Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene

(γ -aminobutyric acid/insulin-dependent diabetes mellitus/chromosome 2q/chromosome 10p)

Ding-Fang Bu*, Mark G. Erlander^{†‡}, Benjamin C. Hitz*, Niranjala J. K. Tillakaratne*, Daniel L. Kaufman[§], Caryn B. Wagner-McPherson[¶], Glen A. Evans[¶], and Allan J. Tobin*^{||}**^{††}

*Department of Biology, [†]Neuroscience Program, ^{||}Molecular Biology Institute, **Brain Research Institute, [§]Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90024; and [¶]Molecular Genetics Laboratory, The Salk Institute, San Diego, CA 92186

Communicated by Elizabeth F. Neufeld, December 4, 1991 (received for review August 16, 1991)

ABSTRACT We report the isolation and sequencing of cDNAs encoding two human glutamate decarboxylases (GADs; L-glutamate 1-carboxy-lyase, EC 4.1.1.15), GAD₆₅ and GAD₆₇. Human GAD₆₅ cDNA encodes a M_r 65,000 polypeptide, with 585 amino acid residues, whereas human GAD_{67} encodes a M_r 67,000 polypeptide, with 594 amino acid residues. Both cDNAs direct the synthesis of enzymatically active GADs in bacterial expression systems. Each cDNA hybridizes to a single species of brain mRNA and to a specific set of restriction fragments in human genomic DNA. In situ hybridization of fluorescently labeled GAD probes to human chromosomes localizes the human GAD₆₅ gene to chromosome 10p11.23 and the human GAD₆₇ gene to chromosome 2q31. We conclude that GAD₆₅ and GAD₆₇ each derive from a single separate gene. The cDNAs we describe should allow the bacterial production of test antigens for the diagnosis and prediction of insulin-dependent diabetes mellitus.

 γ -Aminobutyric acid (GABA) is the major known inhibitory neurotransmitter in the vertebrate brain and serves signaling and trophic functions in several nonneural tissues (for reviews, see refs. 1 and 2). In the pancreatic islets, for example, GABA produced in β cells contributes to the regulation of glucagon secretion by α cells (3).

The rate-limiting step in the synthesis of GABA is the decarboxylation of glutamate, a reaction catalyzed by glutamate decarboxylase (GAD; L-glutamate 1-carboxy-lyase, EC 4.1.1.15). Earliest information concerning the primary structure of GAD came from the sequence of a feline GAD cDNA (GAD₆₇; refs. 4 and 5). The deduced molecular weight of the GAD encoded by that cDNA is $\approx 67,000$ (6–8). Recently, however, we reported the isolation of a rat cDNA that encodes a distinct GAD polypeptide (GAD₆₅) with a M_r of 65,000 (9, 10). In addition to having distinct sequences and molecular sizes, the two GADs differ in their intracellular distributions, their interactions with pyridoxal phosphate, and their pattern of expression in central neurons (refs. 9–12; S. Feldblum, and A.J.T., unpublished work).

An unexpected area of important GAD-related research has recently arisen—the discovery that GAD is the target of autoantibodies present in people who later develop insulindependent diabetes mellitus (IDDM, also called juvenile or type 1 diabetes; ref. 13). Using rat cDNAs in a bacterial expression system to produce GAD_{65} and GAD_{67} , we have detected autoantibodies to both forms of GAD years before the onset of clinical diabetes (14). The human GAD cDNAs reported here^{‡‡} should, therefore, make it possible to develop a sensitive predictive test for IDDM, by using bacterially produced human GADs as antigens. Our sequence data also suggest that autoimmunity to GAD may also play a role in the pathogenesis of IDDM because a 24-amino acid residue segment of human GAD_{65} shares 10 identities and nine similarities with the P2-C protein of Coxsackie virus, an agent often suggested as an environmental triggering agent of IDDM (11, 15–17). Autoimmunity in IDDM may thus arise by "molecular mimicry" between GAD and a viral polypeptide (18). If GAD is, indeed, involved in pathogenesis, as suggested by the early appearance of autoantibodies, possibly the sequence information reported here could be used to devise immunosuppressive strategies to block the function of specific major histocompatibility and T-cell receptor molecules and, thus, prevent or delay IDDM onset.

MATERIALS AND METHODS

Preparation of cDNA Probes. The probe for the identification of human GAD_{67} cDNA clones was feline GAD_{67} cDNA, which is 2266 base pairs (bp) long (4, 5). The probe for the isolation of human GAD_{65} cDNA was a 180-bp fragment from the coding region of rat GAD_{65} cDNA (10). Probes were labeled by random priming (19).

cDNA Cloning and Sequencing. Several overlapping human GAD_{67} cDNA clones were isolated from an oligo(dT)-primed, 22-week human fetal brain λ gt11 library. The GAD_{67} cDNA clone with the longest insert (2644 bp) was designated hGAD 2.7. Another GAD_{67} cDNA clone, hGAD 0.4, contained an insert of 350 bp and a 3' stretch of adenine residues. A cDNA that spanned the gap of 605 bp between these two cDNAs (in the 3' noncoding region) was derived by using the PCR with primers located near the 3' end of hGAD 2.7 insert and the 5' end of hGAD 0.4 insert.

Our initial human GAD₆₅ cDNAs, isolated from a human hippocampus cDNA library in λ -ZapII (Stratagene), lacked the 5' end of the mRNA sequence. Anchored PCR (20), with a template copied with Moloney murine leukemia virus reverse transcriptase (BRL) from the poly(A)⁺ RNA of adult human cerebral cortex, yielded a 151-bp product.

For sequencing, human GAD cDNAs and their exonuclease III deletions were subcloned into Bluescript SK plasmid (Stratagene) and transformed into *Escherichia coli* strain DH5 α . Both DNA strands were sequenced by the dideoxy-

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: GABA, γ -aminobutyric acid; GAD, glutamate decarboxylase; IDDM, insulin-dependent diabetes mellitus; nt, nucleotide(s).

[‡]Present address: Department of Molecular Biology, MB-10, The Scripps Research Institute, La Jolla, CA 92037.

^{††}To whom reprint requests should be addressed at: Department of Biology, University of California, Los Angeles, CA 90024-1606.

^{‡‡}The sequences reported in this paper have been deposited in the GenBank data base (accession nos. M81882 and M81883).

nucleotide chain-termination method of Sanger *et al.* (21) by using a Pharmacia T_7 sequencing kit.

Bacterial Expression of Human GADs. The coding regions of human GAD₆₇ and GAD₆₅ cDNA were subcloned in frame into *Bam*HI sites of pET-5C (22) and pGEX-3X (Pharmacia) vector. The recombinant pET-5C plasmids were transformed into *E. coli* BL21(DE3), and the recombinant pGEX-3X plasmids were transformed into *E. coli* JM101. Extracts of transformed, isopropyl β -D-thiogalactoside-induced bacteria were assayed for GAD activity (23) and for protein with a Bio-Rad protein assay. The bacterial lysates were examined by immunoblotting with monospecific anti-GAD antibodies, as described (10, 11, 24). Fusion proteins produced from pGEX-3X recombinants were purified by glutathione-Sepharose 4B (Pharmacia) (25).

Northern (RNA) Blotting. Total RNA was extracted from human fetal brain (22 weeks) and from adult cerebellum (26). Poly(A)⁺ RNA was fractionated by electrophoresis in formaldehyde/agarose, transferred to Biotrans nylon membranes (ICN), and hybridized to labeled human GAD_{67} or GAD_{65} cDNA, as described (10).

Preparation and Southern Blotting of Human Genomic DNA. Human genomic DNAs were isolated from peripheral blood lymphocytes (27), digested with *Bgl* II, *Eco*RI, *Hin*dIII, *Sst* I, and *Xba* I, and analyzed by Southern blot hybridization to full coding length human GAD₆₇ or GAD₆₅ cDNAs. For hybridization at high stringency, blots were hybridized at 42°C in 5× standard saline citrate (SSC)/50% formamide and then washed in 0.1× SSC. Hybridization at low stringency was done with 35% instead of 50% formamide, followed by washes in 2× SSC.

Genomic GAD DNA Cloning. We used standard plaque and colony hybridization methods to isolate cloned genomic DNA from bacteriophage and cosmid libraries (28). Human GAD₆₇ genomic DNA clones were isolated from both cosmid (pcos2EMBL) and λ phage (Charon 4A) libraries obtained from H. Lehrach (Imperial Cancer Research Fund, London) and T. Maniatis (Harvard University), respectively. We obtained three overlapping cosmid clones and five λ phage clones. Screening a human genomic DNA pWE15 cosmid library (29) yielded six overlapping GAD₆₅ cosmid clones.

Chromosomal Localization. Heparinized whole blood from a karyotypically normal male subject (46XY) was cultured at 37°C for 72 hr in medium/0.2% phytohemagglutinin. Chromosomes preparations were made by using standard prometaphase techniques (30). Fluorescence *in situ* hybridization was done as described (31), with biotinylated GAD₆₅ cosmid and GAD₆₇ bacteriophage probes.

RESULTS

Human GAD₆₇ and GAD₆₅ cDNAs Resemble the Corresponding Rat GAD cDNAs. Human GAD₆₇ cDNA contains an open reading frame of 1782 nucleotides (nt) (594 codons), beginning with the first ATG start codon at nt 551–553 and ending with the TAA stop codon at nt 2333–2335. The open reading frame (Fig. 1) encodes a polypeptide of 594 amino acid residues, with a calculated M_r of 67,000. Within the coding region, the nucleotide sequence of human GAD₆₇ cDNA is 93% identical to the corresponding sequence in feline cDNA and 91% identical to that of rat cDNA. At the amino acid level, human and rat GAD₆₇s are 97% identical, whereas human and feline GAD₆₇s are 98% identical (Table 1).

Our human GAD₆₇ cDNA extends 1267 nt into the 3' noncoding region and contains a poly(A) tail. A polyadenylylation consensus sequence (AATAAA) lies 20–25 bases 5' to the poly(A) tract. In the noncoding regions present in both rat and human GAD₆₇ cDNAs, we find 74% identity in the 3' untranslated region (8).

 hGAD₆₇
 MASSTPSSSATSSNAGADPNTTNLRPTTYDTWCGVAHGCTRKLGLKICGFLQRTNSLEEK
 60

 hGAD₆₇
 SKLVSAFRERQSSKNLLSCENSDRDARFRRTETDFSNLFARDLLPAKNGEEQTVQFLLEV
 120

 hGAD₆₇
 X
 FG
 Q

 hGAD₆₇
 VDILLNYVRKTFDRSTKVLDFHHPHQLLEGNEGFNLELSDHPESLEQILVDCRDTLKYGV
 180

 hGAD₆₇
 KTGHPRFFNQLSTGLDIIGLAGEWLTSTANTNMFTYEIAPVFVLMEQITLKKNREIVGWS
 240

 hGAD₆₇
 SKDGDGIFSPGGAISNMYSIMAARYKYFPEVKTKGMAAVPKLVLFTSEQSHYSIKKAGAA
 300

 rGAD₆₇
 N
 H
 360

 rGAD₆₇
 JGFGTDNVILIKCNERGKIIPADFEAKILEAKQKGYVPFYVNATAGTTVYGAFDFIQEIA
 360

 rGAD₆₇
 DICEKYNLWILHVDAAWGGGLLMSRKHRKHLGIGERANSVTWNPHKMGVLLQCSAILVKE
 420

 hGAD₆₇
 KGILQGCNQMCAGYLFQPDKQYDVSYDTGDKAIQCGRHVDIFKFWLMWKAKGTVGFENQI
 480

 rGAD₆₇
 NKCLELAEYLYAKIKNREEFEMVFNGEPEHTNVCFWYIPQSLRGVDSPQRREKLHKVAP
 540

 rGAD₆₇
 KKALMMESGTTMVGYQPQGDKANFFRMVISNPAATQSDIDFLIEEIERLGQDL
 594

FIG. 1. Deduced amino acid sequence of human GAD_{67} . The putative pyridoxal phosphate-binding site is underlined. Amino acid residues of rat GAD_{67} that differ from those of human GAD_{67} are shown below the human sequence; a dot indicates that there is no corresponding amino acid residue.

Human GAD₆₅ cDNA encodes a polypeptide of 585 amino acid residues that has a calculated M_r of 65,000 (Fig. 2). In the coding region, human GAD₆₅ is 89% identical to rat GAD₆₅ cDNA at the nucleotide level, and the deduced amino acid sequences of the two proteins are 96% identical (Table 1). For both GAD₆₅ and GAD₆₇ cDNAs, anchored PCR and subsequent sequencing of the cloned PCR products revealed no other ATG triplets 5' to the methionine codons indicated in Figs. 1 and 2.

Comparing the deduced amino acid sequences of human GAD_{67} and GAD_{65} , we found that the two are 65% identical (Table 1). Counting the conservative changes in amino acid residues, the overall similarity of the two proteins is 81%. The greatest density of different amino acid residues in the two proteins is in the 100 amino acid residues nearest to the amino terminal, as is also the case for rat GAD_{67} and GAD_{65} (10). Both GAD_{65} and GAD_{67} contain the tetrapeptide sequence Asn-Pro-His-Lys, which has been identified as the pyridoxal phosphate-binding site in porcine dihydroxyphenylalanine (DOPA) decarboxylase (32).

Human GAD₆₅ and GAD₆₇ cDNAs Direct the Bacterial Synthesis of Enzymatically Active GADs. To test the functional properties of the polypeptides encoded by human GAD₆₅ and GAD₆₇ cDNAs, we produced human GAD₆₅ and human GAD₆₇ polypeptides in the pET-5C bacterial expression system (22). Each of these bacterial products is recognized by the appropriate monospecific antibodies in immunoblots: our K-2 antibody recognizes bacterially produced GAD₆₇ (with only slight reactivity to bacterially produced GAD₆₅), and the GAD-6 monoclonal antibody recognizes only bacterially expressed GAD₆₅ (Fig. 3). The estimated molecular weights of these bacterially expressed GADs are

Table 1. Interspecies comparisons of GAD nucleotide and amino acid sequences

	Sequenc	e identity (nucleotide	s/amino a	cids), %
	Human GAD ₆₅	Human GAD ₆₇	Rat GAD ₆₅	Rat GAD ₆₇	Feline GAD ₆₇
Human GAD ₆₅ Human GAD ₆₇ Rat GAD ₆₅ Rat GAD ₆₇		63/65	89/96 63/65	63/66 91/97 63/65	64/66 93/98 65/66 90/97

Nucleotide sequence comparisons are limited to coding regions of the GAD cDNAs. Rat and feline sequences were taken from refs. 5, 8, and 10. First number is % identity at nucleotide level; second number is % identity at amino acid level.

rGAD ₆₅	MASPGSGFV	VSFGS	P	PGTARAW	CQVAQKFTGGI	GNKLCALLYGDA S	EKPAESGG	. 60
hGAD ₆₅ rGAD ₆₅	SQPPRAAAF VTS T	RKAAC V	ACDQKPCSC T	SKVDVNY PG	AFLHATDLLPA L	CDGERPTLAFLQ E	DVMNILLQ	120
hGAD ₆₅ rGAD ₆₅	YVVKS FDRS	STKVI	DFHYPNELI	QEYNWEL	ADQPQNLEEIL	MHCQTTLKYAIF T	TGHPRYFN	180
hGAD ₆₅ rGAD ₆₅	QLSTGLDMV	/GLAA	DWLTSTANI	NMFTYE1	APVFVLLEYVT	LKKMREIIGWPG	GSGDGIFS	240
hGAD ₆₅ rGAD ₆₅	PGGAISNMY	(AMMI L	ARFKMFPEV Y	KEKGMAAI	LPRLIAFTSEH /	SHFSLKKGAAAI	GIGTDSVI	300
hGAD ₆₅ rGAD ₆₅	LIKCDERGE	MIPS	DLERRILEA V	KQKGFVPI	LVSATAGTTV	YGAFDPLLAVAD	ICKKYKIW	360
hGAD ₆₅ rGAD ₆₅	MHVDAAWGG	GLLM	SRKHKWKLS N	GVERANS	TW <u>NPHK</u> MMGV	PLQCSALLVREE	GLMQNCNQ S	420
hGAD ₆₅ rGAD ₆₅	MHASYLFQC	DKHY	DLSYDTGDR	ALQCGRH	DVFKLWLMWR	AKGTTGFEAHVD I	KCLELAEY	480
hGAD ₆₅ rGAD ₆₅	LYNIIKNRE	GYEM	VFDGKPQHI	NVCFWYII FV	PPSLRTLEDNE V	ERMSRLSKVAPV	IKARMMEY	540
hGAD ₆₅ rGAD ₆₅	GTTMVSYQF	PLGDK	VNFFRMVIS	NPAATHQI	DIDFLIEEIER	LGQDL 585		

FIG. 2. Deduced amino acid sequence of human GAD_{65} . See legend for Fig. 1.

 $\approx 68,000$ and 66,000, reflecting the additional 14 aminoterminal amino acid residues in the pET-5C constructs. Bacterial lysates of bacteria that produce GAD₆₅ and GAD₆₇ have GAD activities that are 200 and 50 times as great as extracts of host bacteria that contain the nonrecombinant vector (Table 2).

E. coli transformed with pGEX-3X + GAD₆₇ or pGEX-3X + GAD₆₅ also produce enzymatically active fusion proteins (Table 2). Some of each fusion protein is soluble, so the fusion GADs can be purified to near homogeneity by affinity chromatography on glutathione-Sepharose.

GAD₆₅ and GAD₆₇ Derive from Two mRNAs, Which Derive from Two Different Genes. Northern blots with $poly(A)^+$ RNA extracted from fetal and adult human brain showed that the GAD₆₇ cDNA probe hybridized to a 3.7-kilobase (kb) mRNA, whereas the GAD₆₅ cDNA probe hybridized to a 5.7-kb mRNA (Fig. 4). Although the sizes, immunoreactivities, and enzymatic activity of bacterially produced GAD₆₅ and GAD₆₇ indicate that our cDNAs contain full coding sequences, sizes of the corresponding mRNAs suggest our GAD₆₅ cDNA sequence lacks \approx 3.3 kb of the noncoding region, whereas that of GAD₆₇ cDNA lacks only \approx 100 bp. We observed no cross hybridization of the GAD₆₅ probe to a 3.7-kb RNA or of the GAD₆₇ probe to a 5.7-kb RNA.

Human GAD₆₅ cDNA and human GAD₆₇ cDNA hybridize to a different specific set of restriction fragments from human genomic DNA. For example, nine *Eco*RI fragments (11.5, 5.6, 5.4, 4.5, 3.7, 3.5, 2.4, 1.5, and 1.3 kb) hybridize to a human GAD₆₅ probe, whereas five *Eco*RI restriction frag-

FIG. 3. Immunoblots of extracts from bacteria engineered to produce human GADs. Lanes A and D: extracts of bacteria transformed with pET-5C vector. Lanes B and E: pET-5C + GAD₆₇. Lanes C and F: pET-5C + GAD₆₅. Lanes A-C: K-2 polyclonal antibody, specific for GAD₆₇. Lanes D-F: GAD-6 monoclonal antibody, specific for GAD₆₅. In several such experiments with bacteria engineered to express human GAD cDNAs, bacterially produced human GAD₆₇ had an estimated M_r of 68,000–69,000, reflecting the additional 11 codons of the gene 10 protein and the 3 linker codons. Bacterially produced human and rat GAD₆₅ consistently had slightly greater electrophoretic mobilities, reflecting their smaller molecular size.

Table 2.	GAD	activity	of	bacterially	v ex	pressed	proteins

	GAD activity, nmol of ¹⁴ CO ₂ per
Sample	mg of protein/hr
Bacterial lysate from bacteria transformed with	
pET-5C vector	8
$pET-5C + GAD_{65}$	1626
$pET-5C + GAD_{67}$	450
pGEX-3X vector	17
pGEX-3X + GAD ₆₅	203
$pGEX-3X + GAD_{67}$	74
Purified fusion protein	
GST-GAD65	3244
GST-GAD ₆₇	5071

GST, glutathione-S-transferase.

ments (5.7, 5.0, 3.7, 2.3, and 2.1 kb long) hybridize to a human GAD_{67} probe (Fig. 5).

Under low-stringency hybridization and washing conditions, Southern blots show that cDNAs for human GAD_{65} and GAD_{67} hybridize to the same respective restriction fragments seen under high-stringency conditions. No additional bands hybridized to GAD_{65} or GAD_{67} cDNAs (Fig. 5).

Hybridization with GAD_{65} and GAD_{67} cDNAs identified bacteriophage and cosmid clones from human genomic libraries. Sizes of all the genomic DNA fragments that hybridize with each GAD cDNA are identical with those in the respective cosmids. Cosmids encoding human GAD_{65} and human GAD_{67} sequences do not cross-hybridize with GAD_{67} and GAD_{65} cDNAs, supporting the conclusion that the two GADs derive from separate genes.

The Genes Encoding GAD_{65} and GAD_{67} Lie on Different Chromosomes. Thirty metaphases with clearly hybridized probe signal and good chromosome morphology were analyzed for each clone. GAD_{65} cosmid DNA consistently hybridized to chromosome 10p11.23; GAD_{67} bacteriophage DNA hybridized to 2q31 (Fig. 6).

DISCUSSION

The cDNAs we describe here contain the full coding regions of human GAD_{65} and GAD_{67} : in genetically engineered

FIG. 4. Northern blots of brain RNA. Lanes A and C: 2 μ g of poly(A)⁺ RNA extracted from human fetal brain. Lanes B and D: 2 μ g of poly(A)⁺ RNA from human adult cerebellum. Lanes A and B: hybridization to human GAD₆₇ cDNA. Lanes C and D: hybridization to GAD₆₅ cDNA. Numerals are molecular sizes in kb, determined from marker lanes (not shown).

FIG. 5. Southern blots to human genomic DNA. Human genomic DNA was completely digested with EcoRI. Lanes A and B: hybridization to human GAD₆₇ cDNA. Lanes C and D: hybridization to human GAD₆₅ cDNA. Lanes A and C were under high-stringency hybridization and washing; lanes B and D were under low-stringency hybridization.

bacteria, each cDNA directs the synthesis of polypeptides with the immunoreactivity and enzymatic activity of the corresponding brain GAD.

The nucleotide sequences and the predicted amino acid sequences of human GAD_{65} and GAD_{67} are similar to those of rat and feline counterparts (Table 1). Even *Drosophila* GAD shows considerable sequence identity to the mammalian GADs (10, 33). These extensive sequence identities suggest that GAD structure has been subject to intense selective pressure during phylogeny.

Similarly, the strong sequence similarity between GAD_{65} and GAD_{67} (shown in Table 1) suggests that the two GADs are homologous—that is, that they derive from a common ancestral GAD gene. The location of the GAD_{65} and GAD_{67} genes on two different chromosomes probably resulted from gene duplication, translocation, and further sequence divergence, apparently under independent selective pressures, consistent with the two GADs serving different functions in neurons and other GABA-producing cells (1, 10, 11).

Southern blots at low stringency show no additional bands that hybridize to GAD_{67} or GAD_{65} cDNA, suggesting that only one gene encodes each of the GAD cDNAs. Furthermore, all the restriction fragments revealed in Southern blots by hybridization of GAD cDNAs to genomic DNA are also present in contiguous cloned genomic DNA. The actual chromosomal location of the two GAD genes, GAD_{65} at chromosome 10p11.23 and GAD_{67} at chromosome 2q31, provides additional markers in these regions. We have reported (34) an *Msp* I polymorphism in the GAD_{67} gene, but no polymorphisms have yet been found for the GAD_{65} gene. Of the inherited diseases for which the chromosomal location of the disease-causing gene is known, none maps to either of these two sites. So neither GAD-encoding gene can be

FIG. 6. Chromosomal localization of GAD_{65} and GAD_{67} (confocal microscope images). (A) In situ hybridization to a GAD_{65} cosmid. Arrow, GAD_{65} hybridization signal at p11.23 band of human chromosome 10. (B) In situ hybridization to a GAD_{67} bacteriophage DNA. Arrow, GAD_{67} hybridization signal at q31 band of human chromosome 2.

considered a candidate for the site of the genetic lesion in any mapped genetic disorder.

The existence of separate genes for GAD₆₅ and GAD₆₇ explains much of the long discussed heterogeneity of brain GAD (1, 35, 36). It is possible, however, that other GAD genes may exist, but conclusive data have not yet been reported, although Huang et al. (37) have reported a candidate mouse GAD cDNA. This cDNA encodes an M_r 83,000 polypeptide; the deduced amino acid sequence is unrelated to GAD_{65} or GAD_{67} . The enzymatic activity of the fusion protein encoded by this cDNA, however, suggests the involvement of enzymes other than GAD: subtraction of the ¹⁴CO₂ produced by bacteria containing the nonrecombinant expression vector gives a ratio of ¹⁴CO₂ to ¹⁴C-labeled GABA of less than the expected 1:4. Furthermore, the monospecific antibodies GAD-6 (anti-GAD₆₅) and K-2 (anti-GAD₆₇) together remove almost all the GAD activity from brain homogenates, so other putative GADs must not contribute much to overall GAD activity in the brain (D.L.K., unpublished work; refs. 11 and 24).

GAD activity and immunoreactivity are also present in nonneural tissues, including pancreatic islets, testis, and oviduct (2, 38, 39–42). Testis, for example, contains immunoreactive GAD₆₇ as well as GAD₆₇ mRNA (32, 40). But the GAD₆₇ mRNAs in the testis have multiple sizes, all different from the 3.7-kb brain mRNA, and presumably derived from the single GAD₆₇ gene by alternative splicing or alternative polyadenylylation (40, 42). The oviduct, like the testis, contains multiple GAD mRNAs, but these derive principally from the GAD₆₅ gene (40, 42). Direct evidence for alternative splicing of a GAD₆₇ transcript, however, is thus far available only in the developing rat brain, where alternative splicing leads to an in-frame stop codon and a truncated GAD polypeptide (43).

The discovery that GAD is the earliest known autoantigen during the development of IDDM has renewed interest in molecular identity of pancreatic β cell GAD (13). For example, Cram et al. (41) have recently reported the sequences of cloned PCR products apparently derived from GAD₆₇ RNAs of human brain and pancreatic islets. These two PCR products differ in 45/540 nt, of which 7 changed the encoded amino acid residue. Their brain GAD PCR product differed from our human GAD₆₇ cDNA sequence at only one (silent) of the GAD₆₇ nucleotide residue. Because our data demonstrate that there is but a single GAD₆₇ gene, the two sequences of Cram must reflect either alternative use of closely related exons or PCR-derived sequence differences. Interestingly, the amino acid sequence of the GAD₆₇ of Cram most closely resembles rat brain GAD_{67} , with differences at only three positions (6, 10, 41)

The human GAD cDNAs we report here should allow the production of antigens for the routine detection of GAD autoantibodies. The presence of GAD autoantibodies is the earliest known predictor of IDDM and is also diagnostic of stiff-man syndrome (13, 14, 39, 44-47). While bacterially produced GADs have so far proved immunologically identical to pancreatic and brain GADs, further work will be necessary to learn how islet cell GADs may be modified posttranslationally and how they become associated with the synapse-like vesicles within β cells (39, 48).

The GAD₆₅ sequence reported here contains an intriguing sequence match between amino acid residues 250-273 and a segment of the P2-C polypeptide of Coxsackie virus, a long-suspected etiologic agent in IDDM (11, 14). These two 24-amino acid residue segments contain 10 identities and nine similarities (conservative changes), suggesting a role for molecular mimicry in the pathogenesis of IDDM, although no experimental data are yet available to support this hypothesis. The primary structures of the two GADs and the ability to program both prokaryotic and eukaryotic cells to produce them should, thus, not only lead to a reliable method for diagnosing and predicting IDDM but should also accelerate the search for pathogenic mechanisms.

Note. While this paper was under review, Karlsen et al. (49) reported the sequence and chromosomal location of GAD₆₅ cDNA from a human islet cell library, and Michelsen et al. (50) reported the sequence of GAD₆₇ cDNA from a rat islet cell library.

We thank H. Lehrach and T. Maniatis for providing us with human genomic libraries, R. Neve for the human fetal brain cDNA library, and D. Gottlieb for the GAD-6 monoclonal antibody. We are grateful to E. Askanas for her isolation of some of the GAD₆₇ genomic recombinants and to R. Sparkes, C. Heinzmann, I. Klisak, and T. Mohandes for their initial mapping of GAD₆₇. We have especially valued the helpful discussions of this work with the following people: M. Atkinson, S. Feldblum, H. Kim, G. Lawless, N. Maclaren, L. Medina-Kauwe, S. Baekkeskov, C. Ruppert, C. Pinal, J. Segovia, and R. Weatherwax. This work was supported by grants to A.J.T. from the National Institutes of Health (NS20356 and NS22256).

- Erlander, M. G. & Tobin, A. J. (1991) Neurochem. Res. 16, 215-226. 1.
- Erdö, S. & Wolff, J. (1990) J. Neurochem. 54, 363-372. 2
- Rorsman, P., Berggren, P.-O., Bokvist, K., Ericson, H., Mohler, H., Ostenson, C.-G. & Smith, P. A. (1989) Nature (London) 341, 233-236. 3.
- Kaufman, D. L., McGinnis, J. F., Krieger, N. R. & Tobin, A. J. (1986) 4. Science 232, 1138-1140. 5 Kobayashi, Y., Kaufman, D. L. & Tobin, A. J. (1987) J. Neurosci. 7,
- 2768-2772.
- Julien, J. F., Legay, F., Duman, S., Tappaz, M. & Mallet, J. (1987) 6. Neuro-Sci. Lett. 73, 173-180.

- 7. Katarova, Z., Szabo, G., Mugnaini, E. & Greenspan, R. J. (1990) Eur. J. Neurosci. 2, 190-202.
- Wyborski, R. J., Bond, R. W. & Gottlieb, D. I. (1990) Mol. Brain Res. 8. 8, 193-198.
- 9. Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N. & 10
- Drained, J. (1990) Soc. Neurosci. Abstr. 16, 960.
 Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N. &
 Tobin, A. J. (1991) Neuron 7, 91–100.
- 11. Kaufman, D. L., Houser, C. R. & Tobin, A. J. (1991) J. Neurochem. 56, 720-723
- Feldblum, S., Tillakaratne, N. J. K., Erlander, M. G. & Tobin, A. J. 12. (1990) Soc. Neurosci. Abstr. 16, 695.
- 13. Baekkeskov, S., Aanstoot, H.-J., Christgau, S., Reetz, A., Solimena, M., Cascalho, M., Folli, F., Richter-Olesen, H. & De Camilli, P. (1990) Nature (London) 347, 151-156.
- Kaufman, D. L., Erlander, M. G., Clare-Salzler, M., Atkinson, M. A., 14. Maclaren, N. K. & Tobin, A. J. (1992) J. Clin. Invest. 89, 283-292.
- Gamble, D. R. (1980) Epidemiol. Rev. 2, 49-70. 15.
- Barrett-Connor, E. (1985) Rev. Infect. Dis. 7, 207–215. 16.
- Banatvala, J. E. (1987) Progr. Med. Virol. 34, 33-54. 17.
- Oldstone, M. B. A. (1987) Cell 50, 819-820. 18.
- Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6–13. Frohman, M. A., Dush, M. K. & Martin, G. R. (1988) Proc. Natl. Acad. 19.
- 20. Sci. USA 85, 8998-9002.
- 21. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- Studier, F. W. & Moffatt, B. A. (1986) J. Mol. Biol. 189, 113-130. 22
- Krieger, N. R. & Heller, J. S. (1979) J. Neurochem. 33, 299-302. 23.
- Chang, Y.-C. & Gottlieb, D. I. (1988) J. Neurosci. 8, 2123-2130. 24.
- 25. Smith, D. B. & Johnson, K. S. (1988) Gene 67, 31-40.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. 26. (1979) Biochemistry 18, 5294–5299
- 27. Herrmann, B. G. & Frischauf, A.-M. (1987) in Guide to Molecular Cloning Techniques: Methods in Enzymology, eds. Berger, S. L. & Kimmel, A. R. (Academic, San Diego), Vol. 152, pp. 180–183. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A
- 28 Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY)
- 29. Wahl, G. M., Lewis, K. A., Ruiz, J. C., Rothenberg, B., Zhao, J. & Evans, G. A. (1987) Proc. Natl. Acad. Sci. USA 84, 2160-2164.
- 30. Yunis, J. J. (1976) Science 191, 1268-1270.
- Lichter, P., Tang, C. C., Call, K., Hermanson, G., Evans, G. A., Housman, D. & Ward, D. C. (1990) Science 247, 64-69. 31.
- Bossa, F., Martini, F., Barra, D., Voltattorni, C., Minelli, A. & Turano, 32. C. (1977) Biochem. Biophys. Res. Commun. 78, 177-184.
- Jackson, F. R., Newby, L. M. & Kulkarni, S. J. (1990) J. Neurochem. 33. 54. 1068-1078.
- Breakefield, X. O., Bressman, S. B., Kramer, P. L., Ozelius, L., Moskowitz, C., Tanzi, R., Brin, M. F., Hobbs, W., Kaufman, D. L., 34 Tobin, A. J., Kidd, K. K., Fahn, S. & Gusella, J. (1986) J. Neurogenet. 3. 159-175.
- Spink, D. C., Porter, T. G., Wu, S. J. & Martin, D. L. (1985) Biochem. 35. J. 231, 695-703.
- Martin, D. L. (1987) Cell. Mol. Neurobiol. 7, 237-253. 36.
- Huang, W.-M., Reed-Fourquet, L., Wu, E. & Wu, J.-Y. (1990) Proc. Natl. Acad. Sci. USA 87, 8491-8495.
- 38. Persson, H., Pelto-Huikko, M., Metsis, M., Söder, O., Brené, S., Skog, S., Hökfelt, T. & Ritzén, E. M. (1990) Mol. Cell. Biol. 10, 4701-4711.
- Baekkeskov, S., Landin, M., Kristensen, J., Srikanta, S., Bruining, G., 39. Mandrup-Poulsen, T., de Beaufort, C., Soeldner, J., Eisenbarth, G., Lindgren, F., Sundquist, G. & Lernmark, A. (1987) J. Clin. Invest. 79, 926-934
- 40. Tillakaratne, N. J. K. & Tobin, A. J. (1987) Soc. Neurosci. Abstr. 12, 1458.
- 41. Cram, D. S., Barnett, L. D., Joseph, J. L. & Harrison, L. C. (1991) Biochem. Biophys. Res. Commun. 176, 1239-1244
- 42 Tillakaratne, N. J. K., Erlander, M. G., Collard, M. W., Greif, K. F. & Tobin, A. J. (1991) J. Neurochem., in press.
- Bond, R. W., Wyborski, R. J. & Gottlieb, D. I. (1990) Proc. Natl. Acad. 43. Sci. USA 87, 8771-8775.
- 44 Atkinson, M., Maclaren, N., Scharp, D., Lacy, P. & Riley, W. (1990) Lancet 335. 1357-1360.
- 45. Solimena, M., Folli, F., Aparisi, R., Pozza, G. & Camilli, P. D. (1990) N. Engl. J. Med. 322, 1555-1560.
- Baekkeskov, S., Nielsen, J. H., Marner, B., Bilde, T., Ludvigsson, J. & Lernmark, A. (1982) Nature (London) 298, 167–169. 46.
- 47
- Blum, P. & Jankovic, J. (1991) Movement Disorders 6, 12–20. Reetz, A., Solimena, M., Matteoli, M., Folli, F., Takei, K. & De Camilli, 48. P. (1991) EMBO J. 10, 1275-1284.
- Karlsen, A. E., Hagopian, W. A., Grubin, C. E., Dube, S., Disteche, 49 C. M., Adler, D. A., Bärmeier, H., Mathewes, S., Grant, F. J., Foster, D. & Lernmark, Å. (1991) Proc. Natl. Acad. Sci. USA 88, 8337–8341.
- Michelsen, B. K., Petersen, J. S., Boel, E., Møldrup, A., Dyrberg, T. & 50. Madsen, O. D. (1991) Proc. Natl. Acad. Sci. USA 88, 8754-8758.