miller.ipynb

myvariant.info (/github/sulab/myvariant.info/tree/master) / docs (/github/sulab/myvariant.info/tree/master/docs)
/| ipynb (/github/sulab/myvariant.info/tree/master/docs/ipynb)

MyVariant.info and MyGene.info Use Case

The following R script demonstrates the utility of the MyVariant.info and MyGene.info R clients to annotate variants and prioritize
candidate genes in patients with rare Mendelian diseases. This specific study uses data obtained from the database of phenotype and
genotype (dbGaP) study. FASTQ files generated by Ng et al for the Miller syndrome study
(http://www.ncbi.nlm.nih.gov/pubmed/19915526) were processed according to the Broad Institute’s best practices. Individual samples
were aligned to the hg19 reference genome using BWA-MEM 0.7.10. Variants were called using GATK 3.3-0 HaplotypeCaller and
quality scores were recalibrated using GATK VariantRecalibrator.

Initial Library Imports and Data Loading

In [1]: 1library(myvariant, quietly=TRUE)
library (mygene, quietly=TRUE)
library (VariantAnnotation, quietly=TRUE)
library (GO.db, quietly=TRUE)
source ("https://raw.githubusercontent.com/Sulab/myvariant.info/master/docs/ipynb/mendelian.R")
setwd ("~/sulab/myvariant/vcf/recal"
vcf.files <- paste(getwd(), list.files(getwd()), sep="/")

Attaching package: ‘BiocGenerics’

The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following object is masked from ‘package:stats’:
xtabs

The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, as.vector, cbind, colnames,
do.call, duplicated, eval, evalqg, Filter, Find, get, intersect,
is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax,
pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rep.int,
rownames, sapply, setdiff, sort, table, tapply, union, unique,
unlist, unsplit

Creating a generic function for ‘nchar’ from package ‘base’ in package ‘S4Vectors’

Attaching package: ‘VariantAnnotation’

The following object is masked from ‘package:base’:
tabulate

Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see

'citation("Biobase")', and for packages 'citation ("pkgname")'.

Loading required package: DBI

Attaching package: ‘plyr’

The following object is masked from ‘package:XVector’:
compact

The following object is masked from ‘package:IRanges’:
desc

The following object is masked from ‘package:S4Vectors’:

rename

cwu
Text Box
Supplementary note 1. This is the print out of the jupyter notebook at:
https://github.com/sulab/myvariant.info/blob/master/docs/ipynb/myvariant_R_miller.ipynb

vcf. files contains paths to the vcf files for each of the four patients included in this analysis. Exome sequence data from two sibs
with Miller syndrome and two unrelated affected individuals used in this vignette was provided by Ng et al. (2010) Nature Genetics
(phs000244.v1.p1) (http://www.ncbi.nim.nih.gov/pubmed/19915526). As this is protected information, access must be requested from
dbGaP here (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000244.v1.p1) in order to run this notebook.

mendelian.R defines some helper functions that are used in the analysis occurring after annotation retrieval:
replaceWithO - replaces all NAs in a data.frame with 0.

rankByCaddScore - for prioritizing genes by deleteriousness (scaled CADD score).

Annotating variants with MyVariant.info

The following function reads in each output VCF file using the VariantAnnotation package available from Bioconductor. Install with
biocLite ("VariantAnnotation"). formatHgvs (from the myvariant Bioconductor package) is a function that reads the
genomic location and variant information from the VCF to create HGVS IDs which serve as a primary key for each variant. The
function getvariants makes the queries to MyVariant.info to retrieve annotations.

In [2]: getVars <- function(vcf.file) {
cat (paste ("Processing ", vcf.file, "...\n", sep=" "))
vcf <- readvcf (vcf.file, genome="hgl9")
vcf <- vcf[isSNV (vcf)
vars <- rowRanges (vcf)
vars <- as(vars, "DataFrame"
vars$query <- formatHgvs (vcf, "snp")
annotations <- getVariants(vars$query, fields=c("dbnsfp.genename", "dbnsfp.1000gpl.af"
"exac.af", "cadd.consequence", "cadd.phred"), verbose=FALSE)

annotations[c('DP', 'FS', 'QD')] <- info(vcf) [c('DP', 'FS', 'QD')]
annotations <- replaceWithO (annotations

annotations <- subset (annotations, ! (dbnsfp.genename %in% c("NULL", 0)))
annotations

vars <- lapply(vcf.files, getVars)

Processing /Users/cyrusafrasiabi/recal/subject0l recalibrate SNP vgsr.vcf
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER

found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject02_recalibrate SNP_vgsr.vcf
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER

found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject03_recalibrate SNP_vgsr.vcf
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER

found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject04_recalibrate SNP_vgsr.vcf
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER

found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

All genes (variants with a valid dbnsfp.genename) that are mutated amongst all four patients are examined. The following function
counts the number of genes in inp that are mutated among all four patients:

In [3]: countGenes <- function (inp) {
ret <- subset(data.frame (table(unlist (lapply(inp, function (i) unique (i$dbnsfp.genename))))),
Freq == 4)
cat ("Genes remaining: ", paste(nrow(ret)))
ret

Initial Number of Genes Mutated in All Patients

In [4]: nVars <- countGenes (vars

Genes remaining: 2441

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

filterl <- lapply(vars, function(i) subset(i, DP > 8 & FS < 30 & QD > 2))

nFilterl <- countGenes (filterl)

Genes remaining: 2308

2 - Filtering for Nonsynonymous and Splice Site Variants

Mendelian diseases are most likely to be caused by nonsynonymous mutations. The CADD database annotates the mutation type in
the field "cadd.consequence".

filter2 <- lapply(filterl, function(i) subset (i, cadd.consequence %in% c("NON_SYNONYMOUS", "STOP_GAINED"
"CANONICAL_SPLICE", "SPLICE_SITE")))

nFilter2 <- countGenes (filter2)

Genes remaining: 1917

3 - Filtering for Allele Frequency Annotated by ExAC

The third filter keeps rare variants according to the EXAC data set with allele frequency < 0.01. Rare diseases are likely caused by
mutations that have not been documented yet.

filter3 <- lapply(filter2, function (i) subset (i, exac.af < 0.01))

nFilter3 <- countGenes (filter3)

Genes remaining: 18

4 - Filtering for Allele Frequency Annotated by 1000 Genomes Project

The fourth filter keeps rare variants according to the 1000 Genomes Project with allele frequency < 0.01.

filterd4d <- lapply(filter3, function(i) subset (i, sapply(dbnsfp.1000gpl.af, function(j) j < 0.01)))

top.genes <- countGenes (filter4)

Genes remaining: 9

5 - Filtering by GO Biological Process Annotation using MyGene.info

Since Miller Syndrome is known to be an inborn error of metabolism, this filter keeps only genes involved in metabolic processes
according to their GO biological process annotation. To accomplish this, GO biological process annotations are pulled for each
remaining gene using the MyGene.info R client, which can be installed from Bioconductor (biocLite ("mygene")). Here, the
queryMany function is used, requesting the necessary annotations using the fields parameter.

goBP <- data.frame (queryMany (top.genes$Varl, scopes="symbol", species="human", fields=c("go.BP", "name",

Finished

The Bioconductor package go.DB is used to find all genes with a GO biological process annotation that is a descendant of
G0:0008152 - the GO id for metabolic process.

miller.bp <- lapply(goBP$go.BP, function (i) unlist(i$id))

"STOP

"MIM",

bp.ancestor <- lapply(miller.bp, function(i) sapply(i, function(j) "GO:0008152" %$in% unlist (GOBPANCESTORI[[]]]))

candidate.genes <- top.genes$Varl[sapply(bp.ancestor, function(i) TRUE %in% i)
cat ("Genes remaining: ", length(candidate.genes))

Genes remaining: 5

Prioritizing genes

The remaining five genes can be prioritized according to CADD (deleteriousness) score. rankByCaddScore extracts the average
CADD scores of the variants in each gene and ranks in descending order.

In [11]: ranked <- rankByCaddScore (candidate.genes, filter4)
ranked

Out [117: gene |cadd.phred

1| DHODH (26.81

CTBP2 [21.385

CDC27 [18.545

2
3| PIK3R3 [20.7
4
5

CDON [10.02

This analysis highlights the use of the MyVariant.info and MyGene.info annotation services to narrow the candidate gene list from
2441 genes to 5 - representing a significant decrease in the burden of manual biological analysis.

	Supplementary_figure 1_myvariant_schema
	Supplementary figure 2_request_time
	Supplementary figure 3_json_example
	Supplementary Table 1 and 2 legends
	Supplementary table 3_hgvs_example
	Supplementary note 1_Millter_studies_tutorial_ipynb

