Tsoulis et al., Supplemental Figure Legends

Supplemental Figure S1. Experimental design of perinatal dietary groups, and postweaning dietary groups. Abbreviations: CON, maternal control diet; con, postweaning control diet; HF, maternal high fat diet; hf, postweaning high fat diet.

Supplemental Figure S2. The effect of a postweaning (PW) high fat (HF) diet on follicle counts, activated caspase-3 immunostaining, and circulating FSH, LH, and E_2 in adult offspring at P120. CON offspring fed a PW HF diet had increased numbers of primordial and type II atretic follicles (a). HF offspring fed a PW HF diet had reduced numbers of type II atretic follicles compared to PW control fed HF offspring (a) There was no PW HF diet effect on activated caspase-3 immunostaining (b), circulating FSH (c), E_2 (d), or the circulating FSH: E_2 ratio (e); however, CON offspring fed a PW HF diet had significantly reduced concentrations of circulating LH (f). Data are presented as mean±SEM - expressed as fold changes relative to control fed CON offspring for follicle counts. Data were analyzed using a two-way ANOVA. Tukey's *post-hoc* analyses: groups with unlike letters are statistically different (p<0.05). n=5-9 per group. Abbreviations: CON, maternal control diet; con, postweaning control diet; HF, maternal high fat diet; hf, postweaning high fat diet; NS, not significant.

Supplemental Figure S3. The effect of a postweaning (PW) high fat (HF) diet on antral follicle AMH immunostaining and ovarian mRNA expression. Representative photomicrographs of AMH immunostaining in antral follicles of CON-con, CON-hf, HF-con, and HF-hf offspring (a). Maternal HF diet interacted with a PW HF diet to affect antral follicle AMH immunostaining (b). There was no PW HF diet effect on mRNA expression of *Gdf9*, *Bmp15*, *Dazl*, *Era*, or *Erβ* (c). Data are presented as mean±SEM - expressed as fold changes relative to control fed CON offspring for mRNA expression. Data were analyzed using a two-way ANOVA. Tukey's *post-hoc* analyses: groups with unlike letters are statistically different (p<0.05). n=5-9 per group. Abbreviations: CON, maternal control diet; con, postweaning control diet; HF, maternal high fat diet; hf, postweaning high fat diet; NS, not significant.

Tsoulis et al., Supplemental Figure S1

Tsoulis et al., Supplemental Figure S2

Copyright 2016 by The Society for the Study of Reproduction.

BOR-Papers in Press. Published as DOI: 10.1095/biolreprod.115.135004.

Tsoulis et al., Supplemental Figure S3

Tsoulis et al., Supplemental Table S1. Primer information.

Gene	Forward Primer	Reverse Primer	Amplicon length (bp)	GenBank Accession Number
Ywhaz	TTGTAGGAGCCCGTAGGTCA	AAAGAGACAGTACGTCGTTGC	152	NM_013011.3
Ywhag	TTCCTAAAGCCCTTCAAGGCA	GGCTTTCTGCACTAGTTGGTCG	101	NM_019376.2
β-actin	CACTTTCTACAATGAGCTGCGTGT	CTGGATGGCTACGTACATGGCT	148	NM_031144.3
B2M	AATTCACACCCACCGAGACC	GCTCCTTCAGAGTGACGTGT	63	NM_012512.2
SDHA	TGGGGCGACTCGTGGCTTTC	CCCCGCCTGCACCTACAAGC	134	NM_130428.1
HPRT	GCAGTACAGCCCCAAAATGG	GGTCCTTTTCACCAGCAAGCT	52	NM_012583.2
Cyclophilin	CCGCTGTCTCTTTTCGCC	GCTGTCTTTGGAACTTTGTCTGC	129	NM_017101.1
GDF9	CAACCAGATGACAGGACCCC	CACAGTGGAGGAGGAAGCAG	133	NM_021672.1
BMP15	TGATAAAGCCGTCAGCCAGT	TCTGTATATGCCAAGGACCTCT	57	NM_021670.1
DAZL	TGCTCCAGCCTCTGGAAATG	GCACTGCCCGACTTCTTCTA	170	NM_001109414.1
ER-α	TCCTGGACAAGATCAACGACACT	TGCAGAGTCAGGCCAGCTT	61	NM_012689.1
ER-β	CCTGCCGACTTCGCAAGT	CCACACCGTTCTCTCCTGGAT	67	NM_012754.1
PERK	TACAGTGGACGGCGATGATGAG	CTTAGGGTGGTTCGCCTGGTAG	270	NM_031599.2
StAR	TATTGACCTCAAGGGGTGGC	CAAGTGGCTGGCGAACTCTA	82	NM_031558.3
Cyp11a1	TCCTCTACCAACAGTCCTCGAT	TGCCCAGCTTCTCCCTGTAAAT	166	NM_017286.2
Cyp19a1	ATTGGCATGCACGAGAATGG	TGCTGCTTGATGGATTCCAC	139	NM_017085.2
Cyp17a1	TCTGTGCTATCTGCTTCAACATCT	GCCTTTGTTGGGAAAAATCGTC	149	NM_012753.2
3βHSDI	TCATGATACTTGCGGCCCTC	AGCCAGAATATGTGCCCAGG	118	NM_001007719.3
17βHSD1	CGGGATCTGAAGTCACAGGG	GCGTCCAGCATTACAGACCAG	171	NM_012851.2
FSHR	TTCAACGGAACTCAGCTAGATG	TGGTTTGGTAAGGAATGGACC	145	NM_199237.1
LHR	TATGCTCGGAGGATGGCTCT	AGCACAGATGACGACGAAGG	175	NM_012978.1