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1 Experimental Procedures

1.1 Unsupervised segmentation: cardinal painting with known segmentation
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Supplementary Figure 1: Cardinal painting: optical image and single ion images. A, Optical image
of the cardinal painting during collection of mass spectra. B–C, characteristic single ion images for the
cardinal painting dataset at B, 650.17 m/z, showing the “DESI-MS” text, and C, 327.25 m/z, showing the
body (red pigment).
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1.2 Supervised segmentation: human renal cell carcinoma
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Supplementary Figure 2: Human renal cell carcinoma: morphology. The morphology is characterized
by optical images of the H&E stained tissues. For each matched pair, cancerous tissue is on the left, and
normal tissue is on the right.
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Supplementary Figure 3: Human renal cell carcinoma: normal tissue single ion images. For each
matched pair, cancerous tissue is on the left, and normal tissue is on the right. 215.25 m/z is known to
be more abundant in normal tissue [3]. Note that some of the cancerous tissues appear to have regions of
normal tissue, such as samples B, UH0505 12, C, UH0710 33, and F, UH9905 18.

5



A B C D
97

1.9

m/z = 885.67
MH0204_33

69

2.66

m/z = 885.67
UH0505_12

118

2.5

m/z = 885.67
UH0710_33

93

6.49

m/z = 885.67
UH9610_15

E F G H
101

2.79

m/z = 885.67
UH9812_03

50

2.69

m/z = 885.67
UH9905_18

74

1.42

m/z = 885.67
UH9911_05

79

1.89

m/z = 885.67
UH9912_01

Supplementary Figure 4: Human renal cell carcinoma: cancer tissue single ion images. For each
matched pair, cancerous tissue is on the left, and normal tissue is on the right. 885.67 m/z is known to
be more abundant in cancerous tissue [3]. Note that some of the normal tissues appear to have regions of
cancerous tissue, such as the left edge of sample E, UH9812 03.
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2 Results

2.1 Algorithm and implementation

All the referenced equations can be found in the main text. Both algorithms are implemented

in the R package Cardinal (cardinalmsi.org) [2], available from Bioconductor. Source code is

available at http://github.com/kbemis/Cardinal.

2.1.1 Procedure for spatial shrunken centroids classification (supervised)

The following describes the algorithm for a single set of parameters for a single fold of cross-

validation. Parameters should be selected as described in Section 5.2.6.

Input

1. Training set of samples with class labels k = 1, . . . ,K

2. Testing set of samples m = 1, . . . ,M

3. Parameters

(a) Neighborhood radius r

(b) Shrinkage parameter s

Fitting – performed on samples from the training set

1. Calculate the overall centroid x̄

2. For each class k = 1, . . . ,K:

(a) Calculate the class centroid x̄k

(b) For each feature p = 1, . . . , P :

i. Calculate the t-statistics tkp [Equation 1].

ii. Calculate the shrunken t-statistics t′kp [Equation 2].

(c) Calculate the class shrunken centroid x̄′
k [Equation 3].
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3. Output the shrunken t-statistics t′kp and shrunken centroids x̄′
k.

Prediction – performed on samples from the testing set

1. For each pixel at a location (i, j) on sample m = 1, . . . ,M :

(a) For each class k = 1, . . . ,K:

i. Calculate the distance to the class centroid d(xijm, x′
k) [Equation 8].

ii. Calculate discriminant score D(xijm, x̄′
k) [Equation 10].

iii. Calculate the class membership probability p̂k(xijm) [Equation 11]

(b) Assign the pixel to the class with the highest probability p̂k(xijm).

2. Output the class assignments and class probabilities p̂k(xijm).

2.1.2 Procedure for spatial shrunken centroids segmentation (unsupervised)

The following describes the algorithm for a single set of parameters. Parameters should be selected

as described in Section 5.2.6.

Input

1. Unlabeled samples m = 1, . . . ,M

2. Maximum number of iterations iter.max

3. Parameters

(a) Neighborhood radius r

(b) Maximum number of segments K

(c) Shrinkage parameter s

Fitting

1. Use SA or SASA clustering by Alexandrov and Kobarg [1] to initialize the K segments.

8



2. Calculate the overall centroid x̄

3. For each segment k = 1, . . . ,K with Nk 6= 0:

(a) Calculate the segment centroid x̄k

(b) For each feature p = 1, . . . , P :

i. Calculate the t-statistics tkp [Equation 1].

ii. Calculate the shrunken t-statistics t′kp [Equation 2].

(c) Calculate the segment shrunken centroid x̄′
k [Equation 3].

4. For each pixel at a location (i, j) on sample m = 1, . . . ,M :

(a) For each segment k = 1, . . . ,K:

i. Calculate the distance to the segment shrunken centroid d(xijm, x′
k) [Equation 8].

ii. If a segment has Nk = 0, define the distance to it as d(xijm, x′
k) = ∞.

iii. Calculate discriminant score D(xijm, x̄′
k) [Equation 10].

iv. Calculate the segment membership probability p̂k(xijm) [Equation 11]

(b) Assign the pixel to the segment with the highest probability p̂k(xijm).

5. Update the segments with the pixel assignments from step 4b.

6. Repeat steps 3–5 until no segments change, or at most iter.max times.

7. Output the shrunken t-statistics t′kp, shrunken centroids x̄′
k, and probabilities p̂k(xijm).
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2.2 Evaluation

2.2.1 Spatial probabilistic modeling provides better quality segmentation as com-

pared to per-pixel segmentation

Spatial segmentations of the cardinal painting are illustrated in Supplementary Figure 5, which

demonstrates the performance of existing and proposed methods compared to the ground truth..

In Supplementary Figure 5A, k-means clustering was applied to the peak-picked spectra, resulting

in a noisy segmentation. The face (black feathers) are not represented as a unique segment. Sup-

plementary Figure 5B shows k-means clustering applied to the first five principal components of

the peak-picked spectra, which also results in a noisy segmentation, but with all parts of the paint-

ing represented as segments. Supplementary Figure 5C and Supplementary Figure 5D show the

spatially-aware clustering and spatially-aware structurally-adaptive clustering of Alexandrov and

Kobarg [1], which both result in cleaner segmentations with clearer edges between segments. The

methods above, which require a predetermined number of segments, were set to 8 segments. Sup-

plementary Figure 5E and Supplementary Figure 5F show the proposed spatial shrunken centroids

segmentation method with SA and SASA distances, which produce clean segmentations comparable

for Supplementary Figure 5C and Supplementary Figure 5D. The proposed method was initialized

to 10 segments, resulting in 8 segments in the final segmentations.
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Supplementary Figure 5: Cardinal painting: segmentation comparison. A, K-means clustering applied
to the peak-picked spectra. B, K-means clustering applied to the first five principal components of the
peak-picked spectra. C, Spatially-aware (SA) clustering. D, Spatially-aware structurally-adaptive (SASA)
clustering. E, Spatial shrunken centroids with SA distance. F, Spatial shrunken centroids with SASA.
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2.2.2 Statistical regularization enables data-driven selection of the number of seg-

ments for unsupervised experiments

The selection of the number of segments for the pig fetus cross-section dataset is illustrated in

Supplementary Figure 6. Supplementary Figure 6A shows the predicted number of segments for

increasing shrinkage parameter s for spatial shrunken centroids with the spatially-aware (SA) dis-

tance. Supplementary Figure 6B shows the same for spatial shrunken centroids with the spatially-

aware structurally-adaptive (SASA) distance. The method was initialized for spatial smoothing

radii r = 1 and r = 2, and for starting number of segments K = 15 and K = 20. The shrinkage

parameter s was increased from 0 to 9 in increments of 3.

To identify segmentations with the most appropriate number of segments, we first look for where

the predicted number of segments become similar across different numbers of starting segments K.

When this happens, only meaningful segments should remain. This occurs around s = 3. Next,

we look for where the predicted number of segments stabilizes, which should correspond with an

“elbow” in the graph, similar to a scree plot. For Supplementary Figure 6A, this occurs at s = 6,

but for Supplementary Figure 6B, this may occur earlier at Supplementary Figure 6B s = 3.

Supplementary Figure 6C–F show the segmentions resulting for increasing shrinkage parameter

s for spatial smoothing radius r = 2 and starting number of segments K = 20.

The selection of the number of segments for the cardinal painting dataset is illustrated in

Supplementary Figure 7. Supplementary Figure 7A shows the predicted number of segments for

increasing shrinkage parameter s for spatial shrunken centroids with SA distance. Supplementary

Figure 7B shows the same for spatial shrunken centroids with SASA distance. The method was

initialized for spatial smoothing radii r = 1 and r = 2, and for starting number of segments K = 10

and K = 15. The shrinkage parameter s was increased from 0 to 9 in increments of 3. For both

versions, the segmentations begin to stabilize around s = 3.

Supplementary Figure 7C–F show the segmentions resulting for increasing shrinkage parameter

s for spatial smoothing radius r = 2 and starting number of segments K = 15.
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Supplementary Figure 6: Pig fetus cross-section: selection of the number of segments. A, Spatially-
aware (SA) distance. B, Spatially-aware structurally-adaptive (SASA) distance. C–F, Segmentations using
SA distance with smoothing radius of 2 and 20 initial segments, for increasing sparsity parameter s. C, s =
0, D, s = 3, E, s = 6, F, s = 9.
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Supplementary Figure 7: Cardinal painting: selection of the number of segments. A, Spatially-
aware (SA) distance. B, Spatially-aware structurally-adaptive (SASA) distance. C–F, Segmentations using
SA distance with smoothing radius of 2 and 20 initial segments, for increasing sparsity parameter s. C, s =
0, D, s = 3, E, s = 6, F, s = 9.
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2.2.3 Feature selection aids interpretation by automatically identifying spectral fea-

tures associated with differentiating each segment from others

For the cardinal painting segmentation from Supplementary Figure 5E, the selected spectral features

using the proposed spatial shrunken centroids segmentation method are shown in Supplementary

Figure 8. Feature selection is shown for the text, body, and wing segments, along with their

corresponding t-statistics and top-ranked single ion images. For the text segment, 4 spectral features

were systematically enriched, and 27 features were systematically absent. For the body segment, 12

spectral features were systematically enriched, and 36 features were systematically absent. For the

wing segment, 13 spectral features were systematically enriched, and 20 features were systematically

absent.
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Supplementary Figure 8: Cardinal painting: t-statistics and representative single ion images. A–C
The predicted segment membership probabilites from spatial shrunken centroids with SA distance. A, the
text segment, B, the body segment, and C, the wing segment. D–F The shrunken t-statistics of the spectral
features. D, the text segment, E, the body segment, and F, the wing segment. G–I The single ion images
corresponding with the top-ranked spectral features by shrunken t-statistic. G, the text segment, H, the
body segment, and I, the wing segment.
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2.2.4 Classification in supervised experiments
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Supplementary Figure 9: Human renal cell carcinoma: classification. For each matched pair, cancerous
tissue is on the left, and normal tissue is on the right. Transparency is used to show the predicted probabilities
based on spatial shrunken centroids classification. The parameters used were r = 3, s = 20, selected by cross-
validation, as illustrated in Supplementary Figure 10.
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Supplementary Figure 10: Human renal cell carcinoma: cross-validation. The highest cross-validated
accuracy rate was for r = 3, s = 20 with 88.9% accuracy, defined as correctly classifying a pixel as cancer
or normal. Each slide was treated as its own fold in 8-fold cross-validation, i.e., leave-one-sample-out cross-
validation.
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