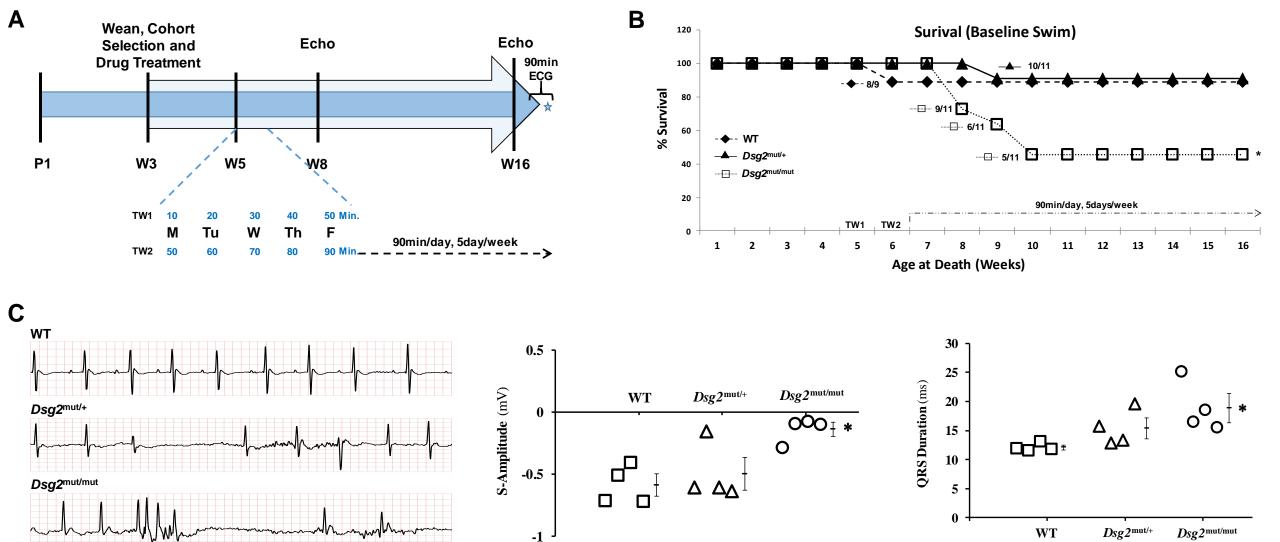
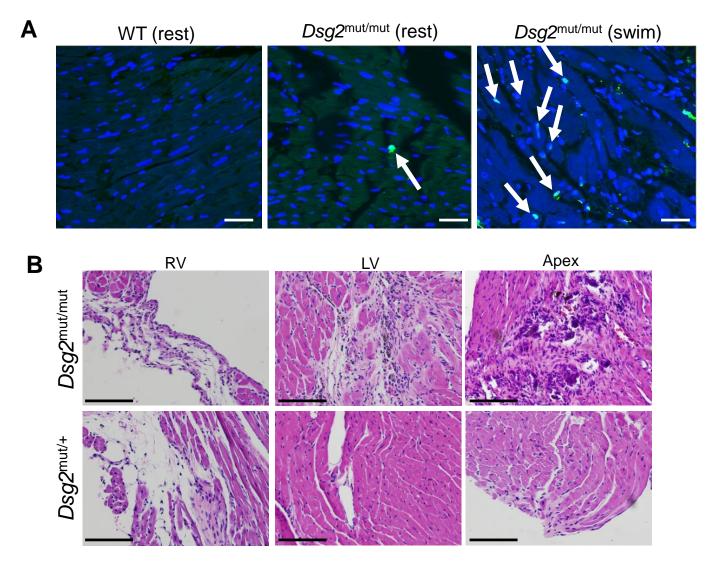
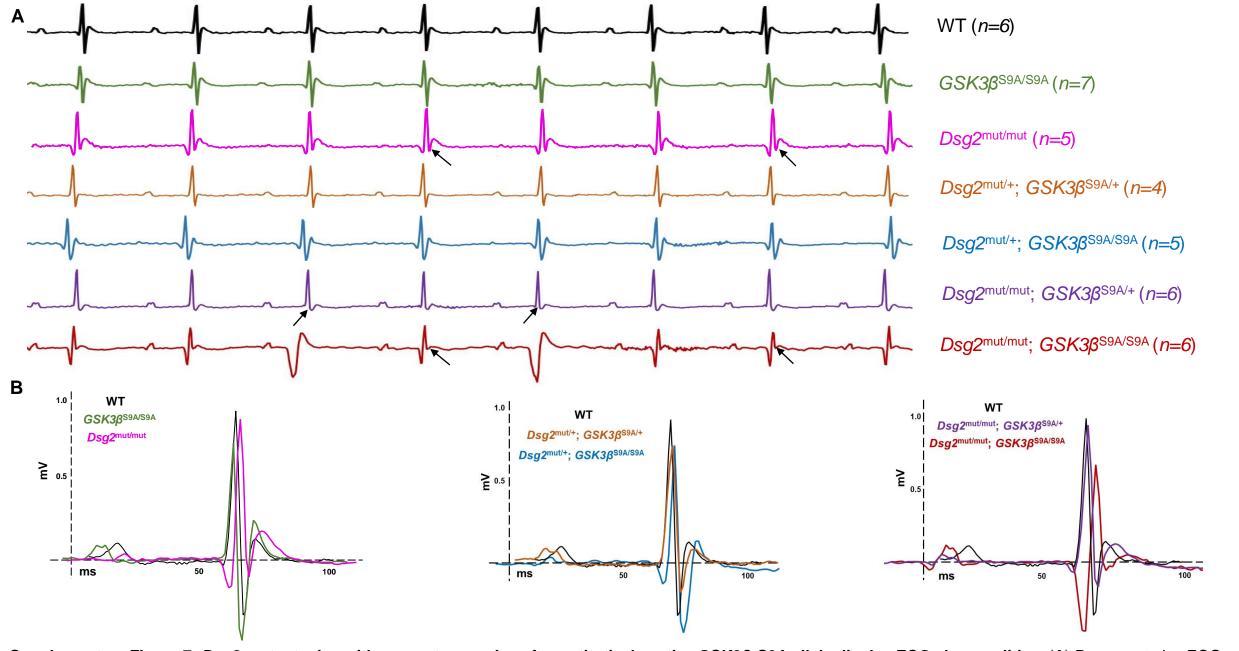

Supplementary Figure 1. ACM disease phenotypes from *Dsg2*^{neo/neo} mice at 16 weeks of age. (A) Representative short-axis, m-mode and long-axis echocardiography from *Dsg2*^{neo/neo} and WT mice. Yellow arrows; paradoxical septal wall motion with hypokinesia and fibrofatty deposits at antero-apical level; RV, right ventricle; LV, left ventricle;. (B) Gross pathology from *Dsg2*^{neo/neo} mice. White arrow, RV outflow tract epicardial fibrosis; white arrowhead, LV epicardial and endocardial fibrosis. (C) RV myocardium stained for Masson's Trichrome (MTC) and H&E in *Dsg2*^{neo/neo} mice. Scale bar: 100µm. Images are representative of n=4/genotype/parameter.


Supplementary Figure 2. Plakoglobin immunostaining optimization. (**A**) Formalin-fixed paraffin-embedded control and *JUP*^{2157del2} mouse myocardium was immunolabeled for N-terminal directed anti-plakoglobin antibody (PLK-Nt) via serial dilution to obtain the optimal antibody concentration which demonstrated intercalated disc (ID) localization of PLK without hyper-saturation (red arrows). Serial dilution of PLK-Nt from control and *JUP*^{2157del2} mouse myocardium reveals optimal concentration of antibody for ID signal (yellow arrows). Note, presence of PLK-Nt at IDs in *JUP*^{2157del2} mice at a concentration of 1:2000, yet signal is considerably reduced compared to controls. Scale Bar: 10μm; anti-PLK-Nt from SIGMA. n=5 images/field from n=3 mice/genotype were utilized. (**B**) Snap-frozen myocardium from control and *JUP*^{2157del2} mice shows ID signal for PLK-Nt (white arrows) from both genotypes at an antibody concentration of 1:50, however *JUP*^{2157del2} mice displayed robust cytoplasmic localization. Optimal concentration of PLK-Nt was obtained at 1:2000 and showed complete absence of PLK-Nt signal in *JUP*^{2157del2} mice myocardium. Scale Bar: 10μm; anti-PLK-Nt from Santa Cruz Biotechnology. n=5 images/field from n=3 mice/genotype were utilized.


Supplementary Figure 3. SB216763-treatment normalizes synapse associated protein 97 (SAP97) without apparent change in protein levels. (A) Formalin-fixed, paraffin-embedded ventricular myocardium immunostained for SAP97 from WT and ACM mutant mice. Scale bar: 20µm. (B) Total cellular protein levels were probed for SAP97, normalized to GAPDH. Images are representative of n=4/genotype/treatment.


Supplementary Figure 4. Accumulation of GSK3 β immunosignal at the intercalated disc (ID) and reversal by SB216763 in engineered paired-myocytes. Representative images of neonatal rat ventricular myocytes (NRVM) expressing $JUP^{2157del2}$ or $PKP2^{1851del123}$ transgenes grown on lines of fibronectin (width ~15 μ m), immunolabeled for GSK3 β (red) and Dapi (blue). Scale bar: 10 μ m. White arrows, ID localization of GSK3 β . Images are representative of n=3/genotype/treatment.

Supplementary Figure 5. Percent survival and electrical abnormalities in baseline exercise studies. (**A**) Schematic of exercise timeline. P1, postnatal day 1; TW1/TW2, training week 1/2; W3-W16, 3-16 weeks of age; M/Tu/W/Th/F, Monday-Friday; Blue star, timeline endpoint and tissue harvest following 16 week echocardiography (Echo) and 90min ECG recording. (**B**) Percent survival. mean±SEM, *P<0.05 for *Dsg2*^{mut/mut} vs WT using log-rank survival test. *n*-values inset, denominator is the total *n*-value for each genotype and the nominator is the *n*-value of survivors left during the course of the exercise study. (**C**) ECG telemetry tracings and parameters from exercised *Dsg2*-mutant and WT mice. mean±SEM, n=4/genotype, *P<0.05 for *Dsg2*^{mut/mut} vs WT using 2-tailed paired t-test.

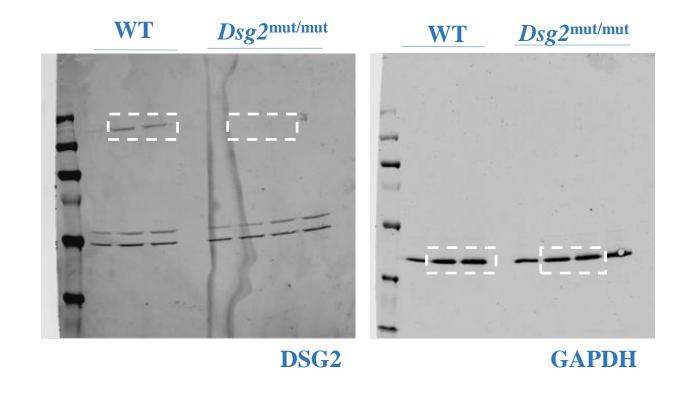
Supplementary Figure 6. Structural abnormalities in *Dsg2*-mutant mice from baseline exercise studies. (A) TUNEL positive nuclei from sedentary (rest) WT and *Dsg2*^{mut/mut} mice compared to baseline exercised (swim) *Dsg2*^{mut/mut} mice. White arrows, TUNEL-positive nuclei. Images are representative of n=4/genotype. Scale bar: 20µm. (B) H&E stained myocardium from baseline exercised *Dsg2*^{mut/mut} and *Dsg2*^{mut/+} mice. RV, right ventricle; LV, left ventricle. Images are representative of n=4/genotype. Scale bar: 100µm

Supplementary Figure 7. *Dsg2*-mutant mice with one or two copies of constitutively active GSK3β-S9A allele display ECG abnormalities. (A) Representative ECG tracings from WT, *GSK3β*^{S9A/S9A}, *Dsg2*^{mut/mut} and *Dsg2*-mutant mice with one or two copies of constitutively active GSK3β-S9A allele at 16 weeks of age. Black arrows highlight reduced S-Amplitude. (B) Single ECG tracings from WT and mutant mice. *n-values* are noted above.

	WT	Dsg2mut/mut		
Echocardiography				
n	8	16		
IVSd (mm)	0.90 ± 0.03	$0.76 \pm 0.03 (n=15)$		
IVSs (mm)	1.44 ± 0.1	1.07 ± 0.1*		
LVIDd (mm)	2.67 ± 0.1	$3.09 \pm 0.1^*$		
LVIDs (mm)	1.07 ± 0.04	$1.93 \pm 0.2^*$		
LVPWd (mm)	0.88 ± 0.04	0.9 ± 0.1		
LVPWs (mm)	1.48 ± 0.04	$1.26 \pm 0.04^* (n=15)$		
FS (%)	59.9 ± 1.0	$38.6 \pm 3.8*$		
EF (%)	83.9 ± 0.8	$60.3 \pm 4.7^*$		
Morphometric				
n	8	7		
RWT (mm)	0.66 ± 0.04	$0.73 \pm 0.1 \ (n=16)$		
LVM (mg)	9.34 ± 0.9	13.9 ± 1.4*		
LVW/BW (mg/g)	0.42 ± 0.3	$0.67 \pm 0.1^*$		
HW/BW (mg/g)	0.57 ± 0.03	0.68 ± 0.1		

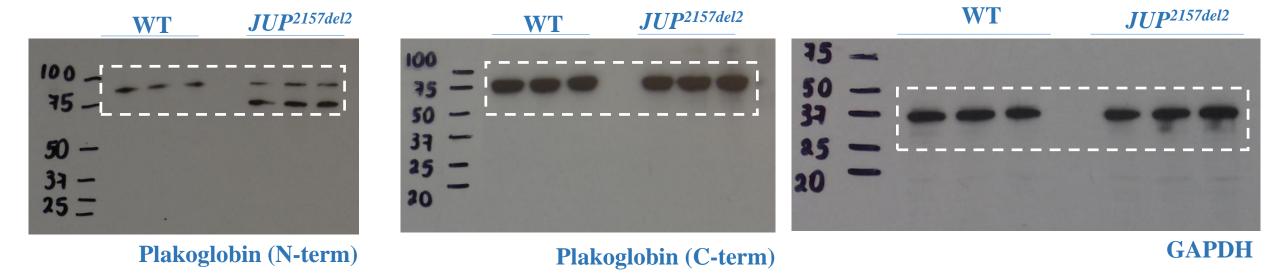
Supplementary Table 1. Echocardiographic and morphometric indices from WT and *Dsg2*^{mut/mut} mice at 8 weeks of age. IVSd, interventricular septal end-diastolic volume; IVSs, interventricular septal end-systolic volume; LVIDd, left ventricular internal diameter end-diastolic volume; LVIDs, left ventricular internal diameter end-systolic volume; LVPWd, left ventricular posterior wall end diastole; LVPWs, left ventricular posterior wall end systole; FS, fractional shortening; EF, ejection fraction; RWT, relative wall thickness; LVM, left ventricular mass; LVW/BW, left ventricular weight to body weight; HW/BW, heart weight to body weight. mean±SEM, *P<0.05 *Dsg2*^{mut/mut} vs. WT using 2-way ANOVA with Tukey's post-hoc analysis. *n*-values are noted for all variables measured unless otherwise noted in italicized parentheses (*n*=X).

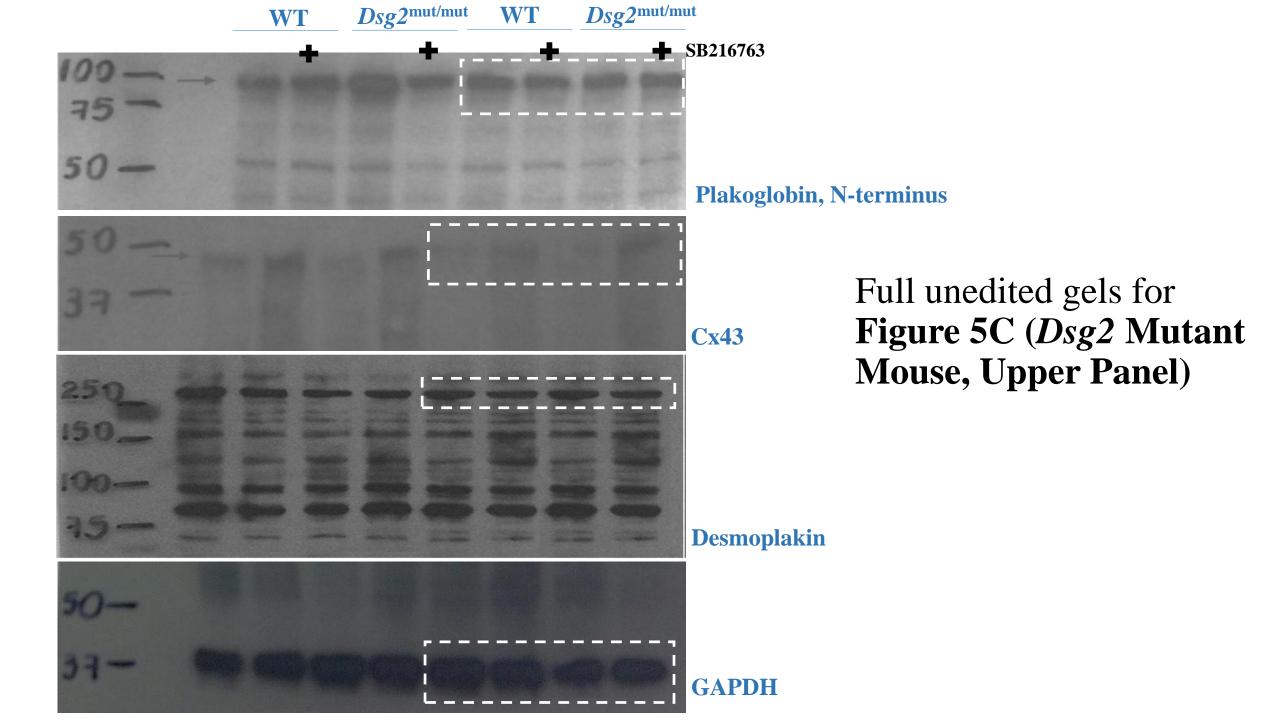
	WT		Dsg2 ^{mut/mut}		Dsg2 ^{mut/+}	
	Sedentary	Swim	Sedentary	Swim	Swim	
Echocardiography						
n	8	8	7	5	9	
IVSd (mm)	0.91 ± 0.03	$0.97 \pm 0.02^{\dagger}$	0.78 ± 0.04 *	0.72 ± 0.1	$1.03 \pm 0.02^{\dagger}$	
IVSs (mm)	1.51 ± 0.04	$1.6 \pm 0.04^{\dagger}$	1.05 ± 0.11*	0.97 ± 0.17	$1.54 \pm 0.04^{\dagger}$	
LVIDd (mm)	2.73 ± 0.09	$2.8 \pm 0.05^{\dagger}$	$3.42 \pm 0.31^*$	3.9 ± 0.41	$2.8 \pm 0.05^{\dagger}$	
LVIDs (mm)	1.08 ± 0.06	$1.09 \pm 0.03^{\dagger}$	2.54 ± 0.41*	2.76 ± 0.6	$1.05 \pm 0.03^{\dagger}$	
LVPWd (mm)	0.88 ± 0.05	0.93 ± 0.01	0.87 ± 0.05	0.85 ± 0.06	$0.98 \pm 0.04^{\dagger}$	
LVPWs (mm)	$1.54 \pm 0.04^{\ddagger}$	$1.64 \pm 0.03^{\dagger}$	1.22 ± 0.05*	1.24 ± 0.13	$1.63 \pm 0.04^{\dagger}$	
FS (%)	60.6 ± 1.25	$61.7 \pm 0.6^{\dagger}$	$27.8 \pm 4.5^*$	31.7 ± 8.6	$62.6 \pm 0.56^{\dagger}$	
EF (%)	84.4 ± 1.0	$85.3 \pm 0.46^{\dagger}$	$46.8 \pm 7.0^*$	51.0 ± 11.0	$86.0 \pm 0.43^{\dagger}$	
Morphometric						
n	8	8	7	5	9	
RWT (mm)	0.65 ± 0.05	0.66 ± 0.02	0.53 ± 0.05	0.68 ± 0.13	$1.17 \pm 0.04^{\dagger}$	
LVM (mg)	9.8 ± 1.2	11.0 ± 0.09	13.6 ± 1.9	14.4 ± 2.6	12.6 ± 1.5	
LVW/BW (mg/g)	$0.44 \pm 0.04^{\ddagger}$	0.53 ± 0.03	0.65 ± 0.09 *	0.68 ± 0.11	0.61 ± 0.07	
HW/BW (mg/g)	0.58 ± 0.02	0.6 ±0.02	0.68 ± 0.06	0.61 ± 0.04	0.63 ± 0.05	

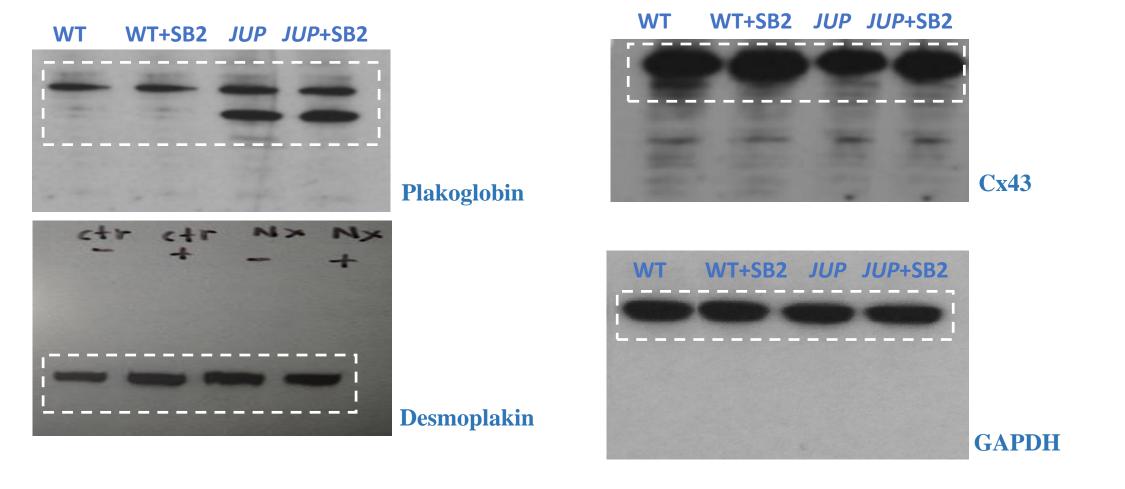

Supplementary Table 2. Echocardiographic and morphometric indices from Vehicle-treated sedentary and exercised (Swim) mice at 16 weeks of age. IVSd, interventricular septal end-diastolic volume; IVSs, interventricular septal end-systolic volume; LVIDd, left ventricular internal diameter end-diastolic volume; LVIDs, left ventricular internal diameter end-systolic volume; LVPWd, left ventricular posterior wall end diastole; LVPWs, left ventricular posterior wall end systole; FS, fractional shortening; EF, ejection fraction; RWT, relative wall thickness; LVM, left ventricular mass; LVW/BW, left ventricular weight to body weight; HW/BW, heart weight to body weight. mean±SEM, P<0.05 for *Dsg2^{mut/mut} (Sedentary) vs. WT (Sedentary); †WT and †Dsg2^{mut/+} (Swim) vs. Dsg2^{mut/mut} (Swim); and ‡WT (Sedentary) vs. WT (Swim) using 2-way ANOVA with Tukey's post-hoc analysis. *n-values* noted above.

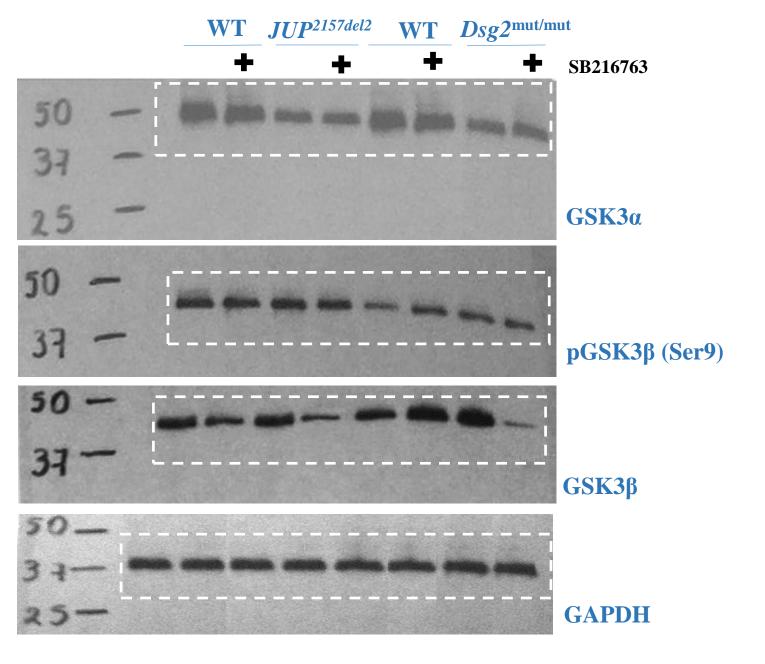
GSK3β ^{S9A/S9A}	Dsg2 ^{mut/mut}	GSK3β ^{S9A/+}	GSK3β ^{S9A/S9A}	OOK2089A/+	001/00
			1-	GSK3β ^{S9A/+}	GSK3β ^{S9A/S9A}
7	5	4	5	6	6
$40.5 \pm 2.0^{*\dagger}$	$32.8 \pm 2.7^{\ddagger}$	42.6 ± 1.5*†	39.6 ± 1.8* [†]	$40.6 \pm 2.0^{*\dagger}$	$40.2 \pm 1.4^{*\dagger}$
8.8 ± 0.8	9.01 ± 2.1	$11.9 \pm 0.9^{\ddagger}$	9.4 ± 1.5	$10.9 \pm 0.7^{\ddagger}$	10.7 ± 1.1
0.04 ± 0.01 *	0.03 ± 0.01*	$0.09 \pm 0.01^{\dagger \ddagger}$	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.004
12.4 ± 0.9	14.3 ± 1.3*	14.2 ± 1.6*	13.8 ± 0.69*	14.2 ± 0.66*	14.5 ± 0.9*
$-0.02 \pm 0.01^{\dagger}$	-0.11 ± 0.03*‡	$-0.02 \pm 0.01^{\dagger}$	$-0.04 \pm 0.01^{\dagger}$	$-0.04 \pm 0.02^{\dagger}$	$-0.13 \pm 0.05^{*\ddagger}$
$-0.22 \pm 0.07^{\dagger}$	$-0.03 \pm 0.02^{*\ddagger}$	$-0.19 \pm 0.07^{\dagger}$	$-0.24 \pm 0.05^{\dagger}$	-0.09 ± 0.06 *	$-0.06 \pm 0.03^{*\ddagger}$
	$-0.02 \pm 0.01^{\dagger}$	$-0.02 \pm 0.01^{\dagger}$ $-0.11 \pm 0.03^{*\ddagger}$	$-0.02 \pm 0.01^{\dagger}$ $-0.11 \pm 0.03^{*\ddagger}$ $-0.02 \pm 0.01^{\dagger}$	$-0.02 \pm 0.01^{\dagger}$ $-0.11 \pm 0.03^{*\ddagger}$ $-0.02 \pm 0.01^{\dagger}$ $-0.04 \pm 0.01^{\dagger}$	$-0.02 \pm 0.01^{\dagger}$ $-0.11 \pm 0.03^{*\ddagger}$ $-0.02 \pm 0.01^{\dagger}$ $-0.04 \pm 0.01^{\dagger}$ $-0.04 \pm 0.02^{\dagger}$

Supplementary Table 3. Electrocardiographic indices from 16 week old WT, *GSK3β*^{S9A/S9A}, *Dsg2*^{mut/mut} and *Dsg2*-mutant mice with one or two copies of constitutively active GSK3β-S9A. PR-I, PR-Interval; Pd, P duration; P-Amp, P-Amplitude; QRSd, QRS duration; Q-Amp, Q-Amplitude; S-Amp, S-Amplitude. Data presented as mean±SEM, *n-values* noted above, with a P<0.05 deemed significant using 2-way ANOVA with Tukey's post hoc analysis. *All groups vs. WT; †All groups vs. *Dsg2*^{mut/mut}; ‡All groups vs. *GSK3β*^{S9A/S9A}.

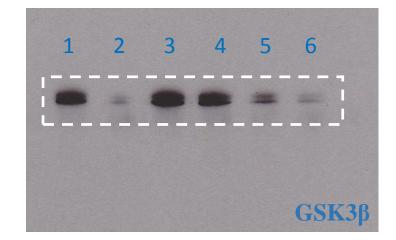

Unedited Gels

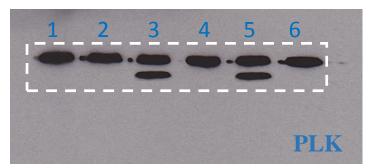

Lanes of the unedited gels which correspond to those shown within the manuscript have a dashed white box surrounding them.

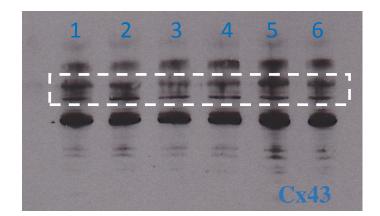

16 Weeks of Age (NO Vehicle, NO SB216763)

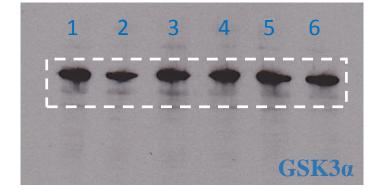

Full unedited gels for **Figure 3A**

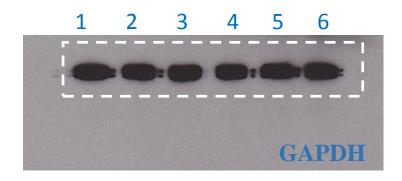
Full unedited gels for Figure 5D (JUP Mutant Mouse, Lower Panel)

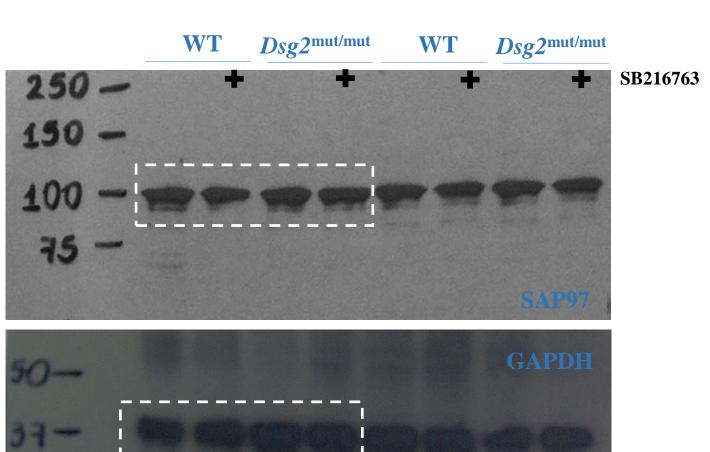


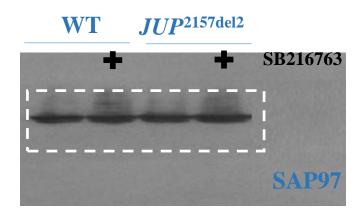


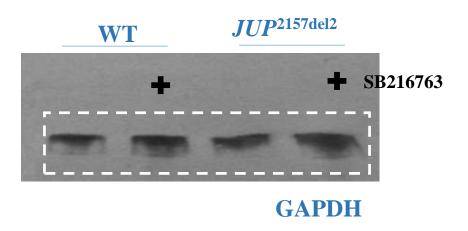

Full unedited gels for Figure 6B


Full unedited gel for Figure 8A


- 1. un-transfected controls
- 2. GSK3β-shRNA
- 3. JUP^{2157del2}
- 4. PKP2^{1851del123}
- 5. JUP^{2157del2} & GSK3β-shRNA
- 6. PKP2^{1851del123} & GSK3β-shRNA







Full unedited gels for **Supplementary Figure 3B**

This is the same GAPDH film presented in Figure 5C, however this is the exact same blot that SAP97 was run on.

