Supplemental Information to Accompany

Synthesis of a Stable and Orally Bioavailable Englerin Analogue

David M. Fash, Cody J. Peer, Zhenwu Li, Ian J. Talisman, Sima Hayavi, Florian J. Sulzmaier, Joe W. Ramos, Carole Sourbier, Leonard Neckers, W. Douglas Figg, John A. Beutler,^{*} and William J. Chain^{*}

Table of Contents

General Information	C–S2
Materials	C–S2
Instrumentation	C–S2
Experimental Procedures	C–S3
NMR Spectra	C–S26
Formulations	B–S1
Oral Bioavailability Studies	B-S3
NCI 60 Testing	B–S5

General Information: All reactions were performed in single-neck oven- or flame-dried roundbottom flasks fitted with rubber septa under a positive pressure of argon, unless otherwise noted. Air- and moisture-sensitive liquids were transferred via syringe or stainless steel cannula. Organic solutions were concentrated by rotary evaporation below 35 °C at 10 Torr (diaphragm vacuum pump) unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with silica gel (0.25 mm, 60-Å pore size, 230-400 mesh, Sorbent Technologies) impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light (UV), then were stained by submersion in aqueous acidic dinitrophenylhydrazine solution (DNP), Ceric Ammonium Molybdate (CAM), or aqueous basic potassium permanganate solution (KMnO₄), followed by brief heating on a hot plate (215 °C, 10–30 s). Flash chromatography was performed as described by Still et al.¹, employing silica gel (60-Å pore size, 40–63 µm, standard grade, Sorbent Technologies).

Commercial reagents and solvents were used as received with the following Materials: Triethylamine, dichloromethane, ethyl ether, dimethylsulfoxide, tetrahydrofuran, exceptions. hexane, toluene, and benzene were purified by the method of Pangborn, et. al² 2-Chloropropanoate, 3-methyl-2-butanone, hexamethyldisilazane, and N,N-diisopropylamine were atmosphere of argon at 760 Torr. distilled from calcium hydride under an Hexamethylphosphoramide (HMPA) and N,N-dimethylformamide (DMF) were distilled from calcium hydride under reduced pressure (0.1 Torr) and stored under argon. 1.2-Diiodoethane was recrystallized from ethyl ether and stored under an atmosphere of argon. Lithium chloride was flame dried under vacuum (0.1 Torr, 10 min), cooled under an atmosphere of argon, and the dried solid was stored at 150 °C (drying oven, 760 Torr); the dried solid was also flame dried under vacuum (0.1 Torr, 10 min) immediately prior to use. The molarity of solutions of nbutyllithium was determined by titration against diphenylacetic acid as an indicator (average of three determinations).³ Where noted, solvents were deoxygenated before use by bubbling with argon for 20 minutes.

Instrumentation: Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR), and fluorine nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on Varian Mercury 300 MHz/75 MHz, Varian INOVA 500 MHz/125 MHz, Bruker CryoPlatform 400 MHz/100/376 MHz, or Bruker SMART 600 MHz/151 MHz NMR spectrometers

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2925.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518– 1520.

³ Kofron, W. G.; Baclawski, L. M. J. Org. Chem. **1976**, *41*, 1879–1880.

at 23 °C. Proton chemical shifts are expressed in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.26, CD₂HOD: δ 3.31, CD₃SOCD₂H: δ 2.50). Carbon chemical shifts are expressed in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the NMR solvent (CDCl₃: δ 77.00, CD₃OD: δ 49.00, CD₃SOCD₃: δ 39.52). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent), integration, and coupling constant (*J*) in Hertz (Hz). Infrared (IR) spectra were obtained using a Perkin Elmer 1600 FT-IR spectrophotometer referenced to a polystyrene standard and data are represented as frequency of absorption (cm⁻¹). Optical rotations were determined using a JASCO-DIP-370 polarimeter equipped with a sodium lamp source (589 nm). Reported readings are the average of three determinations for each sample. High-resolution mass spectra were obtained using an Agilent 1100 quaternary LC system coupled to an Agilent 6210 LC/MSD-TOF fitted with an ESI or an APCI source, or Thermo Q-Exactive Orbitrap using electrospray ionization (ESI) or a Waters GCT Premier spectrometer using chemical ionization (CI).

Experimental Procedures:

The following procedure for the preparation of the known 3-furanone **21**⁴ was adapted from a literature report for the synthesis of 3-silyloxyfurans.⁵

A solution of *n*-butyllithium (2.50 M, 14.4 mL, 36.0 mmol, 1.20 equiv) was added to a stirred solution of *N*,*N*-diisopropylamine (5.34 mL, 38.0 mmol, 1.26 equiv) in tetrahydrofuran (250 mL) at -78 °C. The resultant solution was warmed briefly to 0 °C, then was cooled to -78 °C whereupon a solution of 3-methyl-2-butanone (3.20 mL, 30.0 mmol) in tetrahydrofuran (15 mL) was added dropwise. The resultant mixture was stirred at -78 °C for 30 min, whereupon ethyl 2-chloropropanoate (4.20 mL, 33.0 mmol, 1.10 equiv) was added. The resultant mixture was

⁴ Mukerji, S. K.; Sharma, K. K.; Torssell, K. B. G. *Tetrahedron* **1983**, 39, 2231–2235.

⁵ Winkler, J. D.; Oh, K.; Asselin, S. M. Org. Lett. **2005**, 7, 387–389.

allowed to warm to 23 °C and stirred at that temperature for 8 h. The resultant yellow solution was cooled to 0 °C and was quenched with saturated aqueous ammonium chloride solution (30 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 30 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (4% ethyl acetate-hexanes), afforded **21** (4.60 g, 89%) as a colorless oil.

Chlorodiketone **21**: TLC: 4% ethyl acetate–hexanes, $R_f = 0.50$ (UV, KMnO₄). ¹H NMR: (300 MHz, CDCl₃), δ : 5.84 (s, 1H), 4.38 (q, *J* = 6.9 Hz, 1H), 2.58–2.49 (m, 1H), 1.68 (d, *J* = 7.2 Hz, 3H), 1.18 (d, *J* = 7.0 Hz, 6H). ¹³C NMR: (75 MHz, CDCl₃), δ : 198.6, 192.1, 94.8, 56.6, 36.7, 21.9, 19.5. FTIR (NaCl, thin film), cm-1: 2974, 1604. HRMS: ESI [M + H]⁺ Calcd. for C₈H₁₄ClO₂: 177.0677. Found: 177.0675.

1,8-Diazabicyclo[5.4.0]undec-7-ene (6.00 mL, 40.0 mmol, 1.40 equiv) was added dropwise to a stirred solution of **21** (3.50 g, 28.5 mmol, 1 equiv) in tetrahydrofuran (100 mL) at 23 °C. A pale yellow precipitate formed immediately. The resultant suspension was stirred at 23 °C for 12 h, then was partitioned between water (100 mL) and ethyl acetate (100 mL). The layers were separated and the aqueous phase was extracted with ethyl acetate (6 × 50 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue flash column chromatography (20% ethyl acetate–hexanes) gave **22** (2.80 g, 72%) as a pale yellow liquid.

3-furanone **22**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.35$ (UV, KMnO₄). ¹H NMR (300 MHz, CDCl₃), δ : 5.38 (s, 1H), 4.49 (q, J = 6.9 Hz, 1H), 2.76–2.66 (m, 1H), 1.43 (d, J = 7.0 Hz, 3H), 1.24 (s, 3H), 1.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃), δ : 206.1, 198.7, 100.7, 82.6, 30.5, 19.7, 19.7, 16.6. FTIR (NaCl, thin film), cm⁻¹: 2975, 1742, 1707, 1586. HRMS: ESI [M + H]⁺ Calcd for C₈H₁₃O₂: 141.0910. Found: 141.0911.

The following literature procedure for the synthesis of 24 is provided for reader convenience:⁶

The second generation Grubbs catalyst (933 mg, 1.10 mmol, 0.05 equiv) was added in portions to a solution of 23^7 (3.60 g, 22.0 mmol) in dichloromethane (200 mL) heated at reflux. The resultant brown solution was heated at reflux for 48 h, then was cooled and concentrated. Purification of the residue by flash column chromatography (4% ethyl acetate–hexanes) gave 24 (2.40 g, 99%) as a pale yellow oil.

Aldehyde **24**: TLC: 4% ethyl acetate–hexanes, $R_f = 0.30$ (UV, KMnO₄). $[\alpha]_D^{23} = -6.2^\circ$ (c = 0.58, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃), δ : 9.76 (s, 1H), 6.80 (m, 1H), 3.06–2.98 (m, 1H), 2.68–2.55 (m, 1H), 2.27–2.14 (m, 1H), 1.63–1.53 (m, 2H), 1.13 (d, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ : 190.0, 153.2, 151.8, 36.8, 32.6, 32.1, 19.4. FTIR (NaCl, thin film), cm⁻¹: 2957, 1716, 1683, 1458. HRMS: ESI [M – H]⁺ Calcd for C₇H₉O: 111.0804. Found: 111.0810. Assay of enantiomeric excess: Chiral HPLC analysis (Regis (*S*, *S*)-Whelk-O #1 25 cm x 4.6 mm, 1 mL/min flow rate, 5% isopropanol–hexanes, t_R (major) = 7.30 min, t_R (minor) = 6.92 min) 79% ee, average of three determinations.

A solution of *n*-butyllithium (2.50 M, 2.20 mL, 5.50 mmol, 1.28 equiv) was added to a stirred solution of *N*,*N*-diisopropylamine (0.85 mL, 6.00 mmol, 1.40 equiv) in tetrahydrofuran (50 mL) at

⁶ Chavez, D. E.; Jacobsen, E. N. Org. Lett. 2003, 5 (14), 2563–2565.

⁷ Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki, M.; Iwabuchi, Y.; Sugihara, T.; Ogasawara, K. *Chem. Lett.* **1989**, 1283–1284.

-78 °C. The resultant solution was warmed briefly to 0 °C, then was cooled to -78 °C whereupon a solution of the 3-furanone **22** (600 mg, 4.30 mmol, 1 equiv) in tetrahydrofuran (5 mL) was added dropwise. The resultant mixture was stirred at -78 °C for 30 min, whereupon a solution of **24** (550 mg, 5.00 mmol, 1.16 equiv) in tetrahydrofuran (5 mL) was added. The reaction mixture was stirred at -78 °C for 30 min, then was warmed to 23 °C and stirred at that temperature for 1 h. The reaction mixture was then cooled to 0 °C whereupon saturated aqueous ammonium chloride solution (30 mL) was added carefully. The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 30 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) afforded the Michael adduct **25** (807 mg, 75%, 2:1 dr desired: Σ others) as a yellow oil.

Michael adduct **25**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.35$ (UV, DNP). $[\alpha]_D^{23} = +36.1^\circ$ (c = 0.38, CHCl₃). Major isomer: ¹H NMR (300 MHz, CDCl₃), δ : 9.62 (d, *J* = 3.2 Hz, 1H), 5.32 (s, 1H), 2.90 (dd, *J*₁ = 8.8 Hz, *J*₂ = 15.6 Hz, 1H), 2.69–2.62 (m, 2H), 2.38–2.27 (m, 1H), 1.99–1.90 (m, 1H), 1.83–1.73 (m, 2H), 1.59–1.48 (m, 1H), 1.29 (s, 3H), 1.19 (d, *J* = 7.0 Hz, 6H), 0.98 (d, *J* = 7.0 Hz, 3H). Major isomer: ¹³C NMR: (75 MHz, CDCl₃), δ : 206.9, 204.4, 197.7, 101.2, 91.2, 54.5, 43.9, 39.0, 34.6, 30.5, 26.7, 21.0, 19.8, 19.5, 16.0. FTIR (NaCl, thin film), cm⁻¹: 2964, 1717, 1588. HRMS: ESI [M + H]⁺ Calcd for C₁₅H₂₃O₃: 251.1642. Found: 251.1649.

A solution of samarium(II) iodide in tetrahydrofuran [0.1 M, 8.64 mL, 864 µmol, 4.00 equiv, freshly prepared from samarium powder (195 mg, 1.30 mmol, 6.00 equiv) and 1,2-diiodoethane (244 mg, 864 µmol, 4.00 equiv)]⁸ was added dropwise to a solution of the Michael adduct **25** (54.0 mg, 216 µmol, 1 equiv) and HMPA (700 µL, 4.00 mmol, 18.5 equiv) in deoxygenated tetrahydrofuran (10 mL). The resultant deep purple mixture was stirred at 23 °C for 3 h, then was cooled to 0 °C and quenched by the addition aqueous hydrochloric acid solution (1 N, 10 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3

⁸ Reisman, S. E.; Ready, J. M.; Weiss, M. M.; Hasuoka, A.; Hirata, M.; Tamaki, K.; Ovaska, T. V.; Smith, C. J.; Wood, J. L., *J. Am. Chem. Soc.* **2008**, *130*, 2087–2100.

× 10 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate solution (10 mL), dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (10% ethyl acetate– hexanes) gave the ketoalcohol **3** (16.0 mg, 43%) as a pale yellow oil.

Ketoalcohol **3**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.30$ (CAM). $[\alpha]_D^{23} = -47.4^\circ$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃), δ : 3.90 (dd, $J_1 = 10.3$ Hz, $J_2 = 4.3$ Hz, 1H), 2.46 (d, J = 18.5 Hz, 1H), 2.31 (d, J = 18.5 Hz, 1H), 2.33–2.24 (m, 1H), 2.10 (sept, J = 7.0 Hz, 1H), 1.98–1.94 (m, 1H), 1.67-1.58 (m, 2H), 1.39 (d, J = 4.3 Hz, 1H), 1.22 (s, 3H), 1.18–1.12 (m, 2H), 1.09 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 7.0 Hz, 3H), 0.901 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 215.7, 83.5, 82.8, 70.4, 49.3, 46.4, 41.5, 32.3, 31.0, 30.4, 24.2, 17.9, 17.5, 17.0, 16.7. FTIR (NaCl, thin film), cm⁻¹: 3470, 2958, 1749. HRMS: ESI [M + H]⁺ Calcd for C₁₅H₂₅O₃: 253.1798. Found: 253.1792.

Cinnamic acid (18.0 mg, 120 μ mol, 2.00 equiv), triethylamine (25.0 μ L, 180 μ mol, 3.00 equiv), 2,4,6-trichlorobenzoyl chloride (25.0 μ L, 155 μ mol, 2.58 equiv) and 4-dimethylaminopyridine (1.0 mg, 8.2 μ mol, 0.14 equiv) were added sequentially to a solution of **3** (16.0 mg, 60.0 μ mol, 1 equiv) in toluene (2 mL). The resultant mixture was stirred at 23 °C for 2 d, then was quenched with aqueous hydrochloric acid solution (1 N, 5 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 5 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (10 mL), then was dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (4% ethyl acetate-hexanes) afforded **5** (20.0 mg, 86%) as a colorless oil.

Ketoester **5**: TLC: 4% ethyl acetate–hexanes, $R_f = 0.30$ (UV, CAM). $[\alpha]_D^{23} = -52.2^\circ$ (c = 0.32, CHCl₃). ¹H NMR (300 MHz, CDCl₃), δ : 7.67 (d, J = 16.1 Hz, 1H), 7.54–7.50 (m, 2H), 7.49–7.37 (m, 3H), 6.39 (d, J = 16.1 Hz, 1H), 5.37 (d, J = 10.6 Hz, 1H), 2.52 (ab, 1H), 2.14–2.06 (m, 1H), 2.01–1.92 (m, 1H), 1.91–1.75 (m, 2H), 1.68–1.47 (m, 2H), 1.256 (s, 3H), 1.23–1.18 (m, 2H), 1.03 (t, J = 7.4 Hz, 6H), 0.94 (d, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ : 215.5, 165.7,

145.7, 134.4, 130.7, 129.2, 128.4, 117.9, 83.7, 82.6, 71.0, 48.6, 46.3, 42.9, 33.3, 31.3, 30.9, 23.5, 18.2, 17.7, 17.1, 17.0. FTIR (NaCl, thin film), cm⁻¹: 2960, 1754, 1713, 1636. HRMS: ESI $[M + H]^+$ Calcd. for C₂₄H₃₁O₄: 383.2217. Found: 383.2213.

Sodium borohydride (2.50 mg, 65.0 μ mol, 1.00 equiv) was added to a solution of **5** (25 mg, 65 μ mol, 1 equiv) in methanol (2 mL) at 0 °C. The resultant mixture was stirred at 0 °C for 30 min, and excess borohydride was quenched by the addition of saturated aqueous ammonium chloride solution (5 mL). The resultant mixture was extracted with dichloromethane (3 × 5 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) afforded **9** (25 mg, quantitative) as a colorless oil.

Ketoalcohol **9**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.40$ (UV, CAM). $[\alpha]_D^{23} = -32.6^\circ$ (c = 0.30, CHCl₃). ¹H NMR (300 MHz, CDCl₃), δ : 7.66 (d, J = 16.2 Hz, 1H), 7.54–7.50 (m, 2H), 7.39–7.36 (m, 3H), 6.40 (d, J = 16.2 Hz, 1H), 5.22 (d, J = 10.3 Hz, 1H), 4.19 (dd, $J_1 = 10.7$ Hz, $J_2 = 4.8$ Hz, 1H), 2.39–2.29 (m, 2H), 2.16–2.04 (m, 2H), 1.98–1.67 (m, 6H), 1.32 (s, 3H), 1.29–1.21 (m, 1H), 0.98–0.93 (m, 9H). ¹³C NMR (75 MHz, CDCl₃), δ : 166.1, 145.1, 134.6, 130.5, 129.1, 128.3, 118.6, 84.8, 81.6, 81.2, 72.7, 49.4, 46.4, 39.6, 33.1, 31.7, 31.4, 24.6, 23.5, 17.9, 17.3, 17.1. FTIR (NaCl, thin film), cm⁻¹: 2923, 1710, 1636. HRMS: ESI [M + H]⁺ Calcd. for C₂₄H₃₃O₄: 385.2373. Found: 385.2389.

A solution of *n*-butyllithium (2.50 M, 72.8 μ L, 182 μ mol, 7.00 equiv) was added to a stirred solution of hexamethyldisilazane (42 μ L, 200 μ mol, 7.70 equiv) in tetrahydrofuran (2 mL) at 0 °C. The resultant solution was warmed briefly to 23 °C, then was cooled to 0 °C whereupon a

solution of **9** (10 mg, 26 µmol, 1 equiv) in tetrahydrofuran (1 mL) was added. The resultant mixture was stirred at 0 °C for 30 min, then was cooled to -10 °C whereupon *N*,*N*'-sulfuryldiimidazole (40 mg, 200 µmol, 7.70 equiv) was added. The reaction mixture was warmed to 23 °C, stirred at that temperature for 12 h. Excess *N*,*N*'-sulfuryldiimidazole was quenched by the addition of methanol (0.2 mL), and the resultant mixture was concentrated. The residue was partitioned between saturated aqueous sodium bicarbonate solution (5 mL) and dichloromethane (5 mL). The layers were separated and the aqueous phase was extracted with dichloromethane (3 × 5 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate-hexanes) gave **26** (13 mg, quantitative) as a colorless oil.

Imidazole **26**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.35$ (UV, CAM). $[\alpha]_D^{23} = -14.0^\circ$ (c = 0.71, CHCl₃). ¹H NMR (300 MHz, CDCl₃), δ : 8.03 (s, 1H), 7.65 (d, *J* = 16.1 Hz, 1H), 7.56–7.53 (m, 2H), 7.41–7.38 (m, 4H), 7.24 (s, 1H), 6.38 (d, *J* = 16.4 Hz, 1H), 5.20 (d, *J* = 10.1 Hz, 1H), 4.59 (dd, $J_1 = 10.7$ Hz, $J_2 = 4.8$ Hz, 1H), 2.31–2.22 (m, 1H), 2.18–2.13 (m, 2H), 2.06–1.99 (m, 2H), 1.92–1.88 (m, 1H), 1.83–1.67 (m, 3H), 1.23–1.21 (m, 1H), 1.19 (s, 3H), 0.95–0.89 (m, 9H). ¹³C NMR (75 MHz, CDCl₃), δ : 165.8, 145.7, 137.4, 134.4, 131.8, 130.7, 129.2, 128.4, 118.2, 117.9, 90.7, 85.4, 81.3, 71.3, 49.0, 46.5, 35.9, 32.8, 31.4, 31.3, 24.1, 22.7, 17.7, 17.0, 17.0. FTIR (NaCl, thin film), cm⁻¹: 2960, 1713, 1636. HRMS: ESI [M + H]⁺ Calcd. for C₂₇H₃₅N₂O₆S: 515.2210. Found: 515.2215.

Sodium azide (25.0 mg, 380 μ mol, 20.0 equiv) was added in one portion to a stirred solution of **26** (10.0 mg, 19.0 μ mol, 1 equiv) in *N*,*N*-dimethylformamide (2 mL). The resultant mixture was heated at 80 °C for 2 d. The reaction mixture was cooled, diluted with dichloromethane (10 mL) and washed with water (10 mL). The aqueous layer was extracted with dichloromethane (3 × 5 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (2% ethyl acetate-hexanes) afforded **13** (6.0 mg, 75%) as a colorless oil.

13: TLC: 4% ethyl acetate–hexanes, $R_f = 0.50$ (UV, KMnO₄). $[\alpha]_D^{23} = -37.7^\circ$ (c = 0.5, CHCl₃). ¹H NMR: (500 MHz, CDCl₃), δ : 7.67 (d, J = 16.0 Hz, 1H), 7.54-7.52 (m, 2H), 7.40-7.38 (m, 3H), 6.50 (d, J = 16.0 Hz, 1H), 5.13 (d, J = 10.3 Hz, 1H), 3.64 (dd, J = 8.4, 3.4, 1H), 2.60 (dd, J = 14.4, 8.5 Hz, 1H), 2.15-2.10 (m, 1H), 1.95-1.89 (m, 3H), 1.81-1.70 (m, 2H), 1.50-1.44 (m, 1H), 1.33 (s, 3H), 1.30-1.24 (m, 2H), 1.03 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃), δ : 165.6, 145.2, 134.2, 130.4, 128.9, 128.1, 117.9, 85.6, 85.4, 71.3, 63.3, 48.1, 46.9, 38.7, 32.9, 31.1, 30.9, 24.7, 20.2, 18.2, 17.5, 17.0. FTIR (NaCl, thin film), cm-1: 2930, 2092, 1711, 1640. HRMS: ESI [M + H]⁺ Calcd. for C₂₄H₃₂N₃O₃: 410.2438. Found: 410.2443.

Lindlar's catalyst (5 mg) was added to a stirred solution of **13** (LZW-II-5-1, 9.0 mg, 22 μ mol, 1 equiv) in ethanol (2 mL). The resultant mixture was bubbled with hydrogen (H₂, balloon) for 5 minutes and then stirred under a hydrogen atmosphere at room temperature for 30 min. The reaction mixture was then filtered through a pad of Celite, and the filtrate was concentrated. Purification of the residue by flash column chromatography (2% triethylamine-ethyl acetate) afforded **27** as a colorless oil that was advanced without further characterization.

Glycolic acid (26.0 mg, 350 µmol, 16.0 equiv), *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (67.0 mg, 350 µmol, 16.0 equiv) and 1-hydroxybenzotriazole (47.0 mg, 350 µmol, 16.0 equiv) were added sequentially to a stirred solution of **27** in *N*,*N*-dimethylformamide (4 mL) at 23 °C. The reaction mixture was cooled to 0 °C whereupon *N*,*N*-diisopropylethylamine (152 µL, 880 µmol, 40 equiv) was added. The resultant mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for an additional 24 h. The reaction mixture was diluted with water (10 mL), and the aqueous layer was extracted with dichloromethane (3 × 5 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (67% ethyl acetate–hexanes) afforded **2** (6.0 mg, 64% two steps) as a colorless oil.

2 (NCI – **NSC#761305**): TLC: 67% ethyl acetate–hexanes, $R_f = 0.50$ (UV, CAM). $[\alpha]_D^{23} = -37.7^{\circ}$ (c = 0.4, MeOH). ¹H NMR: (500 MHz, MeOH- d_4), δ : 7.69 (d, J = 15.9 Hz, 1H), 7.62-7.60 (m, 2H), 7.41-7.39 (m, 3H), 6.50 (d, J = 16.0 Hz, 1H), 5.13 (d, J = 9.6 Hz, 1H), 4.43 (dd, $J_1 = 9.1$ Hz, $J_2 = 4.2$ Hz, 1H), 4.00 (d, J = 4.3 Hz, 2H), 2.71 (dd, $J_1 = 14.1$ Hz, $J_2 = 9.1$ Hz, 1H), 2.15-2.11 (m, 1H), 2.04-1.96 (m, 1H), 1.92-1.87 (m, 1H), 1.80-1.76 (m, 2H), 1.72-1.66 (m, 3H), 1.41-1.36 (m, 1H), 1.30-1.27 (m, 2H), 1.14 (s, 3H), 1.04 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 7.1 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H). ¹³C NMR: (125 MHz, MeOH- d_4), δ : 174.1, 167.4, 146.8, 135.7, 131.7, 130.0, 129.3, 118.9, 86.4, 86.2, 72.7, 62.4, 52.0, 49.6, 47.9, 40.9, 34.7, 32.4, 32.0, 25.4, 20.1, 18.7, 17.8, 17.3. FTIR (NaCl, thin film), cm-1: 3399, 2961, 1709, 1665, 1532. HRMS: ESI [M + H]⁺ Calcd. for C₂₆H₃₆NO₅: 442.2588. Found: 442.2567.

2-Naphthoyl chloride (59 mg, 0.31 mmol, 3.0 equiv) and 4-(dimethylamino)pyridine (38 mg, 0.31 mmol, 3.0 equiv) were added sequentially to a solution of **3** (26 mg, 0.10 mmol, 1.0 equiv) in 2:1 dichloromethane:triethylamine (30 mL). The reaction mixture was stirred at 23 °C for 2 d, then excess acid chloride was quenched by the addition of 1N aqueous hydrochloric acid solution (20 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with saturated aqueous sodium bicarbonate solution (20 mL), dried over anhydrous sodium sulfate, and the dried solution was concentrated. The resulting residue was purified by flash column chromatography (5% ethyl acetate–hexanes) to afford **6** as a pale yellow oil (17 mg, 41%).

Ketoester **6**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.68$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.55 (s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 9.0 Hz, 2H), 7.63–7.55 (m, 2H), 5.57 (d, J = 10.5 Hz, 2H), 2.65 (ab, 1H), 2.15–2.11 (m, 1H), 2.05–1.99 (m, 1H), 1.93–1.85 (m, 2H), 1.73–1.67 (m, 2H), 1.30 (s, 3H), 1.27–1.22 (m, 2H), 1.07 (d, J = 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 215.3, 165.2, 135.6, 132.4, 131.2, 129.3, 128.5, 128.3, 127.8, 127.0, 126.8, 125.1, 83.6, 82.5, 71.3, 48.4, 46.2, 42.9, 33.1, 31.1, 30.7, 29.7, 23.3, 17.9, 17.6, 16.9. FTIR (NaCl, thin film), cm⁻¹:

2925, 1715, 1631, 1276, 1196, 778. HRMS: APCI $[M + H]^+$ Calcd. for $C_{26}H_{32}O_4$: 407.2222. Found: 407.2226.

Sodium borohydride (15 mg, 0.40 mmol, 3.0 equiv) was added to a solution of **6** (54 mg, 0.13 mmol, 1.0 equiv) in methanol (25 mL) at 0 °C. The resultant mixture was stirred at 0 °C for 1 h, and then the excess borohydride was quenched by the addition of saturated aqueous ammonium chloride solution (25 mL). The mixture was extracted with dichloromethane (3 × 20 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) afforded **10** (50 mg, 92%) as a colorless oil.

Hydroxy ester **10**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.36$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.58 (s, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.5 Hz, 2H), 7.61–7.53 (m, 2H), 5.42 (d, J = 10.5 Hz, 2H), 4.25 (dd, $J_1 = 11.0$ Hz, $J_2 = 5.0$ Hz, 1H), 2.54–2.48 (m, 1H), 2.43 (dd, $J_1 = 13.5$ Hz, $J_2 = 11.0$ Hz, 1H), 2.25 (dd, $J_1 = 13.5$ Hz, $J_2 = 5.0$ Hz, 1H), 2.19–2.15 (m, 2H), 2.05–1.83 (m, 6H), 1.36 (s, 3H), 1.32–1.20 (m, 2H), 1.00 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.4, 135.5, 132.5, 131.1, 129.3, 128.2, 128.1, 127.7, 127.6, 126.6, 125.3, 84.7, 81.5, 81.1, 73.0, 49.2, 46.3, 39.5, 33.0, 31.5, 31.1, 29.7, 24.4, 23.3, 17.8, 17.0. FTIR (NaCl, thin film), cm⁻¹: 2924, 1714, 1631, 1276, 1196, 778. HRMS: APCI [M + H]⁺ Calcd. for C₂₆H₃₄O₄: 409.2379. Found: 409.2364.

A solution of *n*-butyllithium (2.50 M in hexanes, 340 μ L, 0.86 mmol, 7.00 equiv) was added to a stirred solution of hexamethyldisilazane (230 μ L, 0.94 mmol, 7.70 equiv) in tetrahydrofuran (15 mL) at 0 °C. The resultant solution was warmed briefly to 23 °C, then was cooled to 0 °C whereupon a solution of **10** (50 mg, 0.12 mmol, 1 equiv) in tetrahydrofuran (5 mL) was added. The resultant mixture was stirred at 0 °C for 30 min, then was cooled to -10 °C whereupon *N*,*N*'-sulfuryldiimidazole (218 mg, 1.10 mmol, 9.00 equiv) was added. The reaction mixture was warmed to 23 °C and stirred at that temperature for 12 h. Excess *N*,*N*'-sulfuryldiimidazole was quenched by the addition of methanol (5 mL), and the resultant mixture was concentrated. The residue was partitioned between saturated aqueous sodium bicarbonate solution (20 mL) and dichloromethane (20 mL). The layers were separated and the aqueous phase was extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate-hexanes) gave **28** (39 mg, 60%) as a colorless oil.

Imidazole **28**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.33$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.53 (s, 1H), 8.07 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.63–7.58 (m, 2H), 7.42 (s, 1H), 7.28 (s, 1H), 5.38 (d, J = 9.5 Hz, 2H), 4.64 (dd, $J_1 = 11.0$ Hz, $J_2 = 5.0$ Hz, 1H), 2.37 (dd, $J_1 = 14.5$ Hz, $J_2 = 11.0$ Hz, 1H), 2.27–2.22 (m, 1H), 2.19–2.14 (m, 2H), 2.02–1.90 (m, 2H), 1.83–1.77 (m, 1H), 1.74–1.60 (m, 2H), 1.28–1.24 (m, 1H), 1.22 (s, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.2, 135.6, 132.5, 131.2, 129.4, 128.5, 128.3, 127.8, 127.0, 126.8, 125.2, 90.5, 85.0, 81.2, 71.6, 48.9, 46.4, 35.7, 32.7, 31.2, 31.1, 29.7, 23.9, 22.5, 17.5, 16.8. FTIR (NaCl, thin film), cm⁻¹: 2920, 1715, 1632, 1198, 778. HRMS: ESI [M + Na]⁺ Calcd. for C₂₉H₃₄N₂NaO₆S: 561.2035. Found: 561.2025.

Sodium azide (94.0 mg, 1.44 mmol, 20.0 equiv) was added to a solution of **28** (39.0 mg, 72.4 μ mol, 1.0 equiv) in *N*,*N*-dimethylformamide (5 mL). The reaction mixture was heated at 80 °C for 18 h, and then quenched by the addition of 10% aqueous lithium chloride solution (20 mL). The mixture was extracted with dichloromethane (3 × 25 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (5% ethyl acetate–hexanes) afforded the azide **14** (31 mg, 99%) as a colorless oil.

Azide **14**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.66$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.56 (s, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.5 Hz, 2H), 7.63– 7.55 (m, 2H), 5.32 (d, J = 10.0 Hz, 2H), 3.72 (dd, $J_1 = 8.5$ Hz, $J_2 = 3.5$ Hz, 1H), 2.77 (dd, $J_1 = 14.0$ Hz, $J_2 = 8.5$ Hz, 1H), 2.17–2.13 (m, 1H), 2.05–2.02 (m, 1H), 1.99–1.92 (m, 2H), 1.88–1.75 (m, 3H), 1.63–1.60 (m, 2H), 1.37 (s, 3H), 1.05 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.2, 135.6, 132.5, 131.1, 129.3, 128.3, 128.2, 127.8, 127.3, 126.8, 125.2, 85.7, 85.5, 71.9, 63.4, 48.2, 47.0, 38.9, 33.0, 31.1, 30.9, 29.7, 24.8, 20.2, 18.3, 17.5, 17.0. FTIR (NaCl, thin film), cm⁻¹: 2957, 2927, 2094, 1720, 1276, 1195. HRMS: APCI [M + H]⁺ Calcd. for C₂₆H₃₂N₃O₃: 434.2444. Found: 434.2459.

Palladium hydroxide on carbon (Pearlman's catalyst, 1.4 mg, 20 wt. % loading) was added to a solution of **14** (7.0 mg, 16 µmol, 1.0 equiv) in methanol (5 mL). The reaction mixture was bubbled with hydrogen (H₂, balloon) for 10 min, then was stirred under a hydrogen atmosphere (balloon) for 5 h. The reaction flask was purged with argon, the reaction mixture was filtered through a pad of Celite, and the pad was washed with methanol. The combined organic filtrates were concentrated and the resultant oily residue was dissolved in N,N-dimethylformamide (10 Glycolic acid (12.0 mg, 0.161 mmol, 10.0 equiv), N-(3-Dimethylaminopropyl)-N'mL). ethylcarbodiimide hydrochloride (31.0 mg, 0.161 mmol, 10.0 equiv), and 1-hydroxybenzotriazole (22.0 mg, 0.161 mmol, 10.0 equiv) were added sequentially to the stirred solution at 23 °C. The reaction mixture was cooled to 0 °C whereupon N,N-diisopropylethylamine (84 µL, 0.48 mmol, 30 equiv) was added. The resultant mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for an additional 18 h. The reaction mixture was guenched with 10% agueous lithium chloride solution (20 mL), then extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (50% ethyl acetatehexanes) afforded the glycolamide 17 (5.4 mg, 72% over two steps) as a colorless oil.

Glycolamide **17**: TLC: 50% ethyl acetate-hexanes, $R_f = 0.20$ (UV, CAM). ¹H NMR (500 MHz, CD₃OD), δ : 8.56 (s, 1H), 8.02 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.63–7.53 (m, 2H), 6.52 (d, J = 9.6 Hz, 2H), 4.58–4.50 (m, 1H), 4.17 (s, 3H), 3.51 (bs, 1H), 2.90 (dd, $J_1 = 14.4$ Hz, $J_2 = 9.0$ Hz, 1H), 2.33–2.28 (m, 1H), 2.20–2.13 (m, 1H), 1.99–1.65 (m, 7H), 1.38–1.31 (m, 2H), 1.22 (s, 3H), 1.04 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CD₃OD), δ : 174.1, 166.9, 137.1, 134.0, 132.2, 130.4, 129.7, 129.5, 128.9, 128.6, 128.0, 126.1, 86.5, 86.3, 73.3, 62.4, 52.2, 49.7, 48.0, 41.2, 34.9, 32.5, 32.1, 25.5, 20.1, 18.8, 17.8, 17.3. FTIR (NaCl, thin film), cm⁻¹: 2954, 2926, 1714, 1659, 1276, 1196, 1096, 968. HRMS: APCI [M + H]⁺ Calcd. for C₂₈H₃₆NO₅: 466.2588. Found: 466.2607.

(*E*)-3-cyclohexylacrylic acid (45 mg, 0.29 mmol, 2.0 equiv), triethylamine (61 μ L, 0.44 mmol, 3.0 equiv), 2,4,6-trichlorobenzoyl chloride (57 μ L, 0.37 mmol, 2.5 equiv), and 4- (dimethylamino)pyridine (3.6 mg, 29 μ mol, 0.2 equiv) were added sequentially to a solution of **3** (37 mg, 0.15 mmol, 1.0 equiv) in toluene (30 mL). The reaction mixture was stirred at 23 °C for 2 d, then excess acid chloride was quenched with 1N aqueous hydrochloric acid solution (20 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with saturated aqueous sodium bicarbonate solution (20 mL), dried over anhydrous sodium sulfate, and the dried solution was concentrated. The resulting residue was purified by flash column chromatography (5% ethyl acetate–hexanes) gave **7** as a pale yellow oil (41 mg, 72%).

Ketoester **7**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.69$ (CAM). ¹H NMR (500 MHz, CDCl₃), δ : 6.90 (dd, $J_1 = 15.5$ Hz, $J_2 = 7.0$ Hz, 1H), 5.70 (d, J = 15.5 Hz, 1H), 5.29 (d, J = 10.5 Hz, 1H), 2.47 (ab, 1H), 2.14–2.06 (m, 2H), 1.95–1.86 (m, 2H), 1.78–1.75 (m, 4H), 1.69–1.64 (m, 2H), 1.52–1.49 (m, 1H), 1.43 (s, 3H), 1.33–1.28 (m, 2H), 1.21–1.12 (m, 4H), 1.02 (d, J = 7.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 215.4, 165.6, 155.4, 118.4, 83.5, 82.4, 70.3, 48.3, 46.0, 42.7, 40.5, 33.0, 31.6, 31.0, 30.7, 30.3, 29.7, 25.9, 25.7, 23.2, 17.9, 17.5, 16.9, 16.8. FTIR (NaCl, thin film), cm⁻¹: 2927, 2853, 1722, 1651. HRMS: APCI [M + H]⁺ Calcd. for C₂₄H₃₇O₄: 389.2692. Found: 389.2661.

Sodium borohydride (30 mg, 0.78 mmol, 4.0 equiv) was added to a solution of **7** (76 mg, 0.20 mmol, 1.0 equiv) in methanol (40 mL) at 0 °C. The resultant mixture was stirred at 0 °C for 30 min, and then the excess sodium borohydride was quenched by the addition of saturated aqueous ammonium chloride solution (25 mL). The mixture was extracted with dichloromethane (3 × 20 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) afforded **11** (41 mg, 67%) as a colorless oil.

Hydroxyester **11**: TLC: 20% ethyl acetate-hexanes, $R_f = 0.30$ (CAM); ¹H NMR (600 MHz, CDCl₃), δ : 6.89 (dd, $J_1 = 16.0$, $J_2 = 6.5$ Hz, 1H), 5.71 (d, J = 16.0 Hz, 1H), 5.12 (d, J = 10.5 Hz, 1H), 4.17 - 4.12(m, 1H), 2.30 - 2.25 (m, 2H), 2.13 - 2.08 (m, 2H), 2.04 - 1.99 (m, 1H), 1.79 - 1.71 (m, 6H), 1.69 - 1.64 (m, 2H), 1.29 (s, 3H), 1.26 - 1.24 (m, 4H), 1.16 - 1.09 (m, 5H), 0.94 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃), δ : 166.1, 154.7, 119.1, 84.7, 72.2, 54.5, 49.2, 46.3, 40.5, 39.5, 33.0, 32.3, 31.8, 31.8, 31.6, 31.3, 26.1, 25.9, 24.4, 23.4, 17.8, 17.1, 17.0. FTIR (NaCl, thin film), cm⁻¹: 3310, 2925, 2853, 1549, 1375. HRMS: APCI [M + H]⁺ Calcd. for C₂₄H₃₉O₄: 391.2848. Found: 391.2845.

A solution of *n*-butyllithium (2.50 M in hexanes, 0.33 mL, 0.82 mmol, 7.00 equiv) was added to a stirred solution of hexamethyldisilazane (0.19 mL, 0.91 mmol, 7.7 equiv) in tetrahydrofuran (10 mL) at 0 °C. The resultant solution was warmed briefly to 23 °C, then was cooled to 0 °C whereupon a solution of **11** (46 mg, 0.12 mmol, 1.0 equiv) in tetrahydrofuran (5 mL) was added. The resultant mixture was stirred at 0 °C for 30 min, then was cooled to -10 °C whereupon *N*,*N*'-sulfuryldiimidazole (210 mg, 1.06 mmol, 9.00 equiv) was added. The reaction mixture was warmed to 23 °C and stirred at that temperature for 12 h. Excess *N*,*N*'-sulfuryldiimidazole was quenched by the addition of methanol (5 mL), and the resultant mixture was concentrated. The residue was partitioned between saturated aqueous bicarbonate solution (20 mL) and dichloromethane (20 mL). The layers were separated and the aqueous phase was extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) gave **29** (34 mg, 55%) as a colorless oil.

Imidazole **29**: TLC: 20% ethyl acetate-hexanes, $R_f = 0.32$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.02 (s, 1H), 7.37 (s, 1H), 7.23 (s, 1H), 6.89 (dd, $J_1 = 16.0$ Hz, $J_2 = 6.5$ Hz, 1H), 5.79 (d, J = 16.0 Hz, 1H), 5.11 (d, J = 10.0 Hz, 1H), 4.56 (dd, $J_1 = 11.0$ Hz, $J_2 = 5.0$ Hz, 1H), 2.27–2.20 (m, 1H), 2.15–2.05 (m, 4H), 2.01–1.95 (m, 2H), 1.87–1.83 (m, 1H), 1.78–1.75 (m, 6H), 1.68–1.65 (m, 3H), 1.60–1.54 (m, 3H), 1.17 (s, 3H), 0.91–0.87 (m, 12H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.6, 155.3, 131.6, 118.4, 90.5, 85.2, 81.0, 70.6, 48.7, 46.2, 40.5, 35.6, 32.5, 31.9,

31.6, 31.1, 30.3, 29.7, 25.9, 25.7, 23.9, 22.4, 17.4, 16.7. FTIR (NaCl, thin film), cm⁻¹: 2924, 2852, 1720, 1648, 1423. HRMS: ESI $[M + Na]^+$ Calcd. for $C_{27}H_{40}N_2NaO_6S$: 543.2505. Found: 543.2476.

Sodium azide (85 mg, 1.3 mmol, 20 equiv) was added in one portion to a solution of **29** (34 mg, 65 μ mol, 1.0 equiv) in *N*,*N*-dimethylformamide (5 mL). The reaction mixture was heated at 80 °C for 18 h, and then quenched with 10% aqueous lithium chloride solution (20 mL). The mixture was extracted with dichloromethane (3 × 20 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (5% ethyl acetate–hexanes) afforded the azide **15** (26 mg, 96%) as a colorless oil.

Azide **15**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.74$ (CAM). ¹H NMR (500 MHz, CDCl₃), δ : 6.89 (dd, $J_1 = 16.0$ Hz, $J_2 = 6.5$ Hz, 1H), 5.71 (d, J = 15.5 Hz, 1H), 5.04 (d, J = 10.5 Hz, 1H), 3.60 (dd, $J_1 = 8.0$ Hz, $J_2 = 3.0$ Hz, 1H), 2.53 (dd, $J_1 = 14.5$ Hz, $J_2 = 8.5$ Hz, 1H), 2.14–2.09 (m, 3H), 1.91–1.84 (m, 4H), 1.79–1.72 (m, 6H), 1.70–1.66 (m, 2H), 1.60–1.54 (m, 3H), 1.43–1.40 (m, 1H), 1.31 (s, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.7, 155.0, 118.6, 85.6, 85.4, 70.9, 63.3, 48.0, 46.9, 40.4, 38.6, 32.8, 31.7, 31.1, 30.9, 25.9, 25.7, 24.7, 20.2, 18.2, 17.5, 16.9. FTIR (NaCl, thin film), cm⁻¹: 2928, 2853, 2094, 1722, 1713. HRMS APCI [M + H]⁺ Calcd. for C₂₄H₃₈N₃O₃: 416.2908. Found: 416.2912.

Ammonium chloride (5.0 mg, 96 µmol, 10 equiv) and zinc (dust, 6.0 mg, 96 µmol, 10 equiv) were added sequentially to a solution of **15** (4.0 mg, 9.6 µmol, 1.0 equiv) in methanol (3 mL). The reaction mixture was stirred vigorously at room temperature for 2 h, then was concentrated. The resulting residue was triturated with diethyl ether $(3 \times 10 \text{ mL})$ and the combined organic fractions were filtered through a pad of silica gel to afford the amine (3.5 mg, 93%), which was advanced without further purification. Glycolic acid (8.0 mg, 0.10 mmol, 10 equiv), N-(3dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (20.0 mg, 0.103 mmol, 10.0 equiv), and 1-hydroxybenzotriazole (14 mg, 0.10 mmol, 10 equiv) were added sequentially to a stirred solution of the amine intermediate in N,N-dimethylformamide (10 mL) at 23 °C. The reaction mixture was cooled to 0 °C whereupon N.N-diisopropylamine (54 μ L, 0.31 mmol, 30.0 equiv) was added. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for an additional 18 h. The reaction mixture was guenched with 10% agueous lithium chloride solution (20 mL), then was extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. Purification of the residue by flash column chromatography (50% ethyl acetatehexanes) afforded the glycolamide 18 (2.1 mg, 49% over two steps) as a colorless oil.

Glycolamide **18** (**NSC#768544**): TLC: 50% ethyl acetate–hexanes, $R_f = 0.35$ (CAM). ¹H NMR (600 MHz, CDCl₃) δ : 6.89 (dd, $J_1 = 15.8$, $J_2 = 6.7$ Hz, 1H), 6.45 (d, J = 9.6 Hz, 1H), 5.71 (d, J = 15.8 Hz, 1H), 5.05 (d, J = 10.3 Hz, 1H), 4.48 - 4.38 (m, 1H), 4.13 (s, 2H), 2.65 (dd, $J_1 = 14.3$, $J_2 = 9.0$ Hz, 1H), 2.15 – 2.05 (m, 2H), 2.00 - 1.98 (m, 1H), 1.86 – 1.79 (m, 1H), 1.79 - 1.73 (m, 4H), 1.72 – 1.64 (m, 2H), 1.64 – 1.57 (m, 2H), 1.49 (dd, J_1 14.4, J_2 =4.0 Hz, 1H), 1.35 – 1.20 (m, 6H), 1.16 (s, 3H), 1.16 – 1.11 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃), δ : 170.3, 165.9, 155.1, 118.9, 85.3, 84.8, 71.2, 62.3, 50.9, 48.3, 46.8, 40.9, 40.6, 33.4, 31.8, 31.3, 31.1, 26.1, 25.9, 24.6, 20.1, 18.4, 17.6, 17.1. FTIR (NaCl, thin film), cm⁻¹: 3358, 2926, 2855, 1719, 1653. HRMS: APCI [M + H]⁺ Calcd. for $C_{26}H_{42}NO_5$: 448.3063. Found: 448.3051.

(*E*)-3-phenylbut-2-enoic acid (129 mg, 0.793 mmol, 2.0 equiv), triethylamine (0.17 mL, 1.2 mmol, 3.0 equiv), 2,4,6-trichlorobenzoyl chloride (0.15 mL, 0.99 mmol, 2.5 equiv), and 4-dimethylaminopyridine (10 mg, 79 μ mol, 0.2 equiv) were added sequentially to a solution of **3** (0.100 mg, 0.396 mmol, 1.00 equiv) in toluene (50 mL). The reaction mixture was stirred at 23 °C for 2 d, then excess acid chloride was quenched by the addition of 1N aqueous hydrochloric acid solution (20 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate solution (20 mL), dried over anhydrous sodium sulfate, and the dried solution was concentrated. The resulting residue was purified by flash column chromatography (5% ethyl acetate–hexanes) to afford **8** (146 mg, 93%) as a pale yellow oil.

Ketoester **8**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.57$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 7.48–7.47 (m, 2H), 7.38–7.37 (m, 3H), 6.06 (s, 1H), 5.34 (d, J = 11.0 Hz, 1H), 2.58 (s, 3H), 2.49 (ab, 1H), 2.15–2.11 (m, 1H), 2.00–1.93 (m, 1H), 1.91–1.78 (m, 2H), 1.68–1.63 (m, 1H), 1.55–1.49 (m, 1H), 1.26 (s, 3H), 1.22–1.19 (m, 2H), 1.05 (d, J = 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 215.3, 165.2, 156.6, 142.0, 129.2, 128.5, 126.3, 116.7, 83.5, 82.4, 70.0, 48.4, 46.1, 42.7, 33.0, 31.1, 30.7, 23.3, 18.1, 17.9, 17.5, 16.9. FTIR (NaCl, thin film), cm⁻¹: 2955, 2925, 1756, 1717, 1153. HRMS: APCI [M + H]⁺ Calcd. for C₂₅H₃₃O₄: 397.2373. Found: 397.2393.

Sodium borohydride (5.2 mg, 0.14 mmol, 3.0 equiv) was added to a solution of **8** (18 mg, 45 μ mol, 1.0 equiv) in methanol (25 mL) at 0 °C. The resultant mixture was stirred at 0 °C for 30 min, and then the excess sodium borohydride was quenched by the addition of saturated aqueous ammonium chloride solution (25 mL). The mixture was extracted with dichloromethane (3 × 20 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate–hexanes) afforded **12** (15 mg, 83%) as a colorless oil.

Hydroxyester **12**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.30$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 7.49–7.47 (m, 2H), 7.39–7.35 (m, 3H), 6.08 (s, 1H), 5.19 (d, J = 10.0 Hz, 1H), 4.17 (dd, $J_1 = 11.0$ Hz, $J_2 = 5.0$ Hz, 1H), 2.58 (s, 3H), 2.36–2.30 (m, 2H), 2.19–2.15 (m, 1H), 2.03 (dd, $J_1 = 14.0$ Hz, $J_2 = 5.0$ Hz, 1H), 1.99–1.93 (m, 1H), 1.85–1.78 (m, 3H), 1.69–1.62 (m, 1H), 1.32 (s, 3H), 1.22–1.19 (m, 1H), 0.98–0.95 (m, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 215.3, 165.2, 156.6, 142.0, 129.2, 128.5, 126.3, 116.7, 83.5, 82.4, 70.0, 48.4, 46.1, 42.7, 33.0, 31.1, 30.7, 23.3, 18.1, 17.9, 17.5, 16.9. FTIR (NaCl, thin film), cm⁻¹: 3447, 2964, 2926, 1714, 1626, 1165. HRMS: APCI [M + H]⁺ Calcd. for C₂₅H₃₅O₄: 399.2535. Found: 399.2519.

A solution of *n*-butyllithium (2.50 M in hexanes, 84.0 μ L, 0.21 mmol, 7.00 equiv) was added to a stirred solution of hexamethyldisilazane (49 μ L, 0.23 mmol, 7.7 equiv) in tetrahydrofuran (5 mL) at 0 °C. The reaction mixture was briefly warmed to 23 °C, then was cooled to 0 °C whereupon a solution of **12** (12 mg, 30 μ mol, 1.0 equiv) in tetrahydrofuran (2 mL) was added. The resultant mixture was stirred at 0 °C for 30 min, then was cooled to -10 °C whereupon *N*,*N*'-

sulfuryldiimidazole (54 mg, 0.27 mmol, 9.0 equiv) was added. The reaction mixture was warmed to 23 °C and stirred at that temperature for 12 h. Excess N,N'-sulfuryldiimidazole was quenched by the addition of methanol (5 mL), and the resultant mixture was concentrated. The residue was partitioned between saturated aqueous bicarbonate solution (20 mL) and dichloromethane (20 mL). The layers were separated and the aqueous phase was extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was concentrated. The residue was purified by flash column chromatography (20% ethyl acetate–hexanes) afforded **30** (14 mg, 88%) as a colorless oil.

Imidazole **30**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.33$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 8.01 (s, 1H), 7.49–7.47 (m, 3H), 7.39–7.35 (m, 4H), 7.22 (s, 1H), 6.06 (s, 1H), 5.16 (d, J = 10.5 Hz, 1H), 4.57 (dd, $J_1 = 11.0$ Hz, $J_2 = 4.5$ Hz, 1H), 2.57 (s, 3H), 2.27–2.16 (m, 2H), 2.12–2.08 (dd, $J_1 = 14.5$ Hz, $J_2 = 4.5$ Hz, 1H), 2.04–1.94 (m, 2H), 1.89–1.83 (m, 1H), 1.76–1.67 (m, 3H), 1.23–1.22 (m, 1H), 1.19 (s, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.2, 156.5, 142.0, 137.1, 131.6, 129.2, 128.5, 126.3, 117.9, 116.8, 90.5, 85.3, 81.1, 70.4, 48.8, 46.4, 35.7, 32.5, 31.1, 29.7, 24.0, 22.5, 18.1, 17.4, 16.8. FTIR (NaCl, thin film), cm⁻¹: 2925, 2854, 1718, 1627, 1423, 1203, 1158. HRMS: ESI [M + H]⁺ Calcd. for C₂₈H₃₇N₂O₆S: 529.2367. Found: 529.2346.

Sodium azide (44.0 mg, 0.530 mmol, 20.0 equiv) was added in one portion to a solution of **30** (14 mg, 27 μ mol, 1.0 equiv) in *N*,*N*-dimethylformamide (5 mL). The reaction mixture was heated at 80 °C for 2 d, and then quenched by the addition of 10% aqueous lithium chloride solution (20 mL). The mixture was extracted with dichloromethane (3 × 25 mL), the combined organic layers were dried over anhydrous sodium sulfate, and the dried solution was concentrated.

Purification of the residue by flash column chromatography (5% ethyl acetate-hexanes) afforded the azide **16** (11 mg, 98%) as a colorless oil.

Azide **16**: TLC: 20% ethyl acetate–hexanes, $R_f = 0.79$ (UV, CAM). ¹H NMR (500 MHz, CDCl₃), δ : 7.49–7.45 (m, 2H), 7.38–7.37 (m, 3H), 6.06 (s, 1H), 5.09 (d, J = 10.5 Hz, 1H), 3.61 (dd, $J_1 = 8.5$ Hz, $J_2 = 3.5$ Hz, 1H), 2.58 (s, 3H), 2.54 (dd, $J_1 = 14.5$ Hz, $J_2 = 8.5$ Hz, 2H), 2.16–2.12 (m, 1H), 2.07–1.99 (m, 2H), 1.92–1.89 (m, 3H), 1.81–1.68 (m, 2H), 1.47–1.41 (m, 1H), 1.33 (s, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃), δ : 165.3, 156.1, 142.2, 129.1, 128.5, 126.3, 117.1, 85.6, 85.5, 70.7, 63.4, 48.2, 47.1, 38.6, 32.9, 31.2, 29.7, 24.8, 20.2, 18.2, 17.5, 17.0. FTIR (NaCl, thin film), cm⁻¹: 2927, 2855, 2094, 1717, 1626, 1270, 1162. HRMS: APCI [M + H]⁺ Calcd. for C₂₅H₃₄N₃O₃: 424.2600. Found: 424.2613.

Ammonium chloride (16 mg, 0.31 mmol, 10 equiv) and zinc (dust, 20 mg, 0.31 mmol, 10 equiv) were added sequentially to a solution of **16** (13 mg, 31 µmol, 1.0 equiv) in methanol (3 mL). The reaction mixture was stirred vigorously at room temperature for 2 h, then was concentrated. The resulting residue was triturated with diethyl ether ($3 \times 10 \text{ mL}$) and the combined organic fractions were filtered through a pad of silica gel to afford the amine (8.0 mg, 66%), which was advanced without further purification. Glycolic acid (23 mg, 0.31 mmol, 10 equiv), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (59 mg, 0.31 mmol, 10.0 equiv), and 1-hydroxybenzotriazole (41 mg, 0.31 mmol, 10 equiv) were added sequentially to a stirred solution of the amine intermediate in *N*,*N*-dimethylformamide (15 mL) at 23 °C. The reaction mixture was cooled to 0 °C whereupon *N*,*N*-diisopropylamine (0.16 mL, 0.92 mmol, 30.0 equiv) was added. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for an additional 18 h. The reaction mixture was quenched with 10% aqueous lithium chloride solution (20 mL), then extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was

concentrated. Purification of the residue by flash column chromatography (50% ethyl acetate– hexanes) afforded the glycolamide **19** (4.0 mg, 29% over two steps) as a colorless oil.

Glycolamide **19** (**NSC#778312**): TLC: 50% ethyl acetate–hexanes, $R_f = 0.35$ (UV, CAM). ¹H NMR: (500 MHz, CDCl₃), δ 6.89 (dd, $J_1 = 15.5$ Hz, $J_2 = 7.0$ Hz, 1H), 6.42 (d, J = 10.0 Hz, 1H), 5.71 (d, J = 15.5 Hz, 1H), 5.03 (d, J = 10.5 Hz, 1H), 4.46–4.41 (m, 1H), 4.14 (s, 2H), 2.65 (dd, $J_1 = 14.5$ Hz, $J_2 = 9.0$ Hz, 1H), 2.13–2.10 (m, 2H), 2.04–2.00 (m, 4H), 2.04–1.93 (m, 6H), 1.84–1.79 (m, 2H), 1.77–1.75 (m, 5H), 1.16 (s, 3H), 1.14–1.09 (m, 1H), 1.00 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H); ¹³C NMR: (125 MHz, CDCl₃), δ 170.1, 166.3, 155.0, 118.7, 85.1, 84.7, 71.0, 62.1, 50.8, 48.1, 46.7, 40.7, 40.4, 33.2, 31.9, 31.7, 30.9, 29.7, 25.9, 25.7, 24.5, 22.7, 20.0, 18.2, 17.5, 16.9. FTIR (NaCl, thin film), cm⁻¹: 3397, 2965, 2925, 2854, 1717, 1653. HRMS: APCI [M + H]⁺ Calcd. for C₂₇H₃₈NO₅: 456.2750. Found: 456.2763.

Ammonium chloride (26 mg, 0.49 mmol, 10 equiv) and zinc (dust, 32 mg, 0.49 mmol, 10 equiv) were added sequentially to a solution of **13** (20 mg, 49 µmol, 1.0 equiv) in methanol (3 mL). The reaction mixture was stirred vigorously at room temperature for 2 h, then was concentrated. The resulting residue was triturated with diethyl ether ($3 \times 10 \text{ mL}$) and the combined organic fractions were filtered through a pad of silica gel to afford the amine, which was advanced without further purification. Fluoroacetic acid (38 mg, 0.49 mmol, 10 equiv), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (94 mg, 0.49 mmol, 10.0 equiv), and 1-hydroxybenzotriazole (66 mg, 0.49 mmol, 10 equiv) were added sequentially to a stirred solution of the amine intermediate in *N*,*N*-diisopropylamine (15 mL) at 23 °C. The reaction mixture was cooled to 0 °C whereupon *N*,*N*-diisopropylamine (0.26 mL, 1.47 mmol, 30.0 equiv) was added. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for an additional 18 h. The reaction mixture was quenched with 10% aqueous lithium chloride solution (20 mL), then extracted with dichloromethane (3 × 25 mL). The combined organic layers were dried over anhydrous sodium sulfate and the dried solution was

concentrated. Purification of the residue by flash column chromatography (50% ethyl acetate– hexanes) afforded the glycolamide **20** (6.3 mg, 29% over two steps) as a colorless oil.

Glycolamide **20** (**NSC#777412**): TLC: 20% ethyl acetate–hexanes, $R_f = 0.16$ (UV, CAM). ¹H NMR: (500 MHz, CDCl₃), δ : 7.66 (d, J = 16.0 Hz, 1H), 7.54-7.52 (m, 2H), 7.40-7.38 (m, 3H), 6.40 (d, J = 16.0 Hz, 1H), 6.30-6.28 (m, 1H), 5.15 (d, J = 10.5 Hz, 1H), 4.87 (s, 1H), 4.78 (s, 1H), 4.51-4.46 (m, 1H), 2.73 (dd, $J_1 = 14.5$ Hz, $J_2 = 9.0$ Hz, 1H), 2.17-2.13 (m, 1H), 1.97-1.93 (m, 1H), 1.90-1.78 (m, 2H), 1.75-1.63 (m, 2H), 1.38-1.29 (m, 2H), 1.27-1.23 (m, 5H), 1.19 (s, 3H), 1.03 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H). ¹³C NMR: (101 MHz, CDCl₃), δ : 166.8 (d, J = 17.0 Hz), 165.8, 145.4, 134.4, 130.6, 129.0, 128.3, 118.1, 85.3, 84.8, 80.3 (d, J = 186.2 Hz), 71.5, 50.8, 48.3, 46.9, 40.9, 33.4, 31.3, 31.1, 29.5, 24.7, 22.9, 20.1, 18.4, 17.6, 17.1. ¹⁹F NMR: (376 MHz, CDCl₃), δ : -182.4 (d, J = 145.0 Hz). FTIR (NaCl, thin film), cm⁻¹: 2955, 2924, 1710, 1637, 1169. HRMS: APCI [M + H]⁺ Calcd. for C₂₆H₃₅FNO₄: 444.2550. Found: 444.2570.

Formulations

Parenteral Formulation

Vehicle Ingredients were ethanol, propylene glycol (PG), PEG 400, hydroxypropyl β eyclodextrin (HPBCD, 8% w/v in H₂O). All vehicle ingredients were purchased from Sigma-Aldrich. A vial containing the dry drug compound (10 mg) was allowed to come to room temperature before proceeding to formulation. 150 µl of ethanol was added to the drug vial and mixed thoroughly using a vortex mixer. Next 400 µl of PG was added and mixed vigorously using a vortex mixer. Then, 450 µl of PEG 400 was added and mixed thoroughly. Last, 450 µl of HPBCD (8%) was added and mixed thoroughly. A clear solution with a concentration of 5.7 mg/ ml was obtained at the final step.

To prepare dilutions of the reconstituted drug, a solution containing 8% HPBCD in water was used. To prepare the dilution vehicle, 8 g of HPBCD powder was weighed out and added to 100 mL of water. The concentrated formulation was added to the diluent in a dropwise fashion with stirring and made to 20 mL, for a working concentration of 0.5 mg/mL. The solution was then sterile filtered using an 0.2μ Acrodisc (Pall) filter into a 20 mL sterile serum vial.

The 5.7 mg/ml solution of reconstituted drug was stable for over one week at 4°C. Drug dilutions prepared from the 5.7 mg/ml solution of reconstituted drug were also found to be stable for one week.

Oral Formulation

The dry compound was dissolved directly in Labrasol[™] at a concentration of 20 mg/mL. The preparation was administered by gavage.

HPLC-MS/MS Assay for Englerins

This method was developed for mouse or rat plasma. The calibration range was 5-500 ng/mL. Lorazepam was used as an internal standard. UPLC was performed using a Waters Acquity

S1

binary pump. Mobile Phase A1: 0.5% formic acid (aq), Mobile Phase B1: 0.5% formic acid in Acetonitrile, Mobile Phase A2: (90/10) water/CAN, Mobile Phase B2: CAN, Strong Needle Wash: 0.1% formic acid in CAN, Weak Needle Wash/Seal Wash: (80/20) water/CAN. Solvent programming started at 70% A for 0.40 min, with a linear gradient to 20% A at 0.55 min, isocratic until 1.50 min, and return to initial conditions at 1.70 min. Total run time was 2.0 minutes. Retention times were Aza-Englerin (**2**) 1.22 min, internal standard 0.97 min, flow rate 0.5 ml/min, injection volume 10 μ L. The column was a Waters Acquity UPLC[®] BEH C18 1.7 um, 2.1x50mm column + guard column, column compartment temperature was 30°C.

Mass Spectrometry Conditions:

Ion Spray Voltage 5500 V, Source Temp 400°C, GS1/GS2: 60/50, Declustering Potential (DP) 35, Entrance Potential (EP) 8, Collision Energy (CE) 25,

Collision Exit Potential (CXP) 14, Dwell Times 200 msec, MRM 1 foraza-englerin (2) m/z 442.2 \rightarrow 219.1 (CE=21), MRM 2 for lorazepam (IS) m/z 321.0 \rightarrow 275.0 (CE=15).

Stock solutions

Aza-englerin master stock was prepared by adding 1.0 mg of **2** film to 1 mL of ACN to make a 1 mg/mL master stock and stored at -80° C. Lorazepam (IS) master stock was prepared by adding 2 mL of ethanol to a 1 mg vial make a 0.5 mg/mL solution, which was stored at -80° C.

Internal Standard Working Solutions

40 uL of 0.5 mg/mL lorazepam (LZP) master stock was mixed with 960 uL of ACN to make a 20 μ g/mL solution. 50 uL of 20 μ g/mL LZP was added to 100 mL of ACN to make 10 ng/mL LZP in 0.1% Formic acid /ACN.

Sample Preparation

Plasma samples were defrosted, vortexed for 15 sec, then kept on ice. To 100 uL of the thawed experimental sample, was added 100 uL of IS solution in a microcentrifuge tube, then 1 mL CAN, was added, the tube was capped and vortexed for 5 sec. The tubes were then centrifuged for 5 minutes at 13,000 rpm in a mini centrifuge @ 4 °C. Approximately 850 uL of supernatent was transferred into a 96-well collection plate, which was then dried under desiccated air in a TurboVap 96 (40 C plate temp; <50 Fh). The sample was reconstituted with 100 uL of (50/50) ACN/H₂O added directly into the plate, which was vortexed thoroughly while covered with parafilm. The plate was inserted directly into Waters ACQUITY UPLC autosampler tray.

The original ultra-high performance liquid chromatography with tandem mass spectrometric detection (uHPLC-MS/MS) assay for englerin A (1) was modified in order to measure the Nsubstituted analogue (2). First, 1 has a molecular weight of 442 and gave a protonated molecular cation detected in the mass spectrometer at m/z 443.2. This intact cation was then fragmented and the predominant product cation was observed at m/z 201.2. In order to maximize this signal in the mass spectrometer, several instrument parameters were tuned for optimal signal performance, including the ion spray voltage (5500 V), TurboIon[®] source temperature (400 °C), declustering potential (70 V), entrance potential (10 V), collision energy (25 V), and the collision cell exit potential (12 V). Additionally, 1 was chromatographically separated from matrix contaminants remaining in the organic solvent extract (with acetonitrile) through the use of a bridged-ethylene hybrid bead-containing uHPLC column with an octadecyl carbon moiety (C18; 2.1x50mm, 1.7um particle size). The mobile phase consisted of (70/30, v/v) 0.5% formic acid(aq)/0.5% formic acid in acetonitrile that was ramped up to (20/80, v/v) over the course of 30 seconds and held there for an additional minute to solvate and elute the injected 1 that partitioned into the C18 stationary phase. The eluted **1** then entered the mass spectrometer at 1.40 min post injection.

To accommodate measurement of the aza analogue (2), the mass spectrometer was tuned for optimal signal performance on the molecular cation observed at m/z 442.2, and the subsequent predominant product cation observed at m/z 219.1. Several tuning parameters changed as a result of the different ions being meausured: declustering potential (35 V), entrance potential (13 V), collision energy (19 V), and the collision cell exit potential (10 V). The chromatographic scheme for the **2** was identical to EA, however the aza-analogue eluted from the column and entered the mass spectrometer at 1.22 min.

Oral Bioavailability Studies

Mice were dosed at 5 mg/kg, 10 mg/kg, 50 mg/kg, and 100 mg/kg compound **2** in Labrasol vehicle via oral gavage. 30 minutes after dosing, plasma was assayed for the concentration of compound **2** using LC-MS. The results are depicted graphically in Figure S1. As is apparent from the results shown in Figure S1, compound **2** was found in plasma concentrations up to approximately 700 ng/mL after dosing at 100 mg/kg.

S3

Figure S1. Nonlinear increase in plasma concentrations of 2 30 min after dosing.

In a second experiment, ten mice were administered 20 mg/kg of compound **2** in Labrasol vehicle via oral gavage. Two mice at a time were sacrificed at the 5 min, 15 min, 1 h, 4 h, and 8 h. Plasma concentrations of compound **2** were measured by LC-MS/MS, and the results set forth in Table S1 and depicted graphically in Figure 1.

Table	S1.	

Animal	Time (hr)	Concentration of 2 (ng/mL)	Mean
1	0.083	6.87	10.04
2	0.083	13.20	
3	0.25	22.76	40.73
4	0.25	58.70	
5	1.0	87.16	73.20
6	1.0	59.24	
7	4.0	31.12	58.97
8	4.0	86.81	
9	8.0	87.28	67.75
10	8.0	48.21	

The AUC_{LAST} was calculated as 524.4 hr*ng/mL (SE=97.3 hr*ng/mL). As is apparent from the results set forth in Table S1 and the graphical results depicted in Figure 1, compound **2** is rapidly absorbed and the plasma concentrations of compound **2** are sustained for greater than 8 h. A nonlinear, more-than-dose proportional increase in plasma concentrations was observed. It appears that **2** is rapidly absorbed and plasma concentrations sustained for a longer than expected period. The elimination period likely dominates after 8 h and thus beyond the observed period from this experiment. Further pharmacokinetic experiments are needed that measure plasma concentrations out to 24-36 h post dose.

NCI 60 Testing

Samples were tested in the standard National Cancer Institute 60-cell line protocol. The drug exposure was for two days, with an SRB endpoint. First, compounds were tested against all 60 cell lines at a single final concentration of 10 μ M. Results are shown in Figures S2-S6. They were then separately tested in five 10-fold dilutions, starting with a high concentration of 100 μ M. The results are depicted as dose-response curves are found in Figures S7 for compound **2**, Figure S8 for compound **17**, Figure S9 for compound **18**, and Figure S10 for compound **19**.

DTP Figure S2a. Co	mpound 2	NSC: D-761305/1	Conc: 1.00E-5 Molar	Test Date: Aug 22, 2011
One Dose Bar	Graph	Experiment ID: 1108OS12		
Panel/Cell Line	Growth Percent	Bar Graph		
Leukemia				
CCRF-CEM	99.78			
HL-60(TB)	91.72			
MOI T-4	75.99			
RPMI-8226	90.61			
SR	79.14			
Non-Small Cell Lung Cancer	01.65			
FKVX	91.05 68.95			
HOP-62	86.84			
HOP-92	88.61			
NCI-H226	90.81			
NCI-H322M	77.82			
NCI-H460	107.78			
NCI-H522	76.88			
Colon Cancer	06.44			
HCT-116	85.85			
HCT-15	107.84			
HT29	93.00			
KM12	110.57			
CNS Cancer	109.45			
SF-268	84.37			
SF-295	90.63			
SF-539 SNB-19	97.25 102.60			
SNB-75	59.57			
U251	92.32			
Melanoma	102 17			
MALME-3M	95.23			
M14	102.78			
MDA-MB-435	94.63			
SK-MEL-2 SK-MEL-28	100.60			
SK-MEL-5	90.57			
UACC-257	103.72			
UACC-62 Overian Cancor	92.07			
IGROV1	105 63			
OVCAR-3	106.12			
OVCAR-5	92.99			
	21.21 42.85			
SK-OV-3	100.64			
Renal Cancer				
786-0 4498	73.08 -15.20			
ACHN	8.01			
CAKI-1	61.10			
RXF 393	63.32			
TK-10	101 69			
UO-31	57.21			
Prostate Cancer	77.40			
PC-3 DU-145	77.40 109.70			
Breast Cancer	100.10			
MCF7	94.41			
MDA-MB-231/ATCC	97.20			
BT-549	84.94			
T-47D	76.26			
MDA-MB-468	91.31			
		125 62 5	 	_62.5 12E
		120 02.0	Percentage Growth	-02.0 -120

DTP Figure S2b. Compound 2		NS	NSC: D-761305 / 1 Conc: 1.00E-		r Test Date: Aug 22, 2011		
One Dose Mean Graph		Ex	periment ID: 1108	Compound 2			
Panel/Cell Line	Growth Percent		Mean Growth I	Percent - Growth Perc	cent		
Leukemia CCRF-CEM HL-60(TB)	99.78 91.72						
K-562 MOLT-4	86.62 75.99			1			
RPMI-8226	90.61			- <u>-</u>			
Non-Small Cell Lung Cancer	79.14						
A549/ATCC EKVX	91.65 68.95						
HOP-62	86.84			<u> </u>			
NCI-H226	90.81						
NCI-H23	81.92						
NCI-H322M NCI-H460	107.78						
NCI-H522	76.88			-			
COLO 205	96.41						
HCT-116	85.85						
HT29	93.00						
KM12	110.57						
CNS Cancer	109.43						
SF-268 SE-295	84.37						
SF-539	97.25						
SNB-19 SNB-75	102.60 59.57						
U251	92.32			-			
LOX IMVI	102.17						
MALME-3M	95.23			_			
MDA-MB-435	94.63			-			
SK-MEL-2 SK-MEL-28	100.60						
SK-MEL-5	90.57						
UACC-257 UACC-62	92.07						
Ovarian Cancer	105.62						
OVCAR-3	106.12						
OVCAR-5 OVCAR-8	92.99 51.51						
NCI/ADR-RES	42.85						
Renal Cancer	100.64						
786-0	73.08			_			
ACHN	8.01						
CAKI-1 RXF 393	61.10 63.32						
SN12C	48.75						
UO-31	57.21						
Prostate Cancer	77.46						
DU-145	109.70						
Breast Cancer MCF7	94 41			_			
MDA-MB-231/ATCC	97.20						
BT-549	9.45 84.94						
T-47D	76.26						
	00.74						
Mean Delta	83.74 98.94						
Range	126.78						
	150		100 50	0 -50	-100 -150		

DTP Figure S3a. Compound 17		NSC: D-764081/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012		
One Dose Bar Graph		Experiment ID: 1203	Compound 17			
Panel/Cell Line	Growth Percent	Bar Graph		•		
Leukemia						
HL-60(TB)	99.35					
K-562 MOLT-4	91.19					
RPMI-8226	67.56					
SR	82.49					
Non-Small Cell Lung Cancer	04.00					
A549/ATCC HOP-62	81.00					
NCI-H226	90 16					
NCI-H23	80.23					
NCI-H322M	89.55					
NCI-H460	92.64					
NUI-H522 Colon Cancer	//./4					
COLO 205	109 92					
HCC-2998	105.15					
HCT-116	75.65					
HCT-15	90.82					
П129 КМ12	93.73 94.54					
SW-620	96.15					
CNS Cancer						
SF-268	79.03					
SF-295 SF-539	82.48 84.63					
SNB-19	97.16					
SNB-75	72.66					
U251	79.26					
	85 34					
MALME-SM M14	95.15					
MDA-MB-435	93.95					
SK-MEL-2	100.37					
SK-MEL-28	93.16					
UACC-257	100.53					
UACC-62	84.95					
Ovarian Cancer	04.00					
IGRUV1 OVCAR-3	94.29					
OVCAR-4	82 22					
OVCAR-5	84.53					
OVCAR-8	51.29					
NCI/ADR-RES	46.77					
Renal Cancer	30.43					
786-0	85.02					
A498	-15.23					
	8.40 52.62					
RXF 393	61.60					
SN12C	66.65					
TK-10	101.69					
Prostate Cancer	03.27					
PC-3	66.92					
DU-145	98.40					
Breast Cancer	75.07					
	100.88					
HS 578T	-18.26					
BT-549	70.21					
	67.91					
	01.40					
		125 62 5	0 0	-62.5 -125		
			Percentage Growth			
			-			

DTP Figure S3b. Compound 17		NSC	: D-764081 / 1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012		
One Dose Mean Graph		Exp	Experiment ID: 1203OS38				
Panel/Cell Line	Growth Percent	•	Mean Growth I	Percent - Growth Perc	cent		
Leukemia	Г						
HL-60(TB) K-562	99.35						
MOLT-4	74.92			•			
RPMI-8226	67.56			_			
Non-Small Cell Lung Cancer	02.49						
A549/ATCC	81.00			_			
HOP-62 NCI-H226	89.31						
NCI-H23	80.23						
NCI-H322M	89.55						
NCI-H460 NCI-H522	92.64						
Colon Cancer							
	109.92						
HCT-116	75.65			•			
HCT-15	90.82						
H129 KM12	93.73 94.54						
SW-620	96.15						
CNS Cancer	70.02						
SF-200 SF-295	82.48						
SF-539	84.63			-			
SNB-19 SNB-75	97.16 72.66						
U251	79.26						
Melanoma	95.24						
MALME-SM M14	95.15						
MDA-MB-435	93.95						
SK-MEL-2 SK-MEL-28	100.37						
SK-MEL-5	93.53						
UACC-257	100.53						
Ovarian Cancer	04.90						
IGROV1	94.29						
OVCAR-3 OVCAR-4	98.78						
OVCAR-5	84.53			-			
	51.29						
SK-OV-3	96.43						
Renal Cancer	05.00						
A498	-15.23						
ACHN	8.40						
CAKI-1 RXF 393	52.62						
SN12C	66.65						
IK-10 UO-31	101.69						
Prostate Cancer	00.27						
PC-3	66.92						
Breast Cancer	50.40						
MCF7	75.37						
HS 578T	-18.26						
BT-549	70.21						
T-47D MDA-MB-468	67.91 81.48						
	07.10						
Mean	79.38						
Range	128.18						
	150	1	00 50	0 -50	-100 -150		

DTP Figure S4a. Compound 18		NSC: D-76854	NSC: D-768544 / 1 Conc: 1.00E-5 Molar		-5 Molar	Test Date: Nov 26, 2012		
One Dose Bar Graph		Experiment ID: 1211OS83						
Panel/Cell Line	Growth Percent	Bar Graph						
Leukemia		_						
CCRF-CEM	127.81							
HL-60(TB)	110.60							
K-562	96.54							
RPMI-8226	90.01 133 54							
SR	93 21							
Non-Small Cell Lung Cancer	00.21							
A549/ATCC	92.01							
HOP-62	108.07							
HOP-92	119.97							
	90.22							
NCI-H322M	97.65							
NCI-H460	103.10							
NCI-H522	88.80							
Colon Cancer								
COLO 205	113.35							
HCT-116	102.99							
HC1-15 HT20	101.85							
KM12	103.67							
SW-620	101.53							
CNS Cancer								
SF-268	106.40							
SF-295	86.26							
SNB-19 SND 75	102.78							
U251	98.07							
Melanoma	00.07							
MALME-3M	109.27							
M14	103.75							
MDA-MB-435	102.50							
SK-MEL-2	99.21							
SK-MEL-20 SK-MEL-5	90.93							
UACC-257	98.18							
UACC-62	101.01							
Ovarian Cancer								
IGROV1	102.59							
	110.32							
OVCAR-4 OVCAR-5	90.02							
OVCAR-8	106 97							
NCI/ADR-RES	94.76							
SK-OV-3	102.83							
Renal Cancer	100.00							
786-0	100.06							
	99.90							
CAKI-1	88.67							
RXF 393	95.36							
SN12C	86.67							
TK-10	94.12							
UU-31 Broatato Concor	95.07							
PC-3	106.05							
DU-145	115.64							
Breast Cancer								
	94.03							
IVIDA-IVIB-231/ATCC HS 578T	100.70							
BT-549	109.23							
T-47D	102.50							
MDA-MB-468	97.46							
		150	75	0.0	Growth	-75	-150	
				Fercentage	GIOWIN			
DTP Figure S4b. Compound 18		NSC: D-768544 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 26, 2012				
---	--	--------------------	--------------------------	-------------------------	--	--	--	
One Dose Mea	an Graph	Experiment ID: 121	Experiment ID: 1211OS83					
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent				
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Growth Percent 127.81 110.60 96.54 98.01 133.54 93.21 92.01 108.07 119.97 96.22 99.40 97.65 103.10 88.80 113.35 102.99 101.85 97.40 103.67 101.53 106.40 86.26 102.78 86.06 98.07 109.27 103.75 102.50 99.21 98.93 99.27 98.18 101.01 102.59 110.32 98.62 92.59 106.97 94.76 102.83 100.06 41.34 99.90 88.67 94.12 95.07 106.05 115.64 94.03 106.76 73.09 109.23 102.50 97.46	Mean Growth	Percent - Growth Per					
Mean Delta Range	99.86 58.52 92.20			:				
	450	100 50						
	150	100 50	U -50	-100 -150				

DTP Figure S5a. Co	mpound 19	NSC: D-778312/1	Conc: 1.00E-5 Molar	Test Date: Dec 02, 2013
One Dose Bar	Graph	Experiment ID: 13120	DS99	
Panel/Cell Line	Growth Percent	Bar Graph		
Panel/Cell Line Leukemia CCRF-CEM K-562 MOLT-4 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H322M NCI-H522 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	Growth Percent 94.07 92.32 125.43 117.13 84.13 97.57 87.13 90.67 97.74 105.10 105.67 92.53 107.40 103.84 100.80 99.96 98.69 111.83 103.14 105.59 97.79 91.23 108.35 102.12 91.84	Bar Graph		
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-3 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	$100.20 \\ 95.90 \\ 100.16 \\ 105.86 \\ 104.13 \\ 117.95 \\ 101.11 \\ 92.39 \\ 101.83 \\ 104.22 \\ 120.76 \\ 118.88 \\ 61.25 \\ 72.19 \\ 109.87 \\ 93.47 \\ -24.59 \\ 27.88 \\ 99.02 \\ 73.51 \\ 84.62 \\ 109.09 \\ 17.49 \\ 83.12 \\ 118.84 \\ 89.73 \\ 99.61 \\ -8.92 \\ 116.58 \\ 89.34 \\ 101.49 $		0.0 Borcontoro Growth	-75 -150
			Percentage Growth	

DTP Figure S5b. C	ompound 19	NSC: D-7783	12 / 1	Conc: 1.00E-5 Molar	Test Date: Dec 02, 2013	
One Dose Mea	an Graph	Experiment ID: 1312OS99				
Panel/Cell Line	Growth Percent	Mean G	rowth	Percent - Growth Pe	rcent	
Leukemia CCRF-CEM K-562 MOLT-4 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H232M NCI-H460 NCI-H522 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-115 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	94.07 92.32 125.43 117.13 84.13 97.57 87.13 90.67 97.74 105.10 105.67 92.53 107.40 103.84 100.80 99.96 98.69 111.83 103.14 105.59 97.79 91.23 108.35 102.12 91.84			. <mark>П П</mark>		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 100.20\\ 95.90\\ 100.16\\ 105.86\\ 104.13\\ 117.95\\ 101.11\\ 92.39\\ 101.83\\ 104.22\\ 120.76\\ 118.88\\ 61.25\\ 72.19\\ 109.87\\ 93.47\\ -24.59\\ 27.88\\ 99.02\\ 73.51\\ 84.62\\ 109.09\\ 17.49\\ 83.12\\ 118.84\\ 89.73\\ 99.61\\ -8.92\\ 116.58\\ 89.34\\ 101.49\\ 92.66\\ 117.25\\ 150.02\\ \end{array}$					
	150	100	50	0 -5	0 -100 -150	I

DTP Figure S6a. Co	mpound 20	NSC: D-777412/1	Conc: 1.00E-5 Molar	Test Date: Sep 30, 2013
One Dose Bar	Graph	Experiment ID: 1309	OS80	
Panel/Cell Line	Growth Percent	Bar Graph		
l eukemia				
CCRF-CEM	88.63			
HL-60(TB)	104.52			
K-562 MOLT 4	106.42			
RPMI-8226	90.40			
SR	85.46			
Non-Small Cell Lung Cancer	04.40			
A549/ATCC	94.42			
HOP-92	90.75 75.85			
NCI-H226	84.54			
NCI-H23	101.57			
NCI-H322M	97.44			
NCI-H522	103.30			
Colon Cancer	102.01			
COLO 205	103.21			
HCC-2998	107.28			
HCT-116 HCT-15	87.42 102.83			
HT29	102.00			
KM12	103.52			
SW-620	100.57			
CNS Cancer SE-268	07 74			
SF-295	104.84			
SF-539	87.89			
SNB-19	103.67			
SNB-75	87.93			
Melanoma	105.00			
LOX IMVI	102.48			
MALME-3M	106.46			
M14 MDA MR 435	96.67			
SK-MFI -2	116.95			
SK-MEL-28	109.79			
SK-MEL-5	110.24			
	104.80			
Ovarian Cancer	00.00			
IGROV1	103.48			
OVCAR-3	114.72			
OVCAR-4 OVCAR-5	104.77			
OVCAR-8	107.04			
NCI/ADR-RES	98.53			
SK-OV-3 Banal Canaar	91.26			
786-0	97 31			
A498	83.31			
ACHN	104.52			
CAKI-1 SNI2C	80.94			
TK-10	104.20			
UO-31	91.08			
Prostate Cancer	00.00			
PU-3 DU-145	83.98 114 90			
Breast Cancer	117.00			
MCF7	105.67			
MDA-MB-231/ATCC	101.66			
no 5701 BT-549	92.03 111 03			
T-47D	78.42			
		125 62.5	0.0	-62.5 -125
			Percentage Growth	I

DTP Figure S6b. C	ompound 20	NS	C: D-777412/1	Conc: 1.00E-5 Molar	Test Date: Sep 30, 2013			
One Dose Mea	an Graph	Ex	Experiment ID: 1309OS80					
Panel/Cell Line	Growth Percent		Mean Growth I	Percent - Growth Per	cent			
Leukemia								
CCRF-CEM HL_60(TB)	88.63							
K-562	106.42							
MOLT-4	96.46			•				
RPMI-8226	94.34							
SR Non-Small Cell Lung Cancer	85.40							
A549/ATCC	94.42			•				
HOP-62	90.75			-				
HOP-92	75.85							
NCI-H226 NCI-H23	84.54							
NCI-H322M	97.44							
NCI-H460	103.56							
NCI-H522	102.51			•				
	103 21							
HCC-2998	103.21							
HCT-116	87.42							
HCT-15	102.83			_				
H129 KM12	108.62							
SW-620	100.57							
CNS Cancer								
SF-268	97.74							
SF-539	87.89							
SNB-19	103.67			-				
SNB-75	87.93							
Melanoma	103.00							
LOX IMVI	102.48							
MALME-3M	106.46							
MDA-MB-435	106.48							
SK-MEL-2	116.95							
SK-MEL-28	109.79							
UACC-257	104.80							
UACC-62	99.56							
Ovarian Cancer	102.40							
OVCAR-3	103.46							
OVCAR-4	104.77							
OVCAR-5	101.93							
NCI/ADR-RES	98.53							
SK-OV-3	91.26			-				
Renal Cancer	07.04							
786-U A498	83 31							
ACHN	104.52							
CAKI-1	80.94							
SN12C TK-10	103.21							
UO-31	91.08			-				
Prostate Cancer	00.00							
PC-3 DU-145	83.98							
Breast Cancer	111.00							
MCF7	105.67							
HS 578T	92.63							
BT-549	111.03							
T-47D	78.42							
Mean	99.22							
Delta	23.37							
Range	41.10							
	150		100 50	0 -50	-100 -150			

DTP, NCI	Figure S7b. Compound	12	NSC : D - 761305/1	Units :Molar	SSPL :0GZS	EXP. ID :1109NS27
	Mean Graphs				Test Date :September 26, 2011	
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI TG	GI	Log ₁₀ LC50 LC5	0
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549(ATCC EKVX HOP-92 HOP-92 NCI-H32 NCI-H322M NCI-H322M NCI-H426 NCI-H522 Colon Cancer COLO 205 HCT-15 HT29 KM12 SWM-600 CNS-Cacer SF-686 SF-750 U251 Melanoma LU251 M14 MDA-MB-435 SK-MEL-2_n	$\begin{array}{c} \mbox{Log}_{40} \mbox{Giso} \\ \mbox{4.85} \\ \mbox{4.84} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.86} \\ \mbox{4.86} \\ \mbox{4.86} \\ \mbox{4.86} \\ \mbox{4.83} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.87} \\ \mbox{4.80} \\ \mbox{4.81} \\ \mbox{4.81} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.83} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.83} \\ \mbox{4.83} \\ \mbox{4.84} \\ \mbox{4.85} \\ 4$	GI50	Log ₁₀ TGi TC > 4.30 -4.43 > 4.37 -4.43 > 4.30 >	51	$\begin{array}{c c} Log_{10}LC50 & LC5 \\ > -4.30 \\ > -4.3$	<u>}</u>
MUA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-28 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-3 OVCAR-5 OVCAR-5 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN CAKI-1 CAKI-1 SK-10 SK	$\begin{array}{c} 4.14\\ 4.83\\ 4.63\\ 4.89\\ 4.98\\ 4.98\\ 4.98\\ 4.92\\ \hline \\ 5.43\\ -4.30\\ -5.32\\ -5.46\\ -5.32\\ -5.46\\ -5.46\\ -5.62\\ -5.21\\ $		$\begin{array}{c} & -4.30 \\ & -4.30 \\ & -4.33 \\ & -4.34 \\ & +34 \\ & +34 \\ & -4.30 \\ & -$	-	<pre>> - 4.30 - 4.30 > - 4.30</pre>	, ,
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	4.93 4.60 4.84 4.61 -6.06 5.72 4.72 -4.91		> -4.30 > -4.30 > -4.30 4.30 5.47 4.60 > -4.30 > -4.30		> -4.30 > -4.30	
_MID Delta Range	-4.9 1.89 2.49 +3 +2 +1	0 -1 -2 -3	-4.38 1.23 1.31 +3 +2 +1 0	-1 -2 -3	-4.3 0.23 0.23 +3 +2 +1 0	

DTP, NCI	Figure S8b. Compound 1	17	NSC : D - 764081/1	Units :Molar	SSPL :0GZS	EXP. ID :1204NS58
	Mean Graphs			-	Test Date :April 30, 2012	,
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI TG	GI	Log ₁₀ LC50 LC50	2
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Smail Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H23	4.80 4.69 4.71 4.73 4.84 4.75 4.83 4.82 5.03 4.88 4.82 4.88 4.85		$\begin{array}{r} -4.46 \\ -4.38 \\ -4.37 \\ -4.39 \\ -4.45 \\ -4.42 \\ \hline \\ -4.52 \\ -4.54 \\ -4.64 \\ -4.48 \\ -4.55 \end{array}$,	-4.12 -4.06 -4.05 -4.05 -4.05 -4.07 -4.09 -4.20 -4.26 -4.28 -4.28 -4.07 -4.24	
NCI-H322M NCI-H460 NCI-H522	-4.87 -4.69 -4.81	-	-4.57 -4.39 -4.53		-4.28 -4.10 -4.25	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 SW-620 CNS Cancer	4.72 4.80 4.85 4.78 4.76 4.76 4.76 4.78		4 46 4.52 4.56 4.50 4.49 4.49 4.46		4.21 -4.24 -4.27 -4.21 -4.22 -4.21 -4.21 -4.14	
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	-4.87 -4.79 -4.81 -4.79 -4.88 -4.79		-4.55 -4.52 -4.53 -4.50 -4.56 -4.52		-4.24 -4.24 -4.26 -4.22 -4.25 -4.25	
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-28 SK-MEL-28 UACC-257 UACC-62 Ovarian Cancer	4.79 4.79 4.78 4.77 4.77 4.77 4.78 4.78 4.78 4.78		4.52 4.48 4.50 4.49 4.50 4.51 4.51 4.51 4.51 4.57		- 4.24 - 4.16 - 4.23 - 4.20 - 4.22 - 4.22 - 4.24 - 4.25 - 4.19 - 4.26	
OVCAR-3 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCIADR-RES SK-0V-3 Rengl Cancer	4.75 4.77 4.79 4.81 5.19 4.96 4.80	-	-4,48 -4,51 -4,50 -4,54 -4,65 -4,65 -4,60 -4,52		-4.21 -4.24 -4.21 -4.26 -4.22 -4.22 -4.24 -4.25 	
70508 A498 A5910 RKF 393 SM12C TK-10 UO-31 Prostate Cancer	-4.86 -5.79 -5.27 -5.00 -5.21 -4.96 -4.72 -4.94	Ē	-4.55 -5.20 -4.77 -4.65 -4.69 -4.61 -4.47 -4.62		-4.25 -4.53 -4.37 -4.30 -4.31 -4.26 -4.22 -4.30	•
DU-145 Breast Cancer	-4.92 -4.79		-4.60 -4.52		-4.28 -4.25	
MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	4.80 4.82 5.65 4.83 4.83 4.83 4.83		-4.47 -4.49 -5.05 -4.54 -4.54 -4.54 -4.54	-	-4.14 -4.17 > -4.00 -4.24 -4.25 -4.24	
MID Delta Range	-4.87 0.92 1.1 +3 +2 +1	0 -1 -2 -3	-4.54 0.66 0.83 +3 +2 +1 0	-1 -2 -3	-4.22 0.31 0.53 +3 +2 +1 0	• -1 -2 -3

DTP, NCI	Figure S9b. Compound 18	NSC : D - 768544/1	Units :Molar	SSPL :0GZS	EXP. ID :1305NS81
	Mean Graphs				
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI TG	GI I	.og ₁₀ LC50 LC50)
Leukemia CCRF-CEM HL-60(TB) K662 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 NCI-H226 NCI-H23 NCI-H460 NCI-H23 NCI-H460 NCI-H522 Colon Cancer COLO 205 HCC-2998 HCT-15	$\begin{array}{c} & 4.35 \\ > & 4.35 \\ > & 4.35 \\ > & 4.435 \\ > & 4.435 \\ > & 4.435 \\ > & 4.355 \\ > & 4.355 \\ > & 4.355 \\ > & 4.35 \\ > & & 4.35 \\ > & 4.35 $	> 4 35 > 4 435 > 4 335 > 5 4 335 > 7 4		 4.35 	
N129 SW-620 CNS Cancer SF-288 SF-295 SF-539 SNB-19 SNB-75 L1251	> 4.35 > 4.35	> 4.33 > 4.35 > 4.35		-4.35 -4.35 - 4.35 - 4.35 - 4.35 - 4.35 - 4.35 - 4.35 - 4.35 - 4.35 - 4.35	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-2600000	$\begin{array}{c} & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ > & -4.35 \\ \end{array}$	$\begin{array}{c} \times & 4.35 \\ \times & 4.35 \end{array}$		435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435 -435	
UGROV1 IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Sgnal_Cancer	> 435 > 435 > 435 > 435 - 435 - 435 - 435 - 435 - 435 - 439 - 435	 4.35 		 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 	
785-0 A498 ACHN CAKI-1 RNF2C TK-10 UC-31 Prostate Cancer PUL-145		 4.357 4.357 4.355 	-	- 4.35 - 4.35	
3reast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	> 4.35 > 4.35 - 5.21 > 4.35 > 4.35 > 4.35	> -4.35 > -4.35 4.73 > -4.35 > -4.35 > -4.35 > -4.35	-	 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 -4.35 	
MID Delta Range		-4.36 0.37 0.38			

DTP, NCI	Figure S10b. Compo	und 19	NSC : D - 778312/1	Units :Molar	SSPL :0GZS	EXP. ID :1402NS22	
	Mean Graphs		•		Test Date :February 03, 2014		
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI TG	GI	Log ₁₀ LC50 LC5	50	
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-426 ReMI-8226 ReMI-8226 ReMI-8226 NO-Small Cell Lung Cancer A590/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H227 NCI-H227 NCI-H227 NCI-H227 NCI-H227 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-T16 HCT-116 HCT-116 HCT-115 HCT-98 SF-298 SF	$\begin{array}{c} \mbox{Log}_{10} \mbox{GISO} \\ \hline \mbox{-}4.60 \\ \mbox{-}4.75 \\ \mbox{-}4.59 \\ \mbox{-}4.59 \\ \mbox{-}4.66 \\ \mbox{-}4.21 \\ \mbox{-}4.66 \\ \mbox{-}4.26 \\ \mbox{-}4.66 \\ \mbox{-}4.40 \\ \mbox{-}4.40 \\ \mbox{-}4.42 \\ \mbox{-}4.46 \\ \mbox{-}4.49 \\ \mbox{-}4.46 \\ \mbox{-}4.49 \\ \mbox{-}4.46 \\ \mbox{-}4.49 \\ \mbox{-}4.47 \\ \mbox{-}4.34 \\ \mbox{-}4.53 \\ \mbox{-}4.58 \\ \mbox{-}4.49 \\ \mbox{-}4.46 \\ \mbox{-}4.49 \\ \mbox{-}4.46 \\ \mbox{-}4.49 \\ \mbox{-}4.52 \\ \mbox{-}4.66 \\ \mbox{-}4.66 \\ \mbox{-}4.66 \\ \mbox{-}4.66 \\ \mbox{-}4.54 \\ \mbox{-}4.54$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	si	L09_10_LCS0 LCS > 4.00	ю 	
_MID Delta Range	-4.57 1.37 1.94		-4.11 1.26 1.37		-4.01 0.62 0.63	—	