Supplementary data

miR-223 knockdown and overexpression

The miR-223 sponge vector has been previously described 25. In brief, it consists of a third-generation LV containing a polymerase-II-based promoter (spleen focus-forming virus promoter/enhancer [SFFV]) optimized for high transgene expression in human stem and progenitor cells (HSPCs) and myeloid lineage cells, which drives the expression of a nontoxic marker gene (destabilized GFP) containing eight copies of an imperfectly complementary miR-223 binding site. Lentiviral overexpression of miR-223 was performed as previously described [24,25], consisting of a SFFV promoter, the miR-223 pri-miR inserted into the first intron of the *Ef1* α gene, and an orange fluorescent protein marker gene (*mO2*).

Flow cytometric analysis and cell sorting

The progeny of human CD34⁺ cells were labeled with the following antibodies: anti-CD11b Pacific Blue or allophycocyanine (APC)-Alexa 780 (BD Pharmingen or eBiosciences), antihuman CD33 phycoerythrin (PE)-cyanine 7 (Cy7) or Brilliant Violet 421 (BD), antihuman CD34 PE, PE-Cy7 or APC (BD Pharmingen), antihuman CD133 APC (Miltenyi Biotec), antihuman CD38 APC or V450 (BD), antihuman CD90 APC or PE (BD), antihuman CD16 PE, PE-Cy5 or PE-Cy7 (BD or DAKO), antihuman CD13 APC or PE (BD), antihuman CD14 peridinin chlorophyll (PerCP; BD), antihuman CD19 PE-Cy7 (BD), antihuman CD3 APC or Pacific Blue (BD), antihuman CD235a PE or APC (DAKO or BD), and antihuman CD45 APC-H7 or Pacific Blue (BD). Cells were stained at a density of 10^7 /mL for 20 min at 4°C, washed, and analyzed on a LSRII Fortessa flow cytometer or FACS Canto II (Becton-Dickinson). Cell sorting was performed on a MoFlow sorter (Beckman Coulter).

Proliferation assay

Sorted, GFP-expressing BM cells were plated in BM medium at a starting concentration of 20,000 cells/mL. Cell numbers were determined via counting in Trypan blue solution every 48 hours for 7 days.

Colony-forming cell assay

For in vitro colony-forming cell (CFC) assays, sorted, GFPexpressing cells were plated in MethoCult media (StemCell Technologies) at a concentration of 1,000 cells/mL. Colony numbers and cell counts were assessed weekly, followed by weekly serial replating over a period of 3 weeks maximum.

Real-time PCR

RNA was extracted using Trizol. Reverse transcription of miR-223, with miR-92 as housekeeping gene [14] for human and sno-202 for murine samples, was performed using the Taqman miRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. Real-time PCR was performed using miR-223, as well as miR-92/RNU48 or sno-202 ABI Taqman probes on an Applied Biosystems 7900HT Fast Real-Time PCR system, in triplicate.

Quantification of miR-223 by hybridization arrays

Samples of 115 de novo AML patients were obtained from bone marrow aspirates, blast cells were purified by Ficoll Hypaque (Nygaard, Oslo Norway), and total RNA was extracted with Trizol, as described previously [33]. All patients provided written, informed consent in accordance with the Declaration of Helsinki and were treated according to Hovon42 of the Dutch-Belgian-Hematology-Oncology-Cooperative group (available at http://www.hovon.nl). Samples were analyzed using Affymetrix miRNA 1.0 GeneChips (Affymetrix, Santa Clara, CA), according to the manufacturer's protocol. Briefly, 1 µg of RNA was biotin labeled using FlashTag Biotin RNA labeling kit (Genishpere, Hatfield, PA). Biotin-labeled samples were hybridized with GeneChip hybridization, wash, and stain kit and scanned with Affymetrix GeneChip Scanner. The obtained data (Supplementary Table E1) were normalized using the robust multi-array average (RMA) method.

Sorting of AML subpopulations

Patient bone marrow samples were obtained after informed consent was provided and with the approval of the Clinical Research Ethics Board of the University of British Columbia. They showed the following characteristics: FAB M4 (normal karyotype), M1 (unknown karyotype), M5 (normal karyotype), M5b (normal karyotype), and M1 (normal karyotype). The cells were stained as previously described [32] and sorted into four populations (CD34⁻, CD34⁺CD38⁺, CD34⁺CD38⁻, and a total blast population), followed by RNA extraction with Trizol (Invitrogen, Carlsbad, CA) as previously described [20].

Supplementary Table E1. Expression levels (log 2) of miR-223 in the profiled AML patient samples

Supplementary Table E1. (continued)						
Patient	hsa-miR-223	ELN classification				
A086	8.27315	Favorable				
A097	5.697825	Favorable				
A099	5.685469	Favorable				
A102	7.237895	Favorable				
A105	6.918886	Favorable				
A113	6.50455	Favorable				
A001	8.279448	Intermediate I: NK				
A007	8.53535	Intermediate I: NK				
A008	6.513398	Intermediate I: NK				
A013	5.91849	Intermediate I: NK				
A015	7.267184	Intermediate I: NK				
A020	6 611535	Intermediate I. NK				

Patient	hsa-miR-223	ELN classification			
A002	7.465553	Adverse			
A003	7.682119	Adverse			
A006	7.623925	Adverse			
A009	5.520364	Adverse			
A018	6.783545	Adverse			
A019	6.663668	Adverse			
A027	5.470807	Adverse			
A028	5.993056	Adverse			
A030	5.179881	Adverse			
A032	3.745725	Adverse			
A036	6.459761	Adverse			
A041	5.712106	Adverse			
A044	6.895362	Adverse			
A045	6.897757	Adverse			
A047	5 098162	Adverse			
A061	7 485504	Adverse			
A067	6 122093	Adverse			
A007	6 600147	Adverse			
A008	6 702427	Adverse			
A079	5 422152	Adverse			
A064	5.423135	Adverse			
A088	5.572708	Adverse			
A089	6.832248	Adverse			
A092	5.459269	Adverse			
A093	5.121201	Adverse			
A094	7.021109	Adverse			
A096	5.425439	Adverse			
A100	6.696466	Adverse			
A106	6.34158	Adverse			
A107	4.1736	Adverse			
A108	7.019696	Adverse			
A004	6.926732	Favorable			
A011	7.318853	Favorable			
A012	6.636045	Favorable			
A014	6.763334	Favorable			
A017	6.299748	Favorable			
A023	7.160719	Favorable			
A031	7.339418	Favorable			
A033	5.795588	Favorable			
A034	4.812762	Favorable			
A035	6.862276	Favorable			
A040	6.505709	Favorable			
A042	6.570924	Favorable			
A043	6.429499	Favorable			
A046	6.852291	Favorable			
A050	7.031396	Favorable			
A053	6.826373	Favorable			
A054	6.606032	Favorable			
A056	6.184179	Favorable			
A060	6.517457	Favorable			
A062	7.576693	Favorable			
A065	6.083967	Favorable			
A069	7 428319	Favorable			
A070	6 261838	Favorable			
A071	7 590075	Favorable			
A072	5 312304	Favorable			
A074	5 7//252	Eavorable			
A074	J. 1442JJ 7 450024	Favorable			
A070	7.430024				
AU8U	0./8080/	Favorable			
A081	7.962897	Favorable			
A082	6.365168	Favorable			

le I: NK I: NK I: NK I: NK I: NK A0 I: NK ate A021 6.575376 Intermediate I: NK A022 6.890913 Intermediate I: NK A024 6.749806 Intermediate I: NK A025 7.777081 Intermediate I: NK A026 6.837991 Intermediate I: NK A029 6.341842 Intermediate I: NK A037 6.368287 Intermediate I: NK A038 5.640762 Intermediate I: NK A039 7.305367 Intermediate I: NK 6.413876 Intermediate I: NK A049 A051 5.708693 Intermediate I: NK A052 7.900176 Intermediate I: NK Intermediate I: NK A055 7.725691 Intermediate I: NK A057 5.050639 A058 6.328099 Intermediate I: NK A059 6.905414 Intermediate I: NK 6.654579 Intermediate I: NK A063 A064 7.116859 Intermediate I: NK 6.110807 Intermediate I: NK A066 A073 6.497773 Intermediate I: NK A077 3.168967 Intermediate I: NK 5.809293 Intermediate I: NK A078 A083 6.531438 Intermediate I: NK A090 7.224567 Intermediate I: NK A095 6.513924 Intermediate I: NK Intermediate I: NK A103 6.888729 A115 5.68294 Intermediate I: NK A005 5.053096 Intermediate II: rest A010 6.983745 Intermediate II: rest Intermediate II: rest A016 7.502192 A048 7.079939 Intermediate II: rest A075 7.867951 Intermediate II: rest A085 7.226651 Intermediate II: rest A087 4.429051 Intermediate II: rest 4.902436 Intermediate II: rest A091 Intermediate II: rest A098 6.514174 A101 5.465915 Intermediate II: rest A104 6.784386 Intermediate II: rest Intermediate II: rest A109 7.153646 A110 Intermediate II: rest 4.491841 A111 6.919614 Intermediate II: rest A112 6.335259 Intermediate II: rest A114 6.446647 Intermediate II: rest

(continued)

		Variable	Haz. ratio	St. err.	z	p > z	95% cor	nf. interval
					~	r · · · · · ·		
Cox regree	Continuous	miR_223	0.763	0.097	2 14	0.032	0 595	0.078
FFS	Continuous	miR-223	0.703	0.097	2.14	0.032	0.575	0.978
RES	Continuous	miR-223	0.720	0.117	2.07	0.033	0.524	0.989
	Dichotomized (median)	miR-223	0.720	0.117	1 38	0.168	0.324	1 167
FES	Dichotomized (median)	miR-223	0.092	0.167	_1.50	0.134	0.438	1.107
DES	Dichotomized (median)	miR 223	0.700	0.255	0.07	0.332	0.450	1.117
05	Quartiles	miR-223	0.704	0.233	2.01	0.332	0.540	0.003
EES	Quartiles	miR 223	0.778	0.097	2.01	0.044	0.648	0.993
DES	Quartiles	miR 223	0.302	0.120	1.54	0.123	0.556	1.072
Cox reares	quarties	mik-225	0.772	0.129	1.54	0.125	0.550	1.072
OS C	Continuous	mir-223	0.817	0 101	1.63	0.102	0.641	1.004
	Continuous	A ge	0.017	0.101	0.10	0.102	0.041	1.004
		Age Log(WBC)	1 350	0.154	2.64	0.008	1.080	1.625
		EUg(WBC) EUN (Envorable (ref))	1.550	0.154	2.04	0.008	1.000	1.088
		Intermediate II (rest)	3 706	1 777	2 73	0.006	1 447	0 487
		Intermediate I (NK)	3.700 4.310	1.777	2.75	0.000	1.447	9.407
		Adverse	4.510	1.799	3.5	0.000	1.901	10,600
EEC	Continuous	mir 222	4.312	0.004	1.62	0.001	0.668	1 0.009
EL2	Continuous	1111-223	0.033	0.094	0.68	0.104	0.008	1.036
		Age	0.992	0.012	1.04	0.499	0.908	1.010
		ELOG(WBC)	1.110	0.111	1.04	0.297	0.915	1.550
		LIN (Favorable (fel))	2.016	0.919	1 72	0.094	0.010	1 167
		Intermediate II (Fest)	2.010	0.818	1./3	0.084	0.910	4.407
		Intermediate I (INK)	2.882	0.967	3.15	0.002	1.493	5.503
DEC	Cartingan	Adverse	2.660	0.941	2.76	0.006	1.329	5.323
KFS	Continuous	mir-223	0.710	0.118	2.06	0.039	0.512	0.983
		Age	0.983	0.020	0.84	0.401	0.944	1.023
		Log(wBC)	1.005	0.255	3	0.003	1.178	2.180
		ELN (Favorable (ref))	2 (20)	1.407	1.71	0.007	0.070	7.050
		Intermediate II (rest)	2.629	1.486	1./1	0.087	0.868	7.958
		Intermediate I (NK)	3.460	1.638	2.62	0.009	1.369	8.749
05	0 (1	Adverse	1.504	0.907	0.68	0.499	0.461	4.907
OS	Quartile	mir-223	0.798	0.102	1.77	0.077	0.621	1.024
		Age	0.995	0.014	0.33	0.743	0.968	1.024
		Log(WBC)	1.348	0.152	2.64	0.008	1.080	1.682
		ELN (Favorable (ref))	2 000	1.000		0.005	1 107	0.515
		Intermediate II (rest)	3.800	1.820	2.79	0.005	1.487	9.715
		Intermediate I (NK)	4.320	1.803	3.51	0.000	1.906	9.790
		Adverse	4.675	2.022	3.57	0.000	2.003	10.912
EFS	Quartile	mir-223	0.811	0.092	1.85	0.065	0.649	1.013
		Age	0.990	0.012	0.81	0.417	0.966	1.015
		Log(WBC)	1.109	0.110	1.05	0.294	0.914	1.346
		ELN (Favorable (ref))						
		Intermediate II (rest)	2.076	0.840	1.81	0.071	0.940	4.586
		Intermediate I (NK)	2.898	0.973	3.17	0.002	1.501	5.595
		Adverse	2.738	0.956	2.89	0.004	1.381	5.427
RFS	Quartile	mir-223	0.749	0.129	1.68	0.093	0.534	1.050
		Age	0.982	0.021	0.87	0.382	0.942	1.023
		Log(WBC)	1.591	0.246	3.01	0.003	1.175	2.153
		ELN (Favorable (ref))						
		Intermediate II (rest)	2.921	1.635	1.92	0.055	0.975	8.750
		Intermediate I (NK)	3.494	1.650	2.65	0.008	1.385	8.814
		Adverse	1.760	1.040	0.96	0.339	0.553	5.601

EFS = event-free survival; OS = overall survival; RFS = relapse free survival.

Supplementary Figure E1. The absence of miR-223 (miR-223-/y) did not significantly change the proliferation rate of BM cells retrovirally overexpressing (A) control vector, (B) Hoxa9, or (C) MLL-AF9, or (D) MN1.

Supplementary Figure E2. Genetic depletion of miR-223 (miR-223-/y) did not significantly change the proliferation colony-forming capacity of BM cells retrovirally overexpressing (A) control vector, (B) Hoxa9, or (C) MLL-AF9, or (D) MN1.

Supplementary Figure E3. No significant differences were seen in *Hoxa9-Meis1* leukemias with respect to overall disease characteristics such as (A) WBC count, (B) RBC count, and (C) spleen weight.

Supplementary Figure E4. (A) Left: Representative Western blot analysis for NFI-A (upper film) and GAPDH (lower film) performed on human CB cells transduced with a control LV (Control.SFFV), the optimized miR-223 sponge vector (SFFV.223BT; n = 2 donors), and a first-generation miR-223 sponge vector (SFFV.223.T; n = 1 donor). Right: densitometric analysis of the upper and lower NFI-A bands after normalization to GAPDH (n = 2 technical replicates per sample; shown is the mean + range). The control LV-transduced sample was set to 1. (**B**) CD34⁺ huCB cells (n = 6 donors) were lentivirally transduced with a miR-223 sponge (223/KD) or control vector and cultured under maintenance conditions (Stem Span serum-free expansion medium + SCF, TPO, FLT3L, IL-6). Shown is the proportion of CD34hi cells over time (mean \pm SEM). Statistical analysis was performed by paired t test after log-odds conversion. (**C**) CD34⁺ huCB cells (n = 2 donors) were sorted into a CD133⁺CD38⁻/low cell population containing more primitive progenitors, transduced with 223/KD or control LV, and cultured under maintenance conditions. No significant differences in proliferation could be observed, by contrast with CD133⁺CD38⁺ cells (see Fig. 2D).

Supplementary Figure E4. (*continued*) (**D**) 223/KD- or control-LV-transduced CD34⁺ CB cells (n = 8 donors) were cultured in myeloid differentiation medium (IMDM + 10% FCS + SCF + G-CSF), and proliferation was assessed. Expansion of 223/KD-LV-treated cells relative to control-LV-transduced cells is shown. We noted a significantly reduced proliferation of 223/KD cells under myeloid culture conditions in the first week. (**E**) huCB CD34⁺ cells were transduced with a control, the miR-223 KD, or OE LVs and plated in methylcellulose at a concentration of 800 cells/mL. Total colonies were harvested after 14 days, and miR-223 expression was measured by qPCR. CT values were normalized to RNU48 (Δ CT) and expressed relative to the expression level found in control-LV-transduced cells. qPCR reactions were performed in triplicates, and the mean was used for calculating relative expression levels. (**F**) huCB CD34⁺ cells were transduced with the miR-223 KD or OE LV and plated in methylcellulose at a concentration of 800 cells/mL. Colonies were counted after 14 days and distinguished morphologically into erythroid (CFU/BFU-E), myeloid (CFU-G/GM/M), or mixed (CFU-GEMM). The assay was done in quadruplicate; shown is the mean \pm SEM. Statistical analysis was performed by paired *t* test after log-odds conversion. *p < 0.05. Ctrl = Control; E = erythroid; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; G/GM/M = myeloid; Mix = mixed.