Combined Bioinformatic and Rational Design Approach to

Develop Antimicrobial Peptides against Mycobacterium tuberculosis

C. Seth Pearson¹, Zachary Kloos²⁺, Brian Murray¹⁺, Ebot Tabe²⁺, Monica Gupta², Jun Ha Kwak¹, Pankaj Karande¹, Kathleen McDonough^{2,3,*} and Georges Belfort^{1,*}

¹Howard P Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, RPI, Troy, NY 12180, ²Division of Infectious Diseases, Wadsworth Center, NY State Dept. of Health, Albany NY, 12208, and ³Department of Biomedical Sciences, University at Albany, SUNY

⁺These authors contributed equally to the work

* Corresponding authors: Email <u>belfog@rpi.edu</u> and kathleen.mcdonough@health.ny.gov

AMP Purification

Peptide purification was necessary due to inefficient cleavage of Pbf (pentamethyldihydrobenzofuransulfonyl) side-chain protecting groups. Purification was run on a C18 column with isocratic elution at 30% acetonitrile (ACN) at 50°C. Purity of product was confirmed using MALDI-TOF MS (**Fig. S1**)

In vivo Activity and Toxicity against M. tuberculosis

The disk diffusion assay (**Fig. S2**) showed all three designed AMPs, B1, B2 and B3, were toxic to *M. tuberculosis in vivo*. Using 100 μ g, all three AMPs were potent enough to produce a dark ring of dead cells around the inserted disk. B3 appeared the most potent followed by B1 then B2. 10 μ g of kanamycin and water were used as positive and negative controls, respectively. For quantitative MIC values of the AMPs, the Alamar blue assay was performed (**Table 1**).

Relevant Tables of AMPs

The full list of database peptides used in the bioinformatic analysis is given in **Table S1**. For comparison purposes, the peptide sequences of the four designed peptides are shown above four natural antimicrobial peptides with similar properties **Table S2**. Finally, in **Table S3** we show the results of the database filtration using the complete database and a modified version of the database with only four peptides from Ramon-Garcia *et al.* (Ref. 9).

Figure S1. MALDI-TOF MS of crude synthesis product for B3 (top), isocratic elution at 30% ACN (second from top), isocratic elution at 35% ACN (third from top), and isocratic elution at 80% ACN (bottom).

Figure S2. Disk diffusion assay for the three designed AMPs, B1 (top), B2 (middle) and B3 (bottom) were performed in duplicate. Disks with 100 µg AMP were placed onto lawns of *M. tuberculosis*. 10 µg kanamycin disks and water disks used as positive and negative controls, respectively. Dark areas indicated the presence of dead cells.

Pep	tide Sequences	Reference
WKWLKKWIK		Ramón-García et al. AAC, 2013, 57(5); 2295-2303
RWRRKWWWW		
WRKFWKYLK		
KRWWKWWRR		
RRWWKWWWR		
KIWWWWRKR		
RLWWWWRRK		
KWKWWWRKI		
RIRRWKFRW		
RLKRWWKFL		
RWWRWRKWW		
KRWWWRFR		
KRWWRKWWR		
RRWWRWVVW		
WFKMRWWGR		
KFKWWRMLI		
RIKRWWWWR		
RWRWWRVY		
LKRRWKWWI		
RRRIKIRWY		
RLWWKIWLK		
KRRWRIWLV		
FFIYVWRRR		
IRMRIRVLL		
RWWRKIWKW		
LRFILWWKR		
RWWIRIRWH		
RRRWWKLMM		
LRRWIRIRW		
RKFRWWVIR		
HQFRFRFRVRRK		
ILRWKWRWWRWRR		
ILPWKWRWWKWRR		
<u>FIKWKFRWWKWRK</u>		
RGGRLCYCRRFCVCV	<u>G R </u>	Zhao et al. FEBS Lett., 1994, 346(2-3); 285-258
KWKSFLKTFKSAKKTV	LHTALKAISS	Jiang et al. Protein Pept Lett., 2011, 18(3); 241-252
K W K S F L K T F K S A K K T V	LHTLLKAISS	
K W K S F L K T F K S L K K T V	LHTLLKAISS	
K W K S F L K T F K S L K K T V	LHTLLKLISS	
KWKSFLKTFKSLKKTK	LHTLLKLISS	
ACYCRIPACIAGERRY	G T C I Y Q G R L W A F C C	Madison et al. Infect. Immun., 2007, 75(10); 4780-91
V V C A C R R A L C L P R E R R	A G F C R I R G R I H P L C C R R	Ganz et al. J Immunol., 1989, 143 (4); 1358-65
LLGDFFRKSKEKIGKE	F K R I V Q R I K D F L R N L V P R T E S Ze	lezetsky et al. J Biol. Chem., 2006, 281 (29);19861-71
RRPPPYLPRPRPP	F F P P R L P P R I P P G F P P R F P P R F P	Gudmundsson et al. PNAS, 1995, 92 (15):7085-9

Tuble D1 . Else of <i>m</i> . <i>inderentions</i> dutubuse peptide sequences with references

Peptide Names	Peptide Sequences	Reference
B1	I L S L R W R W K W W K K	
B2	I L S L R W W R K W W K K	
B3	I L S L R W R W W K W K K	
B4	I R K L K S W K W L R W L	
		Selsted et al. J Biol. Chem., 1992, 267(7);
Indolicidin*	I L A W K W A W W A W R R	4292-5
		Lawyer et al. FEBS Lett., 1996, 390(1); 95-
Tritrpticin	VRRFPWWWPFLRR	8
		Tian et al. Appl Microbiol Biotechnol., 2007,
Lactoferricin b 15	P M F K C W R W Q W R W K K L G A M	75 (1); 117-24
Lactoferricin-cecropin		Feng et al. J Ind Microbiol Biotechnol.,
A hybrid protein	K W K L F K K F K C W R W Q W R W K K L	_ G A 2014, 41 (3); 527-34

Table S2. Linear sequences of designed AMPs with similar literature peptides for comparison

--- Peptides under the dashed lines are peptides of similar amino acid composition from the literature *The C-terminal of indolicidin is modified with $-NH_2$

Table S3. Comparison of database filtration inc	cluding and excluding the majority of	f peptides from Ramon-
Garcia et al. (Ref. 9)		

	With 34 Ramon-Garcia, et al. (Ref. 9) Peptides		With 4 Ramon-Garcia, et al. (Ref. 9) Peptides			
	Number	Most Common	Prediction	Number	Most Common	Prediction
Hydrophobic Residues	6.51 (7)	W (36%) L (18%) I (13%)	W,W,W,W,L, L,I	5.85 (6)	L (24%) W (13%) I (11%)	W,W,L,L,L,I
Charged Residues	5.17 (5)	K (56%) R (40%)	K,K,K,R,R	4.39 (4-5)	K (51%) R (49%)	K,K,(K),R,R
Polar Residues	1	S (51%)	S	2-3	S (51%)	S,S,(S)