1 SUPPLEMENTAL MATERIALS AND METHODS

2 Complementation strain construction

3	All complementation strains are listed in Table S1. All complementation strains were
4	constructed by conjugation of a pCM433-based suicide plasmid harboring a wild-type copy of the gene
5	of interest, into the mutant strains (1). Conjugation was performed with Escherichia coli S17-1 λ pir
6	acting as the donor strain as previously described (1). $\Delta mxaF$, $\Delta mxaI$, and $\Delta mxaB$ strains were
7	complemented using the genes under the control of their native promoter. Multiple attempts were
8	made to complement the $\Delta xoxF$ mutant using its native promoter, without success. Therefore, the
9	$\Delta xoxF$ mutant was complemented using the <i>tac</i> promoter, a strong promoter in <i>M. buryatense</i> 5GB1 (1).
10	This complementation technique results in the integration of the complementation construct into the
11	<i>M. buryatense</i> 5GB1C chromosome in regions known to be transcriptionally silent (2). The <i>mxa</i>
12	complementation constructs were integrated between genes METBUDRAFT_2794 and
13	METBUDRAFT_2795. The <i>xoxF</i> complementation construct was integrated between genes
14	METBUDRAFT_1431 and METBUDRAFT_1432. Sucrose counter-selection was used to unmark all strains
15	(1).
16	Strain FC52 was conjugated with plasmid pFC37 to create the <i>mxaF</i> complementation strain
17	(FC59). Strain FC53 was conjugated with plasmid pFC40 to create the <i>xoxF</i> complementation strain
18	(FC64). The <i>tac</i> promoter used in pFC40 was amplified from pAWP89 (1). Strain FC54 was conjugated
19	with plasmid pFC38 to create the mxal complementation strain (FC60). Strain FC63 was conjugated with

20 pFC39 to create the mxaB complementation strain (FC65). All plasmids were constructed using Gibson

assembly (3). All primers used for plasmid construction are listed in Table S2.

Supplemental Figure S1. Complementation of $\Delta mxaB$ restores wild-type lanthanum-dependent gene expression.

qRT-PCR was performed on RNA harvested from the $\Delta mxaB$ complementation strain grown in the absence or presence of 30µM supplemental lanthanum. Results shown represent the fold change in gene expression in $\Delta mxaB$ complemented cells grown with lanthanum compared to gene expression in $\Delta mxaB$ complemented cells grown without lanthanum. Unpaired t-tests were used to determine significance (***=p < 0.001, **=p < 0.01, *=p < 0.05) between gene expression levels. Data represent means from three replicates ± standard deviations.

Strain name	Genotype	Antibiotic resistance
M. buryatense 5GB1C	Wild-type	None
FC31	METBUDRAFT_2794::P _{mxaF} -xylE	Unmarked
FC52	$\Delta m x a F$	Unmarked
FC53	$\Delta xoxF$	Unmarked
FC54	Δm xal	Unmarked
FC57	$\Delta xoxFS$	Zeocin
FC59	$\Delta mxaF$; METBUDRAFT_2794::P _{mxaF} -mxaF	Unmarked
FC60	$\Delta mxal$; METBUDRAFT_2794:: P _{mxaF} -mxal	Unmarked
FC63	$\Delta m x a B$	Unmarked
FC64	Δ <i>xoxF</i> ; METBUDRAFT_::P _{tac} -xoxF	Unmarked
FC65	$\Delta mxaB$; METBUDRAFT_2794::P _{mxaB} -mxaB	Unmarked
Plasmids		
pFC30	METBUDRAFT_2794::P _{mxaF} -xylE	kanamycin
pFC37	METBUDRAFT_2794::P _{mxaF} -mxaF	kanamycin
pFC38	METBUDRAFT_2794::P _{mxaF} -mxal	kanamycin
pFC39	METBUDRAFT_2794::P _{mxaB} -mxaB	kanamycin
pFC40	METBUDRAFT_1431::P _{tac} -xoxF	kanamycin

23	Table S1. M. bur	yatense 5GB1C strains and	plasmids used in this study
----	------------------	---------------------------	-----------------------------

26 Table S2. Primers used in this study*

For function	Primer name	Sequence
Gene		
knockouts		
FRT-zeo-FRT		
cassette	FC294_zeoR_F	gaagttcctattctctagaaagtataggaacttcCTCTGAAATGAGCTGTTGACAATTAATCAT
	FC295_zeoR_R	gaagttcctatactttctagagaataggaacttcCGTTCATGTCTCCTTTTTTATTCAGTCCTG
$\Delta xoxF$	FC397_xoxFLF_F	AATAACGATTCGCCCTCTACCAATACC
	FC398_xoxFLF_R	tcagaggaagttcctatactttctagagaataggaacttcGTTGAGGCAATCAGCCAGCTTT
	FC399_xoxFRF_F	tgaacggaagttcctattctctagaaagtataggaacttcTGGGCGGCACATTAACTGTATTC
	FC400_xoxFRF_R	GCTTGGTTGTCAAGGTTCGATC
$\Delta m x a F$	FC413_mxaF_LF_F	AGTTGTTGCGCTAATTCGGGTTC
	FC414_mxaF_LF_R	tcagaggaagttcctatactttctagagaataggaacttcCAACAAGACGCCCGACACTAAT
	FC415_mxaF_RF_F	tgaacggaagttcctattctctagaaagtataggaacttcTTAAGGAATTGGCGCATCACACC
	FC416_mxaF_RF_R	GATTCCTTGACATAGCGTGCTGCA
Δm xal	FC434_mxalLF_F	TGCAGCACGCTATGTCAAGGAATC
	FC435_mxalLF_R	tcagaggaagttcctatactttctagagaataggaacttcGAAGACGACAAAGCAACCGCGAAACT
	FC436_mxalRF_F	tgaacggaagttcctattctctagaaagtataggaacttcACCGGCAAGTTTGTTTATGAGGTAG
	FC437_mxalRF_R	GTTTCTTCTTCGACCCGGTTG
Δm xaB	FC404_367mxaF_R	GCTTCGGTTTGAATTGCCACA
	FC465_mxaBLF_R	tcagaggaagttcctatactttctagagaataggaacttcGTGTAGAGTTGGCAAGCGGTTT
	FC466_mxaBRF_F	ttgaacggaagttcctattctctagaaagtataggaacttcAAACTCGGTGTCAAATCGGTCG
	FC467_mxaBRF_R	CAAGGAGAATGTCAAGGCGCTA
pFC30		
<i>xylE</i> gene	FC328_mdhxyIE_F	tgcgaaaaatcaatctggaggaattATGAACAAAGGTGTAATGCGA
	FC329_xyIE_R	tagccatgtttcctcaatggTCAGGTGAGCACGGTCATGAAT
P _{mxaF}	FC130_AP98mdh_R	AATTCCTCCAGATTGATTTTTCGCA
	AP235_62I_fwd_1	tcatgcgcttcatggttaaactgccgaattAATTAAACCGGGAATGATGTC
pFC37		
P_{mxaF} and	FC454_PmxaF_F	tcatgcgcttcatggttaaactgccgaattGTTGTTACTTCTCCATACAATTAAACCGGG
<i>mxaF</i> gene	FC458_mxaFORF_R	atcttagccatgtttcctcaatggTTACAACGAGAACACCATCACGC
pFC38		
P _{mxaF}	FC454_PmxaF_F	tcatgcgcttcatggttaaactgccgaattGTTGTTACTTCTCCATACAATTAAACCGGG
	FC459_PmxaF_R	gcgccgagcaataatgtttttttcatAATTCCTCCAGATTGATTTTTCGCATAA
<i>mxal</i> gene	FC460_mxalORF_F	ttatgcgaaaaatcaatctggaggaattATGAAAAAAACATTATTGCTCGGCGC
	FC461_mxalORF_R	atcttagccatgtttcctcaatggTTAATTGATTTCTTCTACCTCATAAACAAACTTGC
pFC39		
P_{mxaB} and	FC468_mxaBc_F	ttcatggttaaactgccgaattAATTCCTCCAGATTGATTTTTCGCATAATG
<i>mxaB</i> gene	FC469_mxaBc_R	tagccatgtttcctcaatggTTAGTGCGCCAGATTGTCTATGATG
pFC40		
P _{tac}	MH15_dTom_F_new	gtagcaagccattccaacgagtatatttcCTCTGAAATGAGCTGTTGACAATTAATC
	FC343_pMH15R	AGCTGTTTCCTGTGTGAATACCTCC
<i>xoxF</i> gene	FC508_Ptacxox_F	ggaggtattcacacaggaaacagctATGAAGAAGCCTGTCAAAAGCTGG
	FC509_xoxORF3_R	gtactcttgtcgactttatgtctattgTTAATTAGGCAATGCGAATACAGTTAATGT
qRT-PCR		
xoxF	FC401_276xoxF_F	ATTCACACTCCATTCCCTAACACC
	FC402_550xoxF_R	CTAATGGAGCTTGAGTGTTGGTCATG

тхаF	FC403_169mxaF_F	AGTTGTACGACATCAACATCACG
	FC404_367mxaF_R	GCTTCGGTTTGAATTGCCACA
тхаЈ	FC405_73mxaJ_F	AAGAGCCTCTGAAAGTGTGCAATG
	FC406_313mxaJ_R	GATAATACGGTTCAGTCGTCAGC
16S	FC409_34816S3_F	ATATTGGACAATGGGCGCAAG
	FC410_62316S3_R	CAAATGCCGTTCCCAGGTTAAG
тхаВ	FC413_mxaF_LF_F	AGTTGTTGCGCTAATTCGGGTTC
	FC464_mxaB_R	CAACCGAATATCGTCGTGATGGAC

27 *Primer regions used for Gibson or PCR stitching junctions are in lower case, FRT sites are italicized

29	Table S3. Doubli	ng times of mutant	and complementation st	rains†

Strain	Without La ³⁺	With La ³⁺ 30
WT 5GB1C	2.97 ± 0.2	2.83 ± 0.10 ³¹
$\Delta m x a F$	3.87 ± 0.45	2.88 ± 0.24 32
$\Delta mxaF; P_{mxaF}-mxaF$	2.79 ± 0.05	3.13 ± 0.11 33
Δ mxal	3.87 ± 0.16	$2.86 \pm 0.12_{-34}$
$\Delta mxal; P_{mxaF}-mxal$	2.70 ± 0.03	2.90 ± 0.07
$\Delta m x a B$	3.07 ± 0.19	2.71 ± 0.08
$\Delta mxaB$; P _{<math>mxaB-$mxaB$</math>}	2.74 ± 0.03	2.87 ± 0.14
$\Delta xoxF$	2.93 ± 0.07	10.3 ± 6.6 37
$\Delta xoxF$; P _{tac-} xoxF	3.11 ± 0.24	2.86 ± 0.11 38

³⁹ [†]Doubling times are in hours and represent the means of at least three technical replicates with standard

40 deviations. Doubling times were calculated from three time points during the exponential phase of growth.

	REFERENCES
1.	Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME. 2015. Genetic
	tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ
	Microbiol 81: 1775-1781.
2.	Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME. Submitted. Electroporation-Based Genetic
	Manipulation In Type I Methanotrophs. Appl Environ Microbiol.
3.	Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic
	assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343-345.
	1. 2. 3.