Supplementary Table 1. Primer sequences and PCR conditions. The first four assays are for bisulfite-pyrosequencing. The next four are for mutation analysis.

Gene	Ste p	Annealin g Temp. (°C)	Sequence 5' to 3'	5'-modifie d
	1	58	AGTTAAGGGAGGAGGAGGAGTAGAGTT	
			CCTTAACAAAAACAAATAACCCTATC AGTTAAGGGAGGAGGAGGAGTAGAGTT	
SP140 (hg18, Chr2:230,798,573)	2	60	GGGACACCGCTGATCGTTTACCTTAACAAAAACAAATAACCCTA TC	
			GGGACACCGCTGATCGTTTA	Biotin
	S		GGAGGAGGAGTAGAGTTAGT	
	1 5	56	GAATGATGGTTTGGTTTAGAATGT	
	1 00		TCAAATTCACTTCCCCCTAA	
MCCC1 (hg18, Chr3:184,245,211			GAATGATGGTTTGGTTTAGAATGT	
)	2	58	GGGACACCGCTGATCGTTTATCAAATTCACTTCCCCCTAA	
			GGGACACCGCTGATCGTTTA	Biotin
	S		AATTTTATTTGTTGGTTGTT	
EHMT1 (hg18, Chr9:	1	58	TGTAAGGGTAGGAGGGGTTGA	
	•	20	TTCCCTCCACTCTTAAAACTTTCT	

139,803,373)			TGTAAGGGTAGGAGGGGTTGA	
	2	60	GGGACACCGCTGATCGTTTATTCCCTCCACTCTTAAAACTTTCT	
			GGGACACCGCTGATCGTTTA	Biotin
	S		GTTGTTTTTAGATTTATAT	
	1	56	AAGTTTTAAATTGGTAGGGGTTTT	
	1	50	AATATACCCAACCTTACCCTACTC	
MTSS1 (hg18,			AAGTTTTAAATTGGTAGGGGTTTT	
Chr8:125,683,079)	2	58	GGGACACCGCTGATCGTTTAAATATACCCAACCTTACCCTACTC	
			GGGACACCGCTGATCGTTTA	Biotin
	S		GGGGTTTTTTTTTGA	
IDH1 (R132)	1	58	TGCCAACATGACTTACTTGATCC	
		20	AATATCCCCCGGCTTGTGA	Biotin
	S		TGATCCCCATAAGCAT	
	1	50	TAGGCGTGGGATGTTTTTG	
IDH2 (R140)	1	58	CAGAGTTCAAGCTGAAGAAGATGT	Biotin
	S		CCCCCAGGATGTTC	
		-0	TGCCCAGGTCAGTGGATC	
IDH2 (R172)	1	58	GGAGCCCATCATCTGCAAA	Biotin

	S		TCGCCATGGGCGTGC	
			TGTGGTTAGACGGCTTCC	
DNMT3A (R882)	1	58	GGGACACCGCTGATCGTTTAGAAGAGGTGGCGGATGA	
D1001311 (R002)			GGGACACCGCTGATCGTTTA	Biotin
	S		TGACGTCTCCAACATGA	

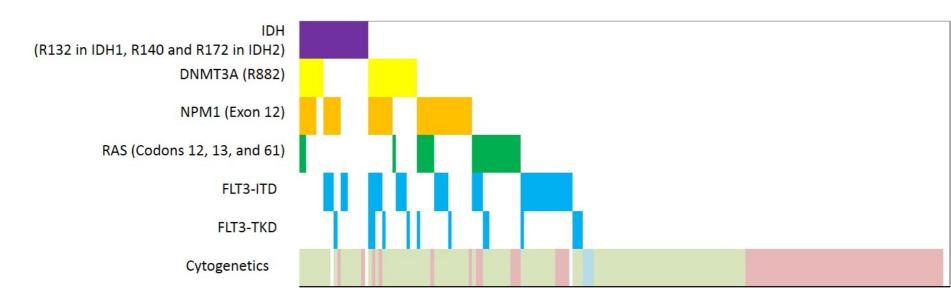
Characteristics	tet2-DMC-Low	tet2-DMC-High	P value
Total number	67	113	
Age, years			
Mean	51	49	0.66
(Range)	(19-68)	(17-73)	
Gender:			
Male – no. (%)	30 (45)	55 (49)	0.65
Bone marrow blasts at diagnosis			0.57
Mean	53	55	
(Range)	(7-94)	(16-99)	
WBC at diagnosis (*10 ³ /uL)			
Mean	21	26	0.96
(Range)	(1-129)	(1-228)	
Cytogenetic risk group – no. (%)			0.07
Favorable	3 (5)	0 (0)	
Intermediate	39 (59)	65 (59)	
Poor	24 (36)	45 (41)	
Antecedent hematologic disorder-	13 (19)	23 (20)	1
Complete remission rate – no. (%)	56 (84)	78 (69)	0.03
Overall survival (months)			
Median	79 +	14	0.0006
(Range)	(0-79 +)	(0-82+)	
Mutations – no. (%)			
FLT3-ITD	14 (22)	20 (18)	0.55
FLT3-TKD	3 (5)	10 (9)	0.38
RAS	6 (10)	16 (17)	0.25
NPM1	16 (28)	17 (18)	0.22
IDH1	2 (3)	6 (5)	0.71
IDH2	5 (8)	8 (7)	1
IDH1/2	7 (11)	13 (12)	1

Supplementary Table 2. Patient Characteristics for tet2-DMC-low and high defined by the clinically applicable thresholds*

DNMT3A	10 (16)	10 (9)	0.22
--------	---------	--------	------

*The P value were computed from Fisher's exact test for two-by-two contingency analyses, Mann-Whitney test to compare continuous variables (Age, Bone marrow blasts at diagnosis, and WBC at diagnosis), and the log-rank test for survival data. All p values were two-tailed and the threshold of statistical significance was P<0.05. tet2-DMCs = TET2-specific differentially methylated CpGs.

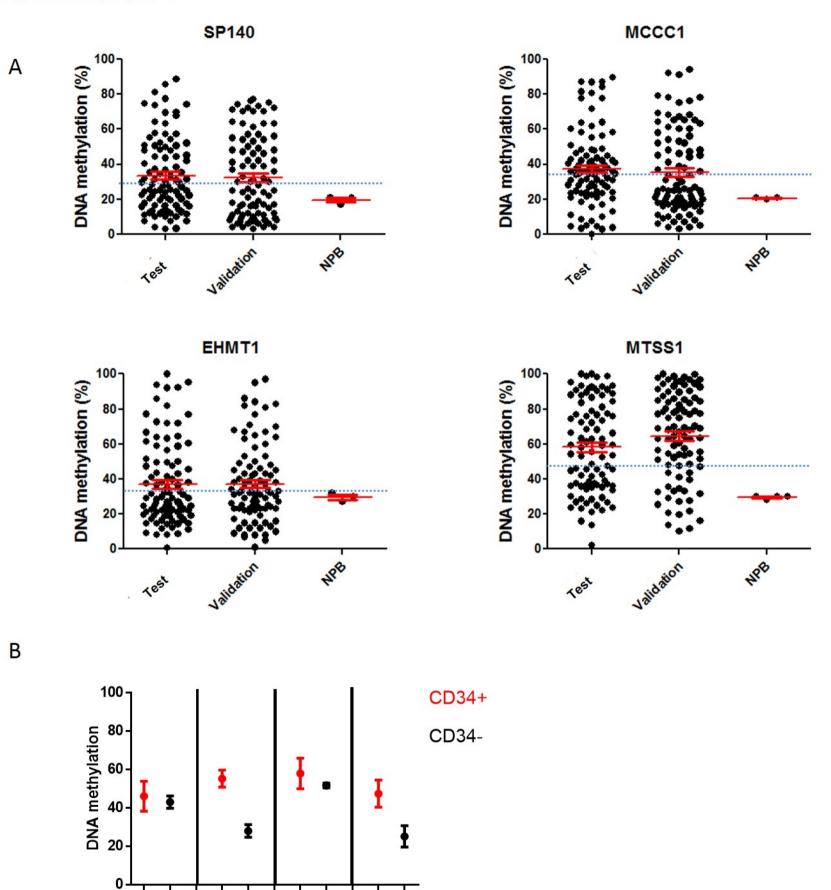
Characteristics	With mutations	Without mutations	P value
Age, years			
Mean	61	60	0.52
(Range)	(27-77)	(18-88)	
Gender:			
Male – no. (%)	21 (51)	59 (56)	0.06
Bone marrow blasts at diagnosis (%)			0.32
Mean	48	29	
(Range)	(0-97)	(0-98)	
WBC at diagnosis (*10 ³ /uL)			
Mean	15	20	0.47
(Range)	(1-172)	(1-298)	
Cytogenetic risk group – no. (%)			0.36
Favorable	0 (0)	5 (5)	
Intermediate	29 (73)	70 (67)	
Poor	11 (27)	30 (28)	
Mutations – no. (%)			
FLT3-TKD	9 (24)	31 (31)	0.53


Supplementary Table 3. Patient Characteristics for tet2-DMC-high with and without TET2/IDH mutations*

RAS	2 (5)	7 (7)	1.0
NPM1	14 (36)	23 (22)	0.13
ASXL1	2 (9)	1 (3)	0.55
DNMT3A	6 (28)	11 (33)	0.77
СЕВРА	2 (9)	4 (12)	1.0

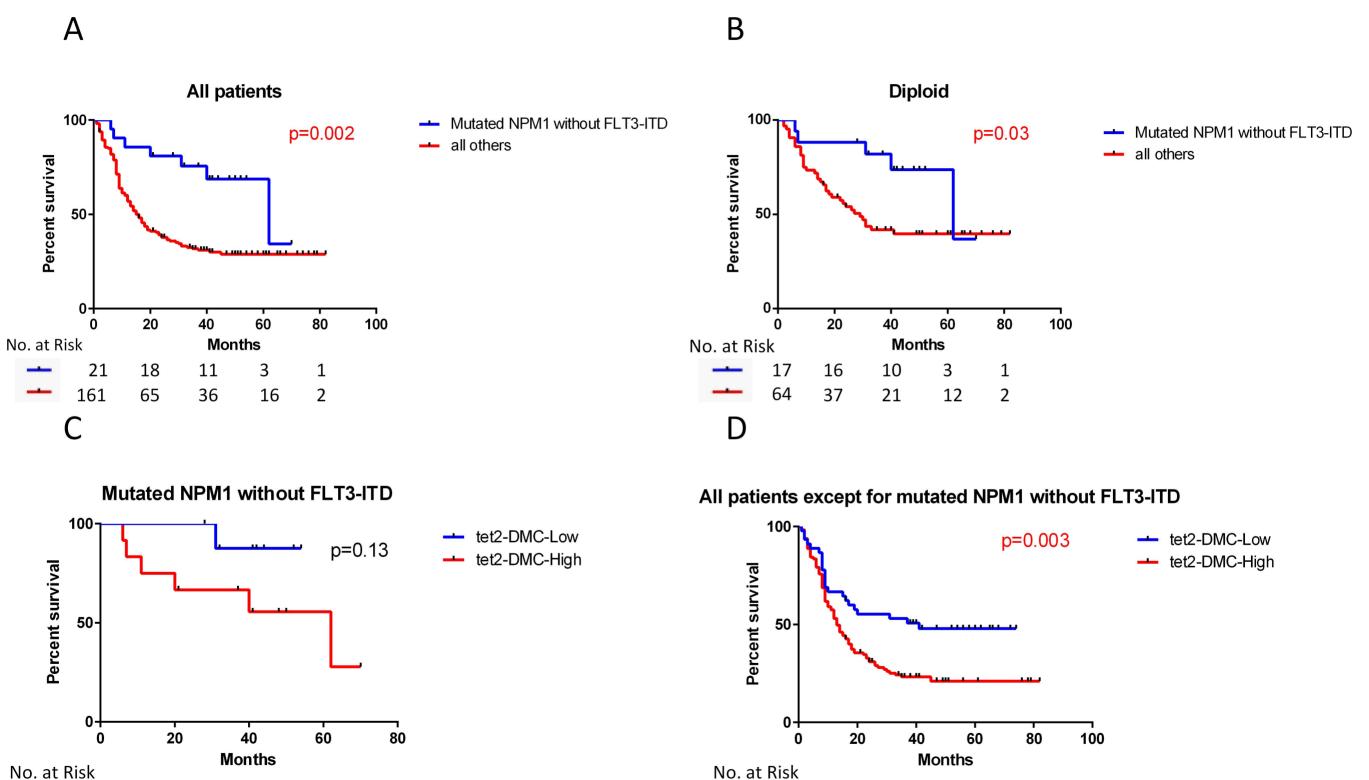

*The P value were computed from Fisher's exact test for two-by-two contingency analyses, Mann-Whitney test to compare continuous variables (Age, Bone marrow blasts at diagnosis, and WBC at diagnosis), and the log-rank test for survival data. All p values were two-tailed and the threshold of statistical significance was P<0.05.

tet2-DMCs = TET2-specific differentially methylated CpGs.


Supplementary Figure 1. Mutation co-occurrence for 186 AML patients. Shown are somatic, nonsynonymous mutations in individual genes and sets of genes. Eighty-one (43%) had at least one mutation in one of the listed genes or sets. The cytogenetic risk for each patient is shown at the bottom of the chart. Blue, Favorable; Green, Intermediate; Red, Poor risk groups.

Supplementary Figure 2. Analysis of OS for 186 AML patients. A) Univariate analyses of OS by clinical characteristics. Kaplan-Meier survival curves were drawn for each covariate. Age, cytogenetics, and AHD are associated with OS. P values are derived from the log-rank test. B) Univariate analyses of OS by genetic alterations. Kaplan-Meier survival curves were drawn for each gene. Only NPM1 mutations are associated with longer OS (P=0.01). P values are derived from the log-rank test.

Supplementary Figure 3. DNA methylation status of 4 tet2-DMCs (a CpG site close (<50 bp) to the transcription start site of SP140 and CpG sites in gene-bodies of MCCC1, EHMT1, and MTSS1) in AML patients in the test and validation cohorts and normal peripheral blood (NPB) A) Mean ± SEM are shown. All 4 loci showed significant hypermethylation in AML compared to NPB. Note that there are some patients with tet2-DMC equal or lower than NPB. Horizontal blue lines represent the thresholds used for the clinically applicable tet2-DMC signature. B) DNA methylation status of 4 tet2-DMCs in CD34+ and 34- cells.


SPIAO

MCCC1

MISSI

EHMIT

Supplementary Figure 4. Kaplan-Meier survival curves for patients with NPM1 mutation but no FLT3-ITD (N+F-) compared to other patients in the combined dataset A) and only among diploid patients B) in all patients (A). Kaplan-Meier survival curves for tet2-DMC-low (blue) and –high (red) patients in (N+F-) patients C) and all patients except for (N+F-) patients D) P values are derived from the log-rank test.

Low

High

Low 9 9 7

High 12 9 6

Supplementary Figure 5. A scheme for a clinically applicable tet2-DMC signature. Upper panel; methylation thresholds for each tet2-DMC to classify AML patients as being called `positive`. Examples of AML patients and the numbers of positives are shown. Lower panel; Kaplan-Meier survival curves for tet2-DMC-low (blue) and –high (red) patients defined by the method above. Tet2-DMC-low patients showed significantly longer OS compared to tet2-DMC-high in the analysis of all patients. P values are derived from the log-rank test.

tet	2-DMRs	Thresholds	AML 1	AML 2	AML3	AML 4	AML 5	
S	SP140	31.5%	70%	47%	8%	18%	61%	
N	ACCC1	38.0%	68%	25%	7%	26%	65%	
E	HMT1	32.3%	8%	27%	26%	67%	71%	
Ν	ATSS1	42.4%	95%	25%	32%	94%	86%	
Ν	lumber of	Positive	3	1	0	2	4	
						→ ↓ <i>k</i>	\checkmark	
	tet2-D	MC-Low:	0-1 gene	es	tet2-D	MC-High:	: 2-4 gene	S
		- 08 - 08 - 00 - 02 - 00 - 00 - 00	all a second and a	Lo ۲۰۰۰ ۲۰۰۰ ۲ig	······································	6		
		ŏ	20		60 80	100		
		No. at Risk		Months				
		Low 66		28	13 1			
		High 110) 44	19	6 2			

Supplementary Figure 6. Additive effects between tet2-DMC-low and M3/favorable-risk cytogenetic group. A) Kaplan-Meier survival curves in the TCGA dataset for M3/favorable-risk cytogenetic group. The patients are subdivided by tet2-DMC status. B) Kaplan-Meier survival curves in the TCGA dataset for tet2-DMC-low patients. The patients are subdivided by status of M3/favorable-risk cytogenetic group. C) Kaplan-Meier survival curves in the TCGA dataset for intermediate and poor cytogenetic group. The patients are subdivided by tet2-DMC status. P values are derived from the log-rank test.

