Table S1 Checklist used to assess the methodological quality in included studies | 1. | Is a clear description of the study objective and comparators provided? | |-----|--| | 2. | Are the characteristics of target population and subgroups described and analysed? | | 3. | Is the setting and location of the study stated? | | 4. | Is the study perspective clearly stated? | | 5. | Is the time horizon of costs and benefits clear? | | 6. | Is the discount rate stated or an explanation is given if costs or benefits are not discounted (where applicable)? | | 7. | Are the source and methods used to collect effectiveness data described? | | 8. | Are the primary outcome measure(s) for economic evaluation clearly stated? | | 9. | Are the quantities of resources reported separately from their unit costs? | | 10 | Are approaches used to estimate resource use and cost clear? | | 11. | Are the cost components clearly stated? | | 12 | Is the currency/price year explicitly stated? | | 13. | Are the analytic methods supporting the evaluation including methods for dealing with skewed, missing, or censored data, extrapolation methods, methods for pooling data, approaches to validate or make adjustments to a model, methods for handling population heterogeneity and uncertainty described in details? | | 14 | Are the incremental costs and outcomes reported (If applicable incremental cost-effectiveness ratios reported)? | | 15 | Is sensitivity analysis carried out? | | 16 | Are the study limitations discussed? | | 17. | Is the study generalisability discussed? | Table S2 Basic information on included studies | Study
Reference | Study | Population sample assessed | Healthcare assessed | Alternatives compared | Costs analysed | Outcomes assessed | |--------------------|--|--|---|---|--|--| | 1 | Nallamothu BK, Saint S, Ramsey SD, et al. The role of hospital volume in coronary artery bypass grafting: is more always better? <i>J Am Coll Cardiol</i> 2001;38(7):1923-30. | N=13,644
, >35years age,
having undergone
isolated, non-
emergent CABG,
mean age=64.5
years | Non emergent coronary artery bypass grafting | Low Vs High volume hospitals | Direct and indirect
hospital costs are
said to be included
- but cost
components not
clear | In-hospital mortality rate, length of hospital stay | | 2 | Dimick JB, Cattaneo SM, Lipsett PA, et al. Hospital volume is related to clinical and economic outcomes of esophageal resection in Maryland. <i>The Annals of Thoracic Surgery</i> 2001; 72 (2):334-40. | N=1,136, All patients discharged from hospitals with esophageal resection during the study period, mean age=61 years | Esophageal resection | High Vs Medium
Vs Low volume
hospitals | Hospital charges-
but cost
components not
clear | In-hospital mortality rate, length of hospital stay | | 3 | Lyman S, Jones EC, Bach PB, et al. The association between hospital volume and total shoulder arthroplasty outcomes. <i>Clin Orthop Relat Res</i> 2005(432):132-7. | N=1,307, All patients undergoing elective shoulder arthroplasty during the study period, mean age=65.6 years | Shoulder
arthroplasty | High Vs Medium
Vs Low volume
hospitals | Hospital charges reported on the inpatient bill- but cost components not clear | Re-admission rate within 60 days, revision rate within 12 or 24 months, mortality rate within 60 days, length of hospital stay | | 4 | Bardach NS, Olson SJ, Elkins JS, et al. Regionalization of treatment for subarachnoid hemorrhage: a cost-utility analysis. <i>Circulation</i> 2004; 109 (18):2207-12. | Base case of 59
year old woman
with subarachnoid
hemorrhage
modelled | Treatment of
Subarachnoid
Hemorrhage | High Vs Low volume hospitals | Hospital costs,
costs of transfer
from low volume to
high volume
hospital, cost of
caring disabled, | QALYs | | 5 | Concannon TW, Kent DM, Normand SL, et al. Comparative effectiveness of ST-segment- elevation myocardial infarction regionalization strategies. <i>Circ Cardiovasc Qual Outcomes</i> 2010; 3 (5):506-13. | 2000 patients
simulated, 55.5-
66.6 years mean
age in different
subgroups | Primary
percutaneous
coronary
intervention (PCI) | Standard care Vs Diverting patients to hospitals with PCI facilities Vs scenarios adding PCI facilities to existing hospitals | Not clear what cost
components were
analysed | QALYs | | 6 | Gandjour A, Weyler EJ. Costeffectiveness of referrals to high-volume hospitals: an analysis based on a probabilistic Markov model for hip fracture surgeries. Health Care Manag Sci 2006;9(4):359-69. | Hypothetical hip
fracture patients
hospitalized for
surgery, mean
age=74 years
modelled. | Hip fracture
surgery | High Vs Low
volume hospitals | Hospital costs including labor and materials costs for clinical care and ancillary services such as radiology, catering and cleaning; costs of hospital infrastructure, travel costs to hospital | Mortality rate, QALYs | |---|--|---|---|---|--|---| | 7 | Geomini PM, Kruitwagen RF, Bremer GL, et al. Should we centralise care for the patient suspected of having ovarian malignancy? <i>Gynecol Oncol</i> 2011; 122 (1):95-9. | N=7,598 women
who received
surgery for an
adnexal mass, No
mean age reported | Centralised and regular care for ovarian malignancy | General gynaecologists in a general hospital Vs gyanecological oncologist whether or not in a specialised center Vs systematic diagnostic evaluation prior to surgery | Doctors' cost for
diagnosis and
surgical treatment,
salary costs for
gyanecological
oncologist, costs
of chemotherapy | Life years gained | | 8 | Sutton JM, Wilson GC, Paquette IM, et al. Cost effectiveness after a pancreaticoduodenectomy: bolstering the volume argument.
HPB (Oxford) 2014; 16 (12):1056-61. | N=9883, >18 years
age, undergone
pancreatico-
duodenectomy,
modelled | Pancreatic
surgery | Lowest Vs Low Vs
Middle Vs High Vs
Highest volume
hospitals | Total direct costs said to be included-but not clear on cost components | Post-operative death prior to discharge | | 9 | Chan T, Kim J, Minich LL, et al. Surgical Volume, Hospital Quality, and Hospitalization Cost in Congenital Heart Surgery in the United States. <i>Pediatric Cardiology</i> 2015; 36 (1):205-13. | N=24,992, <18
years age,
underwent
congenital cardiac
surgery | Congenital cardiac surgery | High Vs Medium
Vs Low volume
hospitals | Hospital costs but cost components not clear | Mortality rate,
number of
complications | | 10 | Hunter RM, Davie C, Rudd A, et al. Impact on Clinical and Cost Outcomes of a Centralized Approach to Acute Stroke Care in London: A Comparative Effectiveness Before and After Model. <i>PLoS ONE</i> 2013;8(8):e70420. | N=3463, had
ischemic or
hemorrhagic stroke,
mean age=71-72.8
years, modelled | Acute stroke care | Local hospitals Vs
Centralised hyper
acute stroke units | Costs of transport, acute hospitalisation, imaging and surgical interventions, staff contacts and medications during acute hospitalisation and post-discharge care | QALYs, deaths averted | |----|---|---|---------------------------------|--|---|-----------------------| | 11 | Tanke MAC, Ikkersheim DE. A new approach to the tradeoff between quality and accessibility of health care. <i>Health Policy</i> 2012; 105 (2–3):282-87. | Women undergoing breast cancer treatment- modelled | Breast cancer care | Local hospitals Vs
Centralised
hospital | Travel costs for patients that stem from centralisation | QALYs | | 12 | Losina E, Walensky RP, Kessler CL, et al. Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume. <i>Arch Intern Med</i> 2009; 169 (12):1113-21; discussion 21-2. | N=121,432, >65 years with end stage knee Osteoarthritis, modelled | Total knee
arthroplasty(TKA) | Low Vs Medium
Vs High volume
hospitals | TKA costs-Hospital costs, physician costs, costs of complications, costs of rehabilitation following discharge; Osteoarthritis(OA) cost-Inpatient and ambulatory visits, Knee OA medications, MRIs and radiograms | QALYs | | 13 | Seguin J, Garber BG, Coyle D, et al. An economic evaluation of trauma care in a Canadian lead trauma hospital. <i>J Trauma</i> 1999; 47 (3 Suppl):S99-103. | N=484, median
age=39 years,
trauma admissions
with an Injury
Severity Score
(ISS)>12 | Trauma care | Tertiary trauma
care center Vs
Non trauma center
hospital | Direct costs of treatment (e.g. staff, consumables) and indirect costs(e.g. overheads)- cost | QALYs | | | | | | | component not clear | | |----|--|--|-------------------------------|--|--|---| | 14 | MacKenzie EJ, Weir S, Rivara FP, et al. The value of trauma center care. <i>J Trauma</i> 2010; 69 (1):1-10. | N=5043, 18-84
years, treated for a
moderately severe
to severe injury | Trauma care | Level I trauma
center Vs non
trauma center
hospital | Costs associated with-Index hospitalisation, transport, hospital transfers, rehospitalisation, inpatient rehabilitation, stays in long term care, nursing facilities, outpatient care, informal care by friends and family | Incremental lives
saved, incremental
life years gained,
incremental QALY
gained | | 15 | Tsao SY, Lee WC, Loong CC, et al. High-surgical-volume hospitals associated with better quality and lower cost of kidney transplantation in Taiwan. <i>J Chin Med Assoc</i> 2011; 74 (1):22-7. | N=1060, >18 years
of age, patients with
kidney transplants | Kidney
transplantation | High Vs Low volume hospitals | Total medical cost of the transplant, annual medical cost for 3 years after the transplant | Complications-
infection, mortality,
readmission in 14
days, patient survival
at 1,2, and 3 years of
transplantation | | 16 | Yoshioka R, Yasunaga H, Hasegawa K, et al. Impact of hospital volume on hospital mortality, length of stay and total costs after pancreaticoduodenectomy. <i>British Journal of Surgery</i> 2014; 101 (5):523-29. | N=10652, mean
age=67.3 years,
patients undergoing
pancreatico-
duodenectomy | Pancreatic
surgery | Very high Vs High
Vs Medium Vs
Low Vs Very low
volume hospitals | Costs of surgical, pharmaceutical, laboratory and other inpatient services- but cost components not clear | Post-operative
mortality, length of
hospital stay | | 17 | Joynt KE, Orav EJ, Jha AK. The association between hospital volume and processes, outcomes, and costs of care for congestive heart failure. <i>Ann Intern Med</i> 2011; 154 (2):94-102. | N=1,029,497,
median age=80
years, patients >65
years of age with
discharge diagnosis
of congestive heart
failure | Congestive heart failure care | High Vs Medium
Vs Low volume
hospitals | No clear information on cost | Mortality,
readmission rates | | 18 | Ellison LM, Heaney JA, Birkmeyer JD. The effect of hospital volume on mortality and resource use after radical prostatectomy. <i>J Urol</i> 2000; 163 (3):867-9. | N=66,693 men,
mean age= 65
years, patients
undergoing radical
prostatectomy | Radical prostatectomy | High Vs Low volume hospitals | Hospital charges-
but no clear
information on cost
components | In-hospital mortality,
length of hospital
stay | |----|---|--|---|--|--|--| | 19 | Nathan H, Atoria CL, Bach PB, et al. Hospital Volume, Complications, and Cost of Cancer Surgery in the Elderly. Journal of Clinical Oncology 2014 | N=60,361, >66 years of age, patients diagnosed with cancer of the bladder, colon, lung, pancreas, prostate, or rectum and undergone surgical resection | Cancer surgery- included colectomy, cystectomy, pancreatectomy, proctectomy, prostatectomy, and pulmonary lobectomy | High Vs Mid Vs
Low volume
hospitals | Medicare payments for diagnosis related group, index hospitalisation and readmissions within 30 days from discharge; home health agencies, rehabilitation hospital, skilled nursing facilities in the corresponding 30 days after discharge. However unit costs of each not presented. | Post-operative patient outcomes-mortality, complications, readmissions, and emergency room visits within 30 days after surgery | | 20 | Sosa JA, Bowman HM, Gordon TA, et al. Importance of hospital volume in the overall management of pancreatic cancer. <i>Ann Surg</i> 1998; 228 (3):429-38. | N=1236, mean
age=67 years,
patients with
pancreatic cancer
and undergoing a
primary treatment
procedure | Palliative procedures and curative surgery for pancreatic cancer | High Vs Medium
Vs Low volume
hospitals | Hospital charges-
but not clear on its
components | In-hospital mortality rate, length of hospital stay, | | 21 | Mitsuyasu S, Hagihara A, Horiguchi H, et al. Relationship Between Total Arthroplasty Case Volume and Patient Outcome in an Acute Care Payment System in Japan. <i>The Journal of Arthroplasty</i> 2006; 21 (5):656-63. | N=1561, mean
age=69.8 years,
patients who had
undergone joint
arthroplasty | Total Arthroplasty | High Vs Low
volume hospitals | Hospital costs- but not clear on its components | Length of hospital stay | | 22 | Swisher SG, Deford L, Merriman KW, et al. Effect of operative volume on morbidity, mortality, and hospital use after esophagectomy for cancer. <i>J Thorac Cardiovasc Surg</i> 2000; 119 (6):1126-32. | N=340, age not
specified, patients
who underwent
esophageal
resection for cancer | Esophagectomy | High Vs Low
volume; Cancer
Specialised Vs
Community
hospitals | Hospital charge-
but not clear on its
components | Operative mortality, complications of care | |----|--|---|--|---|--|---| | 23 | Gordon TA, Burleyson GP, Tielsch JM, et al. The effects of regionalization on cost and outcome for one general high-risk surgical procedure. <i>Ann Surg</i> 1995; 221 (1):43-9. | N=502, mean
age=62 years,
patients undergone
pancreatico-
duodenectomies | Pancreatic
surgery | High volume
regional hospital
Vs numerous
lower-volume
hospitals | Hospital charges-
but not clear on its
components | In-hospital mortality,
length of ICU and
hospital stay | | 24 | Yu HY, Hevelone ND, Patel S, et al. Hospital surgical volume, utilization, costs and outcomes of retroperitoneal lymph node dissection for testis cancer. <i>Adv Urol</i> 2012; 2012 :189823. | N=993, >18 years
of age, undergone
retroperitoneal
lymph node
dissection for testis
cancer, mean
age=30.9 years | Retroperitoneal
lymph node
dissection for
testis cancer | High Vs Low volume hospitals | Inpatient charges-
but not clear on its
components | Mortality, Length of hospital stay, | | 25 | Glasgow RE, Mulvihill SJ. Hospital volume influences outcome in patients undergoing pancreatic resection for cancer. West J Med 1996;165(5):294-300. | N=1705, median
age=65 years
(range 2-85 years),
patients undergoing
pancreatic resection | Pancreatic resection | Comparison of several different volume hospitals | Hospital charges-
but not clear on its
components | Operative mortality,
Length of hospital
stay, patient
discharged to home | | 26 | Dimick JB, Pronovost PJ, Lipsett PA. The Effect of ICU Physician Staffing and Hospital Volume on Outcomes After Hepatic Resection. <i>Journal of Intensive Care Medicine</i> 2002; 17 (1):41-47. | N=569,>18 years of
age, having primary
procedure code for
hepatectomy; mean
age=57 years, | Managing Hepatic resection | ICU physician rounds and no ICU physician rounds in High Vs Low volume hospitals, High Vs Low volume surgeons, (only hospital volume was considered in this review) | Hospital charges-
but not clear on its
components | In-hospital mortality,
length of hospital
stay | | 27 | Slover JD, Tosteson AN, Bozic KJ, et al. Impact of hospital volume on the economic value of computer | Hypothetical cohort of 65 year old patients with end- | Computer assisted surgery in end-stage | Conventional total knee replacement without computer | Reimbursement costs of primary and revision total | QALYs, revision rates | | | navigation for total knee
replacement. <i>J Bone Joint Surg Am</i>
2008; 90 (7):1492-500. | stage arthritis of the knee were modelled. | arthritis of the knee | navigation and
computer assisted
surgery compared
in high vs low
volume hospitals | knee replacement and computer navigation including cost of computer software and service contract- no information on breakdown of unit costs and resource consumption | | |----|---|---|--|---|---|---| | 28 | Nguyen NT, Paya M, Stevens CM, et al. The relationship between hospital volume and outcome in bariatric surgery at academic medical centers. <i>Ann Surg</i> 2004; 240 (4):586-93; discussion 93-4. | N=24,166, patients
who underwent
Roux-en-Y gastric
bypass for the
treatment of morbid
obesity, No age
restrictions, | Bariatric surgery | High Vs Medium
Vs Low volume
hospitals | Not clear- but
appears to be cost
of surgery | Perioperative
outcomes- length of
hospital stay,
complications,
readmissions; In-
hospital mortality | | 29 | Vogel TR, Dombrovskiy VY, Graham AM, et al. The impact of hospital volume on the development of infectious complications after elective abdominal aortic surgery in the Medicare population. Vasc Endovascular Surg 2011;45(4):317- 24. | N=59365 elective
aortic surgery
procedures, >65
years of age with
nonruptured
abdominal aortic
aneurysms | Elective aortic surgery | High Vs Low volume hospitals | Hospital charges-
but not clear on its
components | In-hospital mortality, postoperative infectious complications, length of ICU stay, length of hospital stay | | 30 | Ananthakrishnan AN, McGinley EL, Saeian K. Higher hospital volume is associated with lower mortality in acute nonvariceal upper-GI hemorrhage. <i>Gastrointest Endosc</i> 2009; 70 (3):422-32. | N=391,119
discharges with a
primary diagnosis of
nonvariceal upper-
GI hemorrhage, >18
years of age | Treatment of acute nonvariceal upper-GI hemorrhage | High Vs Medium
Vs Low volume
hospitals | Hospital charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 31 | Simpson AN, Wardrope J, Burke D. The Sheffield experiment: the effects of centralising accident and emergency services in a large | N=371,293 annual
new patient
attendances
analysed | Centralisation of accident and emergency services | Before
centralisation Vs
after centralisation | The cost of A&E
services as a
whole, the cost per
case in the A&E
do not include | Quality of patient care in terms of time to see a doctor or nurse practitioner, time to admission | | | urban setting. <i>Emergency Medicine Journal</i> 2001; 18 (3):193-97. | | | | capital expenditure
generated by
building
works/equipment
costs as a result of
centralisation | | |----|--|--|---|--|--|--| | 32 | Shen HN, Lu CL, Li CY. The effect of hospital volume on patient outcomes in severe acute pancreatitis. <i>BMC Gastroenterol</i> 2012; 12 :112. | N=22,551 patients
with severe acute
pancreatitis, age
range (38-73) years | Treatment of severe acute pancreatitis | Comparison of several different volume quartiles | Hospital charges-
but components
not clear | Hospital mortality,
length of hospital
stay | | 33 | Singla A, Simons J, Li Y, et al.
Admission Volume Determines
Outcome for Patients With Acute
Pancreatitis. <i>Gastroenterology</i>
2009; 137 (6):1995-2001. | N=416, 489, >18 years of age patients with primary diagnosis of acute pancreatitis, mean age=53 years | Treatment of acute pancreatitis | High Vs Low volume hospitals | Hospital charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 34 | Koo JJ, Wang J, Thompson CB, et al. Impact of Hospital Volume and Specialization on the Cost of Orbital Trauma Care. <i>Ophthalmology</i> 2013; 120 (12):2741-46. | N=499, patients
who underwent
orbital
reconstruction,
mean age=34 years
(range 3-94) | Orbital trauma care | Specialised eye
trauma center Vs
Local hospitals | Hospital charges-
but components
not clear | Readmission, length of hospital stay | | 35 | Gordon TA, Bowman HM, Bass EB, et al. Complex gastrointestinal surgery: impact of provider experience on clinical and economic outcomes. <i>J Am Coll Surg</i> 1999; 189 (1):46-56. | N=4,561, patients
discharged after
complex
gastrointestinal
surgical procedures,
mean age=61.6
years | Complex
gastrointestinal
surgical
procedures | High Vs Medium
Vs Low volume
hospitals | Hospital charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 36 | Choti MA, Bowman HM, Pitt HA, et al. Should hepatic resections be performed at high-volume referral centers? <i>J Gastrointest Surg</i> 1998; 2 (1):11-20. | N=606, patients
undergone hepatic
resection, mean
age=54.8 years | Hepatic resections | High Vs Low volume hospitals | Hospital charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 37 | Harmon JW, Tang DG, Gordon TA, et al. Hospital volume can serve as a surrogate for surgeon volume for | N=9739, >18 years of age, patients who underwent | Colorectal resections | High Vs Medium
Vs Low volume
hospitals and | Hospital charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 38 | achieving excellent outcomes in colorectal resection. <i>Ann Surg</i> 1999; 230 (3):404-11; discussion 11-3. Díaz-Montes TP, Zahurak ML, | colorectal section
as the primary
procedure, mean
age=69.2 years
N=6181, >18 years | Uterine cancer | surgeons (but
surgeons not
included in this
review)
High Vs Low | Hospital costs- but | Peri-operative | |----|--|---|------------------------------|--|--|--| | 30 | Giuntoli li RL, et al. Concentration of uterine cancer surgical care among the elderly: A population-based perspective. <i>Gynecologic Oncology</i> 2007; 107 (3):436-40. | of age women with primary surgical procedure for a malignant uterine neoplasm, | surgical care | volume hospitals
and surgeons (but
surgeons not
included in this
review) | components not clear | mortality rates,
length of hospital
stay, length of ICU
stay | | 39 | Wright JD, Hershman DL, Burke WM, et al. Influence of surgical volume on outcome for laparoscopic hysterectomy for endometrial cancer. <i>Ann Surg Oncol</i> 2012; 19 (3):948-58. | N=4,137, women
who underwent
laparoscopic
hysterectomy for
endometrial cancer | Laparoscopic
hysterectomy | High Vs Intermediate Vs Low volume hospitals and surgeons (but surgeons not included in this review) | Hospital costs-but components not clear | Perioperative
morbidity and
mortality, length of
hospital stay,
readmissions within
60 days | | 40 | Diaz-Montes TP, Giuntoli RL.
Volume-Based Care among Young
Women Diagnosed with Uterine
Cancer. <i>ISRN Surg</i>
2011; 2011 :541461. | N=6,181, >18 years
of age women with
primary surgical
procedure for a
malignant uterine
neoplasm | Caring uterine cancer | High Vs Low
volume hospitals
and surgeons (but
surgeons not
included in this
review) | Hospital costs- but components not clear | Length of hospital
stay, length of ICU
stay, in-hospital
mortality | | 41 | Lee JA, Park JH, Lee EJ, et al. High-quality, low-cost gastrectomy care at high-volume hospitals: results from a population-based study in South Korea. <i>Arch Surg</i> 2011; 146 (8):930-6. | N=48,938, patient
undergoing
gastrectomy, mean
age=58 years | Gastrectomy care | Very high Vs high
Vs Very low Vs
Low volume
hospitals | Hospital costs-but components not clear | Length of hospital
stay, standard
mortality ratio | | 42 | Tsugawa Y, Kumamaru H, Yasunaga H, et al. The association of hospital volume with mortality and costs of care for stroke in Japan. <i>Med Care</i> 2013; 51 (9):782-8. | N=66,406, primary
admission diagnosis
of stroke, | Stroke care | High Vs Medium
Vs Low volume
hospitals | Total costs of hospital care- costs components broken down into: costs of oral medications, injectables, surgical and non- | In-hospital mortality | | 43 | Chiu CC, Wang JJ, Tsai TC, et al. The relationship between volume and outcome after bariatric surgery: a nationwide study in Taiwan. Obes | N=2,674, >18 years of age patients who had undergone bariatric surgery, | Bariatric surgery | High Vs Low volume hospitals and surgeons (but surgeons not | surgical procedures, tests, imaging studies Hospital treatment cost-but components not clear | Length of hospital stay | |----|--|--|---------------------------------------|--|---|--| | | Surg 2012; 22 (7):1008-15. | mean age=32.21
years | | included in this review) | | | | 44 | Safford SD, Pietrobon R, Safford KM, et al. A study of 11,003 patients with hypertrophic pyloric stenosis and the association between surgeon and hospital volume and outcomes. <i>J Pediatr Surg</i> 2005; 40 (6):967-72; discussion 72-3. | N=11,003, children
with hypertrophic
pyloric stenosis,
mean age=41.1
days | Hypertrophic pyloric stenosis surgery | High Vs Medium Vs Low volume hospitals and surgeons (but surgeons not included in this review) | Cost components not clear | Length of hospital stay, complications, mortality | | 45 | Long DM, Gordon T, Bowman H, et al. Outcome and cost of craniotomy performed to treat tumors in regional academic referral centers. <i>Neurosurgery</i> 2003; 52 (5):1056-63; discussion 63-5. | N= 4,723, patient
undergoing a
craniotomy for a
benign tumor,
primary or
secondary
malignant
neoplasm, mean
age=54.5 years | Craniotomy | High Vs Low volume hospitals | Hospitals charges-
but components
not clear | In-hospital mortality,
length of hospital
stay | | 46 | Clement RC, Carr BG, Kallan MJ, et al. Volume-outcome relationship in neurotrauma care. <i>J Neurosurg</i> 2013; 118 (3):687-93. | N=61,067, patient
with neurological
trauma | Neurotrauma care | Several different volume hospitals | Hospital costs-but components not clear | Mortality, length of
hospital stay, poor
outcomes (not clearly
defined) | | 47 | Hamada T, Yasunaga H, Nakai Y, et al. Impact of hospital volume on outcomes in acute pancreatitis: a study using a nationwide administrative database. <i>J Gastroenterol</i> 2014;49(1):148-55. | N=17,415, >20
years age patients
with acute
pancreatitis, mean
age=61.1 years | Acute pancreatitis care | High Vs Low
volume hospitals | Hospital costs- reported the inclusion of item by item price for surgical, pharmaceutical, laboratory and other inpatient | In-hospital mortality,
length of hospital
stay | | | | | | | services, however
cost details not
provided | | |----|---|--|------------------------------------|---|---|--| | 48 | Gutierrez B, Culler SD, Freund DA. Does hospital procedure-specific volume affect treatment costs? A national study of knee replacement surgery. <i>Health Serv Res</i> 1998; 33 (3 Pt 1):489-511. | N=67,041 patient
hospitalisation in
which knee
replacement
surgery had been
performed, mean
age=74 years | Knee replacement surgery | High Vs Medium
Vs Low volume
hospitals | Hospital costs-but components not clear | Mortality,
complications | | 49 | Auerbach AD, Hilton JF, Maselli J, et al. Case volume, quality of care, and care efficiency in coronary artery bypass surgery. <i>Arch Intern Med</i> 2010; 170 (14):1202-8. | N=81,289 patients
who underwent
coronary artery
bypass surgery,
mean age=65 years | Coronary artery bypass surgery | Several volume
quartiles hospitals
and surgeons (but
surgeons not
included in this
review) | Hospital costs-but components not clear | Length of hospital stay, care quality | | 50 | Gourin CG, Forastiere AA,
Sanguineti G, et al. Impact of
surgeon and hospital volume on
short-term outcomes and cost of
oropharyngeal cancer surgical care.
<i>Laryngoscope</i> 2011; 121 (4):746-52. | N=1,534, >18 years of age patients with a diagnosis of oropharyngeal cancer, mean age=58.3 years | Oropharyngeal cancer surgical care | High Vs low
volume hospitals
and surgeons (but
surgeons not
included in this
review) | Hospital costs-but components not clear | In-hospital mortality,
length of hospital
stay, readmissions | | 51 | Lu CC, Chiu CC, Wang JJ, et al. Volume-outcome associations after major hepatectomy for hepatocellular carcinoma: a nationwide Taiwan study. <i>J Gastrointest Surg</i> 2014; 18 (6):1138- 45. | N=23,107, patients
undergone major
hepatectomy for
hepatocellular
carcinoma, mean
age=58.1 years | Major
Hepatectomy | High Vs Low
volume hospitals
and surgeons (but
surgeons not
included in this
review) | Hospital costs- reported inclusion of cost of operating room, radiology, physical therapy, hospital room, anesthetist, pharmacy, laboratory, special materials, surgeon and others, however cost details not provided | Length of hospital stay, survival | | 52 | Macomber CW, Shaw JJ, Santry H, et al. Centre volume and resource consumption in liver | N=5310, patients who underwent liver | Liver
transplantation | High Vs Medium
Vs Low volume
hospitals | Reported as
directed costs of
transplant-but cost | Mortality, Transplant to length of hospital | | | transplantation. HPB (Oxford) 2012; 14 (8):554-9. | transplants, age range:18-81 years | | | components not clear | stay, ICU length of stay | |----|--|--|------------------------------------|--|---|---| | 53 | Kuo EY, Chang Y, Wright CD. Impact of hospital volume on clinical and economic outcomes for esophagectomy. <i>Ann Thorac Surg</i> 2001; 72 (4):1118-24. | N=1,193, patients
who underwent
esophagectomy,
mean age=64.3
years | Esophagectomy | High Vs Low volume hospitals | Hospital costs-but components not clear | Length of hospital
stay, length of ICU
stay, In-hospital
mortality, discharge
destination | | 54 | Bristow RE, Santillan A, Diaz-
Montes TP, et al. Centralisation of
care for patients with advanced-
stage ovarian cancer: a cost-
effectiveness analysis. <i>Cancer</i>
2007; 109 (8):1513-22. | Hypothetical cohort of women with advanced-stage ovarian cancermodelled | Advanced-stage ovarian cancer care | Expert center Vs
Less experienced
center | Direct costs-costs of primary surgery, chemotherapy regimens, hospitalisation costs for treatment related toxicity Indirect costs- cost of lost productivity, care giver support. Cost components clearly stated. | QALYs | | 55 | Greving JP, Vernooij F, Heintz AP, et al. Is centralisation of ovarian cancer care warranted? A costeffectiveness analysis. <i>Gynecol Oncol</i> 2009; 113 (1):68-74. | N=879 ,Hypothetical
cohort of women
with ovarian cancer
and a mean age of
63 years | Ovarian cancer care | General Vs Semi-
specialised Vs
Tertiary hospitals | Direct costs and included-personnel costs, operating room costs, costs of follow up monitoring and treatment. Indirect costs were not included. | QALYs, overall
survival | | 56 | Fader DJ, Wise CG, Normolle DP, et al. The multidisciplinary melanoma clinic: a cost outcomes analysis of specialty care. <i>J Am Acad Dermatol</i> 1998; 38 (5 Pt 1):742-51. | N=208 for cost
analysis, N=954 for
long term survival,
patients with
melanoma (study
suffers from a
fragmented
effectiveness
analyses) | Melanoma care | All treatment at Multi-disciplinary Melanoma Clinic Vs Traditional strategy of treating patients referred by physicians for second opinion | Direct costs- costs of office visits/consultations, surgeries, radiology, medical tests, laboratories, pathology, facility and anesthesia included. Indirect | Short term outcomes- surgical morbidity, length of hospital stay Long term outcomes – 5 year survival | | | | | | | costs were not considered. | | |----|--|--|--|--|--|--| | 57 | Regenbogen SE, Gust C, Birkmeyer JD. Hospital Surgical Volume and Cost of Inpatient Surgery in the Elderly. <i>Journal of</i> the American College of Surgeons 2012; 215 (6):758-65. | N=101,349,Patients
undergoing
coronary artery
bypass grafting,
elective abdominal
aortic aneurysm, or
colectomy; older
than 65 years and
younger than 99
years of age; mean
age=78.4 years | Inpatient operations for colectomy, coronary artery bypass grafting and elective abdominal aortic aneurysm | Several volume quintiles hospitals | Hospital costs- included costs of index hospitalization, readmissions, physician services, post-discharge ancillary care | Complication, mortality | | 58 | Avritscher EB, Cooksley CD, Rolston KV, et al. Serious postoperative infections following resection of common solid tumors: outcomes, costs, and impact of hospital surgical volume. Support Care Cancer 2014; 22 (2):527-35. | N=37,582, >75 years of age patients who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum; | Resection of common surgical tumors | High Vs
Intermediate Vs
Low volume
hospitals | Hospital costs-but cost components not clear | Serious
postoperative
infection, length of
hospital stay, In-
hospital mortality | | 59 | Kilic A, Shah AS, Conte JV, et al. Operative outcomes in mitral valve surgery: Combined effect of surgeon and hospital volume in a population-based analysis. The Journal of Thoracic and Cardiovascular Surgery 2013;146(3):638-46. | N=50,152, patients
undergoing isolated
mitral valve surgery
for mitral
regurgitation, mean
age=61.9 years | Mitral valve
surgery | High Vs Intermediate Vs Low volume hospitals and surgeons (surgeons not included in this review) | Hospital costs- but cost components not clear | Operative mortality,
mitral valve repair
rate | | 60 | Sutton JM, Hoehn RS, Ertel AE, et al. Cost-Effectiveness in Hepatic Lobectomy: the Effect of Case Volume on Mortality, Readmission, and Cost of Care. <i>Journal of Gastrointestinal Surgery</i> 2015; 20 (2):253-61. | N= 4163, >18 years
of age patients who
underwent hepatic
lobectomy, mean
age= 58 years, | Hepatic
lobectomy | High Vs Medium
Vs Low volume
hospitals | Hospital costs- but components not clear | Peri-operative
mortality,
Readmissions | | 61 | Kim A, Yoon SJ, Kim YA, et al. The burden of acute myocardial infarction after a regional cardiovascular center project in Korea. <i>Int J Qual Health Care</i> 2015; 27 (5):349-55. | N=1469 in each of
the two
regions, >18 years
age patients with
acute myocardial
infarction | Acute myocardial infarction care | Before
regionalisation Vs
After
regionalisation | Hospital costs-but components not clear | Length of stay | |----|--|---|---|---|---|---| | 62 | Arora S, Panaich SS, Patel N, et al. Impact of Hospital Volume on Outcomes of Lower Extremity Endovascular Interventions (Insights from the Nationwide Inpatient Sample [2006 to 2011]). The American Journal of Cardiology 2015;116(5):791-800. | N=92,714, >18
years of age
patients undergoing
peripheral
endovascular
interventions | Peripheral
endovascular
interventions | Several volume quartiles hospitals | Hospital costs-but components not clear | In-hospital mortality
and peri-procedural
complications | | 63 | Wakeam E, Hyder JA, Lipsitz SR, et al. Outcomes and Costs for Major Lung Resection in the United States: Which Patients Benefit Most From High-Volume Referral? The Annals of Thoracic Surgery 2015; 100 (3):939-46. | N= 37,746, >18
years of age
patients who
underwent a major
lung resection | Major lung resection | Very high Vs High
Vs Moderate Vs
Low volume
hospitals
according to risk
groups | Inpatient costs- but components not clear | In-hospital mortality | | 64 | Bhatt P, Patel NJ, Patel A, et al. Impact of Hospital Volume on Outcomes of Endovascular Stenting for Adult Aortic Coarctation. <i>The American Journal</i> of Cardiology 2015; 116 (9):1418-24. | N=105, >18 years
of age patients with
coarctation of aorta,
mean age= 36.9
years, | Treatment of coarctation of aorta | High Vs Low volume hospitals | Hospital costs- but components not clear | Length of stay, complications | QALYs= Quality Adjusted Life Years; ICU= Intensive Care Unit