Title:

Expression of *Vitis amurensis NAC26* in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

Linchuan Fang[§], Lingye Su[§], Xiaoming Sun, Xinbo Li, Mengxiang Sun, Sospeter Karanja Karungo, Shuang Fang, Jinfang Chu, Shaohua Li^{*}, Haiping Xin^{*}

Supplementary data

Name	Orientation	ntation Sequence (5'-3')		
VaNAC26	Forward	TGATTGGGTGCTATGTAGG		
	Reverse	TTTCACTTGGTGCTGCTC		
VvActin7	Forward	CTTGCATCCCTCAGCACCTT		
	Reverse	TCCTGTGGACAATGGATGGA		
VvGADPH	Forward	GGTATTAGGAACCCAGAGGAGA		
	Reverse	CAACAACGAACATAGGAGCAT		
PR5	Forward	GTGCTTGCTCTGCCTTCA		
	Reverse	CTGGTTGGGTCGTCGTAA		
MYB47	Forward	CGTTTGTGATTGGCGTTCC		
	Reverse	GGCTGCCCACCTGTTTCC		
COR414-TM1	Forward	GCTTAGGTTATCGGGTGA		
	Reverse	CGGAGCAGCATAACAGAC		
NATA1	Forward	GCACCAGAGCCAAACACT		
	Reverse	TGGAGGCAAGACCAGACT		
COR15A	Forward	CTTTCCACAGCGGAGCCA		
	Reverse	TTGCCGTCACCTTTAGCG		
SWEET4	Forward	GTTGCGAGAAACATTGCC		
	Reverse	GCTTTGTACTCCTCCACCTT		
14A	Forward	CCCCAACACGCAGCATAC		
	Reverse	CGGCAATGTCCAAAGTCT		
BMY1	Forward	CGTTGGGAGTTGTGAATG		
	Reverse	GAACAGCGTTTTGTAGGC		
PDF1.2	Forward	GCTTCCATCATCACCCTT		
	Reverse	ATGTCCCACTTGGCTTCT		
LTP4	Forward	TGGCACAGTGGCAAGTAG		

Supplementary Table S1. Sequence of qRT-PCR primer pairs used in this study.

	Reverse	GAGATGGGATAGGGGATG
LTP3	Forward	GGCTTTCGCTTTGAGGTT
	Reverse	TTGTTGGCGGTCTGGTGT
Actin2	Forward	TTACCCGATGGGCAAGTCA
	Reverse	AAACGAGGGCTGGAACAAGA
UBQ10	Forward	CACACTCCACTTGGTCTTGCGT
	Reverse	TGGTCTTTCCGGTGAGAGTCTTCA

	-				-	
number	location	MV	pI	Stable index	Aliphatic index	GRAVY
Domain 1	135-184aa	5856.7	9.65	39.84	72.00	-1.176
Domain 2	231-282aa	5954.6	4.43	26.36	69.23	-0.523

Supplementary Table S2. Features of two activation domains in VaNAC26 protein

135-184aa: SDSRPRPKKHNGSMRLDDWVLCRIYKKKHVGRILEEKEENLGPQIPVTNS

231-282 aa: TISNIAGTDPPGVDKFELFQLPCQYNDSTKFQVNQNHIPNQPLFVNPVYEFQ

MV: molecular weight; pI: isoelectric point; GRAVY: grand average of hydropathicity.

Supplementary Table S3. Microarray-based differential expression gene analysis and its functional annotations in WT and *VaNAC26*-OE lines. (.xls document)

The numbers in red and green represent the fold changes of upregulated and downregulated genes in specific comparisons, respectively. The word 'ns' represents 'no significant difference'.

Supplementary	Table S4.	Microarrav-	based fold	changes of	f ABA bio	svnthesis	and	ABA

AGI	Gene Symbol	OE 0d vs WT 0d	OE 5d vs WT 5d	AGI	Gene Symbol	OE 0d vs WT 0d	l OE 5d vs WT 5d
ABA biosynthesis	s genes			At4g21440	ATMYB102	1.6021	1.2396
At4g18350	NCED2	1.2231	1.1054	At3g06490	MYB108	0.9918	0.9398
At3g14440	NCED3	1.1635	0.981	At5g67300	MYBR1	0.9365	0.8387
At1g30100	NCED5	1.1061	0.8603	At4g28110	AtMYB41	0.8697	1.1997
At3g24220	NCED6	1.1274	1.1122	At1g52890	ANAC019	2.772	1.0669
At1g78390	NCED9	0.9179	0.9968	At3g15500	ANAC055	0.831	1.2371
At5g67030	ABA1	1.3294	0.7967	At1g01720	ATAF1	0.9608	0.9888
At1g52340	ABA2	1.1299	1.1038	At3g15510	ATNAC2	0.7931	1.3876
At2g27150	AAO3	0.9799	0.7028	At1g69600	ZFHD1	0.9827	1.6189
ABA-dependent	genes			At5g65310	ATHB5	0.8545	1.336
At1g49720	ABF1	1.3823	1.3075	At2g22430	ATHB6	1.3481	1.002
At4g34000	ABF3	1.0401	0.815	At2g46680	ATHB-7	1.4103	2.0838
At3g19290	ABF4	0.8286	0.9157	At3g61890	ATHB-12	1.219	1.591
At5g51990	CBF4	0.9459	0.9606	At1g32640	MYC2	2.4517	1.0255
At5g05410	DREB2A	0.8333	0.8343	At2g46510	ATAIB	1.1979	1.012
At1g43160	RAP2.6	2.7856	0.2972	At3g19580	AZF2	0.8282	1.1096
At3g20310	ERF7	1.0464	1.1586	At4g17870	SAZ	0.9039	1.289
At5g19330	ADAP	0.9306	1.0126	At1g54160	NF-YA5	1.0805	1.0221
At2g47190	MYB2	1.3774	0.7904	At2g33380	RD20	3.0546	1.3497
At5g62470	MYB96	1.13	1.3141	At4g27410	RD26	1.0585	1.1467

dependent gene expression between WT and VaNAC26-OE lines.

The numbers in red represent the fold change of upregulated genes (fold change >2).

Supplementary Figure S1. Comparisons of CDS regions between *VaNAC26* and *VvNAC26* (from 'Pinot Noir').

Supplementary Figure S2. Growth conditions and expression detection of *VaNAC26* in WT and transgenic Arabidopsis.

A: Growth of transgenic Arabidopsis shows identical phenotype at the same developmental stage. B: qRT-PCR detections of *VaNAC26* in WT and three *VaNAC26*-transgenic lines. The values represent the mean value \pm SE from three replicates.

Supplementary Figure S3. Soil water content and stomatal conductance in WT and *VaNAC26*-OE lines under drought treatments.

Soil water content (A) was detected at different designated time intervals during drought treatments: 4 d (mild water stress), 6, 7, 8 d (moderate water stress), 11 and 13 d (severe water stress). Stomatal conductance (g_s , B) of expanded leaves was measured at 0, 4, and 7 d of drought treatment. The values in A and B represent the mean value \pm SE from four and six replicates, respectively.

Supplementary Figure S4. Expression patterns of 11 putative *VaNAC26* downstream genes by qRT-PCR analysis.

Relative expressions of *PR5* (A), *MYB47* (B), *COR414-TM1* (C), *NATA1* (D), *COR15A* (E), *SWEET4* (F), *14A* (G), *BMY1* (H), *PDF1.2* (I), *LTP4* (J) and *LTP3* (K) in WT and OE lines before (WT 0d and OE 0d) and 5 d after water stress (WT 5d and OE 5d), respectively. The values represent the mean value \pm SE from three replicates.