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1. Parameters and definitions 

 
Initial parasite number  

 

The initial total parasite number used in each simulation was 6 × 1011. This is an arbitrary 

number, which does not affect the methodology, and represents a rather intense symptomatic 

infection.  

 

Paradigm distributions (PD) of parasites  

 

For illustrative purposes we specify the initial number of parasites present at time of 

treatment and their distribution across the 48 bins in the discrete-time model, i.e. PD1–5, as 

follows:  

 

 PD1 is a uniform distribution where parasites are equally distributed across all the 48 

hourly age-bins. This may represent a long-established infection in a high transmission 

area where patients are often semi-immune and asymptomatic, several malaria clones 

may be present, and synchronicity has been largely lost over the course of the infection.  

 PD2 is an infection where most parasites are early ring stages with age-bin mean = 10.5 

hours and standard deviation (SD) = 5 hours. This paradigm was based on Saralamba et 

al. (1) where the mean age was 4–16 hours and the SD was 2–8 hours. It has been argued 

that this may represent a relatively common situation in non-immune patients whose 

infected RBCs have ruptured (i.e. reached the end of their 48-hour cycle) during the night 

causing fever and driving the patient to seek treatment early next day (2).  

 PD3 is as for PD2 but has greater variation, i.e. age-bin mean = 10.5 hours and SD = 10 

hours.  

 PD4 represents an infection where most parasites are in the middle of their 48-hours life-

cycle, i.e. age-bin mean = 20.5 hours and SD = 5 hours. 

 PD5 represents an infection where most parasites are more advanced in their 48-hours 

life-cycle, i.e. age-bin mean = 35.5 hours and SD = 5 hours. 

 

Note that the normal distribution is retained across the boundary between bins 48 and 1; as an 

example when mean = 5.5 hours, parasites which are 6 hours younger the mean are placed in 

bin 48, those which are 7 hours younger are placed in bin 47, and so on. In principle the 

distribution could have a discontinuity to allow for parasite multiplication at the 48/1-hour 

boundary but this seemed an unnecessary elaboration, especially because parasitaemia at time 

of treatment is often being regulated by host factors so that parasites numbers are being held 

roughly stable. Furthermore, we set the maximum width of the normal distribution, i.e. the 

number of age-bins above and below the mean that we wish to consider, to 15 so that the 

normal distributions are never assigned across more than 30 age-bins.  

 
Parasite growth rate 

 

Parasites that survive through their 48 hours of development in red blood cells (RBCs), i.e. 

reached the schizont stage, release a number of new parasites (merozoites) that may 

successfully invade new RBCs. The average number of merozoites per schizont that 

successfully infect new RBCs after every 48-hour cycle is called the parasite multiplication 

rate (PMR). The continuous-time models require an instantaneous growth rate, a, over the 48-

hour parasites RBC cycle so  
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ae48PMR                              

Equation S1 
 
giving 

  

 
48

PMRln
a            

Equation S2 
 
PMR is usually set at 10 for stage specific simulations (1, 3), giving a = 0.048. This value 

will be used throughout the calibrations and simulations detailed below. 

 
Sequestration and parasite reduction ratio (PRR) 
 

An important feature of falciparum malaria parasites is their ability to sequester RBCs 

infected with falciparum malaria, parasites start to sequester (i.e. bind to the endothelium of 

capillaries and venules) as the parasites develop and late trophozoites and schizonts are 

therefore not observed in the peripheral blood (4). Sequestration generally starts around 11 

hours after RBC invasion and is, most plausibly, a survival strategy of the parasite to prevent 

it being cleared by the spleen. This has important practical consequences because peripheral 

blood samples taken to assess parasitaemia contain mostly young parasites (4). This becomes 

very important when calibrating drug kill rates against the reduction in parasite numbers 

observed over a 48-hour period.  

 

The PRR48 is defined as the reduction in parasite number over 48 hours (i.e. one parasite 

RBC cycle) following drug treatment. This is the key clinical observation used to quantify 

drug kill rates and, according to White (5), the in vivo PRR48 is about 103 for partner drugs 

and 104 for artemisinins (although  PRR48 measured in vitro may be higher (6)). Previous 

calibrations assumed this was a reduction in ‘true’ total parasite number, whereas in reality it 

is the reduction in observable, non-sequestered parasites (the ‘apparent’ PRR).  We therefore 

make a distinction between the ‘true’ PRR, which we define conventionally as the reduction 

in the total numbers of parasites, and the ‘observed’ or ‘apparent’ PRR, which we define as 

the reduction in the number of parasites observed in the peripheral blood by microscopy. 

Here we assume that parasites in bins 1 to 14 are the only ones detectable and calculated 

observed PRR48 based on this assumption. We also use a more complicated algorithm in 

which infected RBCs gradually disappear from the circulation. Again we used a published 

model, that of Saralamba et al. (1)), who assume infected RBCs start to sequester from bins 

11 hours onwards with an exponential decay (Equation S8 of Saralamba et al. (1)). Figure S1 

shows how ‘true’ and ‘apparent’ PRR vary depending on age-bin distribution at time of 

treatment.  

 

Simulated patient populations (SPPs) 

 

Drugs deployed into the general population will be used to treat patients whose infections 

will differ substantially in their age-bin distributions at time of treatment. Table 2 of the main 

text shows that drug effectiveness is affected by parasite age-bin distributions at time of 

treatment. Simulations designed to test drug effectiveness after general deployment therefore 
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require the relative frequencies of parasite age-bin distributions in the simulated patient 

population (SPP) at time of treatment. Here we define three arbitrary SPPs for later use.  

 

 SPP1 represents a high transmission clinical setting. Many infections have lost 

synchronicity and have a uniform age-bin distribution as in PD1 (30%). The other 

patients present with infections in a variety of age-bin distributions (i.e. mean age-bin 

0.5–47.5 hours) with high SDs (i.e. 6–8 hours).  

 SPP2 represents a clinical setting of low transmission and with good clinical care. Most 

infections are symptomatic so there are few uniform infections (5%). Patients at time of 

treatment tend to have infections with tighter distributions (i.e. SD of 2–4 hours). It has 

been asserted that rupture of merozoites causes fever and drives patents to seek treatment 

(2) so it assumed most patients present with low mean values of the parasite distribution 

(i.e. 0.5–16.5 hours).  

 SPP3 represents a clinical setting of low transmission and with poor clinical care. The 

distributions are as for SPP2 except that poor access to treatment means that patients 

present with a much wider range of mean values (i.e. 0.5–47.5 hours).  

 

The methodology does not rely on these exact distributions but subsequent calculations 

require these distributions to be defined, and SPP1-3 (at least to us) seem plausible 

illustrations. Readers are able, and encouraged, to define a SPP specific to their own favoured 

epidemiological/clinical setting. 

 

Pharmacodynamics of drug action 

 

Drugs that have stage specific activity require a defined ‘pharmacological profile’ that 

identifies how each age-bin is affected by the drug (Figure 1 of the main text). For ‘Partner 

Drugs’ we use the specific examples of mefloquine and lumefantrine (killing occurs only in 

age-bins 18 to 40 inclusive) or piperaquine (killing occurs only in age-bins 12 to 36 hours 

inclusive) (3).  We look at two artemisinin pharmacodynamics profiles: 

 

 An ‘iso-sensitive’ profile (based around data in (1)) that assumes that killing occurs from 

6 to 44 hours inclusive and that each of these age-bins is equally drug-sensitive (although, 

in reality, the results presented in the supplementary information of (1) suggest earlier 

ring stages are less sensitive). 

 A ‘hyper-sensitive’ profile (based around data in (7)) which postulates that youngest rings 

(2–4 hours post-invasion) are hypersensitive and that more mature ring stage (6–20 hours 

post-invasion) are generally rather insensitive to artemisinins. In the hyper-sensitive 

model we set the kill rate at 10 maxV   between 2 to 4 hours, maxV   /10 between 6 to 19 

hours, maxV   between 20 and 44 hours and zero for hours 1, 5 and from 45 to 48 inclusive 

(this was achieved by giving Yb values of 10, 1, 0.1 or 0 as appropriate in Equation 4 of 

the main text).  
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2. Calibrating equivalent continuous- and discrete-time models 

for drug treatment 

  
In this section we show how both types of approach, i.e. the continuous-time and the discrete-

time model, can be calibrated for antimalarial drugs allowing direct comparison between the 

two approaches. We explain step-by-step how the maximal kill rate can be derived for the 

four types of drugs with different pharmacokinetic and pharmacodynamic properties. The 

symbols maxV  and maxV   will be used for the maximal killing rate for the continuous- and 

discrete-time methods respectively i.e. the prime indicates its use in the discrete-time 

analyses. 

 

We initially assume the drug is either present and killing at its maximum rate Vmax, or absent. 

This means if drug is present the drug parasite killing f(C) = Vmax in Equation 3 of the main 

text. This allows us to integrate Vmax between time zero and time t (Equation 2 of the main 

text) as 

 

 

t

tVV
0

m axm ax  

Equation S3 
 

Consequently, if a drug is present and acting at Vmax over the time period zero to t then 

Equation 2 of the main text becomes 

 
tVa

t ePP
)(

0
max

  

Equation S4 
 

where P is number of parasites so that P0 is the number of parasites at time of treatment and 

Pt is the number of parasites  at time t after treatment. If the drug is not present then Vmax = 0 

and Equation S4 becomes 

 
at

t ePP 0       

          Equation S5 
 

This assumption will later be relaxed (see Section 4). 

 

 

(i) ‘Hypothetical drug 1’ ( long half-lives and no stage specificity) 

 

The Vmax  for the continuous-time methodology is estimated from the PRR48 (8). Re-arranging 

Equation S4 gives 
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so that 

 

 
aV 

48

PRRln 48
max           

Equation S7 
 

There is no stage specificity so the same Vmax is used in the discrete-time methods, i.e. 

 

 
aVV 

48

PRRln 48

maxmax  

Equation S8 
 
 

(ii) ‘Partner drugs’ (long half-lives with stage specificity) 

 

The continuous-time method makes no allowance for stage specificity so an ‘average’ Vmax 

(hereafter referred to as maxV̂ ) is calculated as above (Equation S7), i.e. 

 

 
aV 

48

PRRlnˆ 48

max  

Equation S9 
 

The discreet-time models require that the kill rate in the sensitive bins are increased to ensure 

the same amount of drug killing occurs in the parasites’ 48-hour cycle. For the sensitive age-

bins  

 

q
VV

48ˆˆ
maxmax             

Equation S10 
 

where q is the number of age-bins in which killing occurs. 

 
 

(iii) ‘Hypothetical drug 2’ (short half-lives and no stage specificity)  

 

Parameterising the continuous-time model must recognise that the drug is not present for the 

whole 48 hours of the parasite red blood cell (RBC) cycle. The kill rate when the drug is 

present (denoted max

~
V ) must therefore be increased as discussed by Kay and Hastings (8)). 

We use the symbol ta to represent the time (in hours) post treatment that the drug is present 

and killing at maximal rate. The default value used here is 6 hours (3). The principle 

underlying the calculation is shown graphically on Figure S2. The number of parasites after ta 

hours is 

 

a

a

tVa

t ePP
)

~
( max

0


       

Equation S11 
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The number of parasites after 48 hours is therefore 

 
 a

a

ta

t ePP



4 8

4 8
          

Equation S12 
 

Combining Equation S11 and Equation S12 gives 

 
 aa tatVa

eePP
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
48)

~
(

48
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0       

Equation S13 

 

We can use Equation S13 to obtain max

~
V  as follows. Collect the exponential terms to obtain 

 

)
~

48(

0

48 max atVa
e

P

P 
  

Equation S14 

 

Inverting both sides of the equation and taking logs gives 

 

  atV
P

P
a 48

~
PRRlnln max48

48

0 




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



 

 

Equation S15 

 

Solving for maxV
~

 and using Equation S2 to substitute a gives 

 

   

aa tt

a
V

)PMRln(PRRln48PRRln~ 4848
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



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Equation S16 

 

There is no stage-specific killing so the same value of maxV
~

 is used in the discrete-time 

model, i.e. 

 

 

at

a
VV

48PRRln~~ 48

maxmax


      

Equation S17 

 

 

(iv) ‘Artemisinin derivatives’ (short half-lives and stage specificity)  
 

This type of drug can be calibrated against PRR using the results from the short half-life drug 

above (Equation S16), i.e. 
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 

at

a
V

48PRRln~̂ 48

48 max,


  

   Equation S18 

 

For stage specificity, the value of  48max,

~̂
V   has to be increased in those age-bin that are 

sensitive to the drug (as in Equation S10) to give 

 

q
VV

48~̂~̂
48 max,48 max,   

Equation S19 

 

Unfortunately, this produced a rather poor match between the continuous- and discrete-time 

approaches (see Figure 3 in the main text, particularly for PD4) so an alternative strategy had 

to be developed as described below. 

 

 

3. Simulations of artemisinin treatment 
 

Calibration against PRR48 did not work for artemisinin drugs because the initial age-bin 

distribution at time of treatment has such a large effect (Figure 3 in the main text). 

Artemisinins are given routinely at time 0, 24 and 48 hours (with intermediate dosing in the 

case of six 12-hourly doses of artemether-lumefantrine, AM-LF). Consequently those 

infections which are primarily in sensitive age-bins at time of treatment and 48 hour later will 

be killed by the drug to a much higher extent than those infections which are primarily in 

drug-insensitive age-bins at time 0 and 48. This effect is “averaged” out in the other three 

drug types either because they have a long half-live so that parasites have to go through all 

age-bins during the 48-hour cycle as in ‘Hypothetical drug 1’ and ‘Partner drug’, or because 

they do not have stage specific killing in the case of ‘Hypothetical drug 2’. The consequence 

is that initial age-bins at time of treatment have to be taken into account when simulating 

treatment with artemisinin-type drugs. This process will be described hereafter. 

 

 

Simulating individual patients treated with artemisinin 

 

We define the parasite age-bin distribution at time of treatment of the patient, the artemisinin 

pharmacodynamic profile (the iso- or hyper-sensitive profile; see Section 1) and a PRR48 to 

be achieve (typically 104 (5)). We then identify a value of 48 max,

~̂
V   that gives the required 

PRR48 for that patient. We could not find an algebraic way of achieving this so 48 max,

~̂
V   was 

obtained by iterating its value using Equation S19 and Equations 4 of the main text to obtain 

the required PRR48. A problem with using PRR48 as the census period for calibration is that it 

does not capture the effects of subsequent doses of artemisinins; these subsequent doses are 

not independent of those in the first 24 hours. For example, a dose at 48 hours will target 

exactly those age-bins already affected by the initial dose at ties zero. It is therefore necessary 

to define a new census period that occurs after all artemisinin doses have been given. We 

chose the PRR across two parasite cycles (i.e. at time 2 × 48 = 96 hours) as this census period 

and it will be denoted PRR96. Note that PRR96 is rarely, if ever, reported because limits of 
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detection inherent in light microscopy make it extremely difficult to quantify the low 

parasitaemia expected 96 hours after treatment. It is essentially a theoretical metric used for 

the computations described below. To summarise the process: A value of 48 max,

~̂
V   is obtained 

by iteration to get the required PRR48, using Equation S19 and Equations 4 of the main text, 

i.e. assuming a given age-bin distribution of parasites at time of treatment and treatment at 

times 0, 24 and 48 hours. Once this value of 48 max,

~̂
V   has been obtained by iteration, the 

simulation is then continued on from 48 hours to 96 hours to obtain the PRR96. This value of 

PRR96 allows a continuous-time equivalent for the artemisinin kill rate in that patient 96 max,

~̂
V   

to be calculated using an analogous method to the one used to derive Equation S16 (and 

shown in Figure S2) that accounts for the short half-life of the drug, its stage-specificity and 

for multiple dosing. The method is as follows. We initially assume that three doses are given 

at times 0, 24 and 48 hours. The number of surviving parasites after 24 hours (i.e. 

immediately before the second dose) is 

 

 aa tatVa
eePP




24)
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(

24
96 max,

0  

Equation S20 
 

The number of surviving parasites after 48 hours, immediately before the third dose is 

 

 aa tatVa
eePP




24)
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(

2448
96 max,  

Equation S21 
 

And the number of surviving parasites at 96 hours, i.e. over two RBC life-cycles, is 

 

 aa tatVa
eePP




48)
~̂

(

96
96 max,

48  

Equation S22 
 

Substituting P24 and P48 into Equation S22 gives 
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(
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2

3

96 max,

 

Equation S23 
The reduction in parasite number over two RBC life-cycles, i.e. PRR96, can be calculated by 

using the rule that (mx)y=mxy, collecting the terms in the exponents, and moving P0 to the left-

hand side  

 
)

~̂
396(

96

0

96 96 max,PRR
Vta ae

P

P 
  

Equation S24 
 

This makes intuitive sense as it states that the number of parasites 96 hours after start of 

treatment, scaled by initial number, is the amount of growth that has occurred over that 96 

hours (i.e. 96a in the exponent) discounted by the magnitude ( 96 max,

~̂
V  ) and duration (3ta) of 
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drug killing. It is therefore easy to extend this to other regimens, e.g. if AM-LF is given six 

times during a regimen then the amount of drug killing becomes 6ta.  

 

Taking reciprocals of both sides of Equation S24 and transforming to natural logarithms 

gives 

 

  aVt
P

P
a 96

~̂
3PRRlnln 96 max,96

96

0 









 

Equation S25 
 

Re-arranging and substituting a (Equation S2) gives 

 

   

aa tt

a
V

3

)PMRln(2PRRln

3

96PRRln~̂ 9696
96 max,





  

Equation S26 
 

This equation is analogous to Equation S16 and enables us to get a continuous-time 

approximation 96 max,

~̂
V   for the PRR96 simulated for any given patient. The equivalence of the 

discrete and continuous-time approaches is demonstrated in Figure 4 of the main text. 

 

 

Simulating population-wide use of artemisinins 
 

It would be possible to simulate a large patient population using the discrete-time approach. 

However we want a computational shortcut using the much faster continuous time 

methodology. This section shows the methodology we used to achieve this. 

 

An appropriate value of 48 max,

~̂
V   for any individual patient can be obtained by iteration to 

obtained the required PRR48 (and hence PRR96) for that patient and obtained using Equation 

S26 as described above. The next problem is to obtain the distribution of 96 max,

~̂
V   in the patient 

population. The value for any real patient is composed of three elements  

 

)()(~̂~̂
max96 max, seneV     

Equation S27 
 

where max
~̂ is the mean value of 96 max,

~̂
V   in the parasite population, e(n) is the effect of natural 

variation in parasite drug sensitivity and e(s) is the effect of infections’ age-bin distribution at 

time of treatment. Equation S27 reveal a strategy for mass simulation of artemisinin 

treatment. It is first necessary to obtain an estimate for max
~̂ , then set e(n) = 0 and simulate a 

whole patient population. The resulting variation in 96 max,

~̂
V   will equal the variation in e(s). 

Natural variation is generally assumed to have a coefficient of variation (CV) of around 0.3 
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(8, 9) so we will have estimates of all three component of Equation S27 which will allow 

simulation of whole patient populations.  

 

 

Estimating the mean value of 96 max,

~̂
V   (i.e. max

~̂ ) 

 

The first problem is to decide a typical patient age-bin distribution to obtain the ‘mean’ 

population value of 96 max,

~̂
V  , i.e. max

~̂ , in Equation S27. Table S1 showed that total kill rate 

depends on the age-bin distribution at time of treatment so it is necessary to identify a 

‘typical’ value to obtain the mean artemisinin kill rate. The results presented here were 

calibrated according to the assumption that the parasites are completely asynchronous at the 

time of treatment, i.e. uniformly distributed across age-bins, that parasites have the iso-

sensitive pharmacodynamic profile with gradual sequestration between age-bins 11 and 14 as 

described above. This gave a value of 96 max,

~̂
V   = 1.164. Using the approach described above to 

convert discrete-time calibration max

~̂
V   to continuous-time (i.e. running simulations out to 96 

hours and using Equation S26 to obtain 96 max,

~̂
V  ) gave a mean value of 96 max,

~̂
V  , i.e. max

~̂ = 

0.524 (Table 1 of main text). This is regarded as the mean value in the populations and was 

the value used to produce Figure 4 in the main text and Equation S4 onwards in this 

supplemental material.  

 

Our intention is to develop a methodology rather than coercing people to follow a specific 

calibration. We have described the methodology in detail so that users can substitute their 

own preferred pharmacokinetics, pharmacodynamics and age-bin distribution (cf. Table S1).  

 

 

Estimating the impact of the age-bin distribution of parasites at time of treatment, i.e. 

e(s) 

 

The likely impact of age-bin distribution of parasites on artemisinin drug effectiveness was 

investigated. The artemisinin pharamcodynamic profile was held constant (i.e. iso-sensitive 

profile; Figure 1), 96 max,

~̂
V   was held at 1.164, while the mean of parasite age-bin distributions 

at time of treatment were varied. It was assumed all distributions were normally distributed 

with SD = 5 hours. Figure S1 illustrates how varying age-bin distribution of time of treatment 

affects artemisinin killing rates (PRR values) and also the continuous-time kill rate. The 

PRR96 varies substantially and 96 max,

~̂
V   varies almost two-fold in this example, i.e. from ~0.5 

to ~0.9 depending on the mean age-bin of the infection.  

 

The methods above describe how 96 max,

~̂
V   can be calculated by iteration for one patient. The 

essence of the methodology is now to repeat these calculations for a large simulated patient 

populations (SPPs) to quantify how the differences in patients’ age-bin distributions at time 

of treatment creating variation around the mean value of max
~̂ = 0.524 obtained as described 



 11 

above. The critical point is that 96 max,

~̂
V   = 1.164 will be held constant in each patient. The 

discrete-time model is then run for 96 hours to obtain each patient’s PRR96 which can then be 

used by Equation S26 to calculate 96 max,

~̂
V   for each patient. The resulting distribution of 

96 max,

~̂
V   is shown in Figure S7. The variation in 96 max,

~̂
V   that is likely to occur in patient 

populations treated by artemisinins in different epidemiological/clinical settings (as reflected 

in our simulated patient populations, SPP, see above). When infections have low levels of 

synchronicity at time of treatment (i.e. SPP1 with 30% of patients have asynchronous 

infections, while the remaining 70% have SD from 6–8 hours) then variance introduced by 

differences in patients differing age-bin distributions at time of treatment, e(s), is likely to be 

relatively low. If patients present for treatment early in their infection cycle such that their 

infections are relatively synchronised (SPP2 and SPP3, i.e. SD from 2–4 hours) then the 

variation in e(s) is substantially increased. Interestingly, it appears that synchronicity is the 

main source of variation as patients presenting with parasites mainly in early bins (SPP2) 

show little difference in variation in 96 max,

~̂
V   compared to those presenting with their infections 

in a wider range of mean ages (SPP3). Figure S7 suggests that e(s), variation in 96 max,

~̂
V   

caused by differing age-bin distributions of infections at time of treatment, is from ~0.4 to 

~0.8 which is a difference of 0.4 in absolute units or roughly a two-fold range. A key 

question is therefore whether variation due to initial bin distribution scales with max
~̂  or 

remains constant, e.g. if max
~̂  is doubled, does the variation remain at 0.4 units around the 

new value 2 × max
~̂ , or does this interval increase to 0.8 so that the range is again about two-

fold? Similarly, if max
~̂  is halved, does the distribution remain at 0.4 or does it narrow to 0.2 

maintaining a two-fold variation around max
~̂ /2? Figure S8 and Figure S9 suggest that 

variation around 96 max,

~̂
V   does scale to maintain a two-fold variation. Elementary algebra show 

that the limits of this parameter interval (PI) that give a two-fold variation around any given 

value of 96 max,

~̂
V   are  

 

3

~̂
~̂

PI
96max,

max

V
V   

Equation S28 

 

In other word e(s) in Equation S27 will follow a uniform distribution between the limits 

given in Equation S28. 

 

 

Incorporating stage specificity into mass simulations 
 

Three factors affecting artemisinin treatment effectiveness need to be incorporated into 

simulations of patient populations. Firstly, natural variation in human pharmacokinetics such 

as drug elimination rate and volume of distribution which determine how long and at what 

concentration the drug resides in the patient’s body. Secondly, the natural variation in the 
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parasite pharmacodynamic parameters such as maximal kill rate and the concentration at 

which 50% of maximal killing occurs (IC50) which determine the degree of drug sensitivity of 

a parasite population. These first two factors are incorporated in mass simulations using 

continuous-time models by allowing random variation around the mean values. For example, 

in our previous simulations we allowed a CV of 0.3 around parameter values. The third 

source of variation in artemisinin killing is the distribution of the parasites among drug-

sensitive and drug-insensitive age-bins at the time of treatment. This additional variance due 

to age-bin distribution at time of treatment can be incorporated by allowing an additional 

two-fold variation in 96 max,

~̂
V   values (Equation S28). 

 

The variance in 96 max,

~̂
V   due to bin distribution, e(s) can be added to the natural variation e(n) 

around max
~̂  in the continuous-time simulation for the defined patient population (Equation 

S27).  

 

The final step in the methodological design pathway is now to confirm that stage specificity 

may be easily incorporated in mass simulations in practice, and that no unanticipated 

problems arise. Another consideration is to examine the likely impact of incorporating stage 

specificity on previous results. We address both issues by incorporating these computational 

shortcuts and repeating our mass simulations of artesunate-mefloquine (AS-MQ) and AM-LF 

treatment described previously (8). The failure rates to both drugs are shown on Figure 2 of 

that paper; there seemed little point in using the basal, default parameters (see Table S1 of 

(8)) as these resulted in very low failure rates so we selected parameter combination that gave 

a 10–20% failure rate in order to make sure we would capture differences in cure rates due to 

the incorporation of stage specificity. Simulation of AS-MQ used an IC50 for MQ that was 

increased 25-fold above its default value while IC50 for both, AS and DHA, were kept at their 

original default value. These parameters gave a failure rate of 18% (Panel E, Figure 2 of (8)). 

Simulation of AM-LF used a LF IC50 that was increased 50-fold above its default value while 

IC50 for both, AM and DHA, were increased 20-fold above their original default value. These 

parameters gave failure rate of 11% (Panel F, Figure 2 of (8)). 

 

Mass simulations of 10,000 patients were run using the same seed value. Each patient was 

tracked for 100 days following treatment with parameter values and their associated variation 

as described in Table S1 of (8), except for the increased IC50 values described above.  

 

The effects of the artemisinins’ stage specificity were incorporated by increasing the variation 

associated with their maximum kill rate 96 max,

~̂
V  . This was a two-part process in which the 

96 max,

~̂
V   of each infection was initially sampled from the ‘natural’ distribution (originally 

described in (8)) and then re-sampled from a uniform distribution with a two-fold range 

around that initial 96 max,

~̂
V   value. The first stage incorporates the variability observed within 

patients’ infections while the second stage incorporates the variability in kill rates introduced 

by variation in parasite bin distribution at time of treatment (Equation S28). 

 

Above we argue that 96 max,

~̂
V   for the artemisinins should be calibrated using PRR96 (in contrast 

to our previous work which calibrated the kill rate (Vmax) using PRR48 (8)). In order to 
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account for the effects of recalibrating the artemisinins’ kill rate we reduced mean 96 max,

~̂
V   by 

a factor of 2, i.e. from 1.15 per hour (27.6 per day) to 0.6 per hour (14.4 per day). This is 

further explained in the Discussion of the main text. 

 

The stage specificity of LF and MQ are less consequential because of their long half-lives 

(see later) and mainly affect the predicted minimum number of parasites following treatment. 

The methodology assumes that an infection is cured if this predicted number falls below 1. 

We maintain this criterion but now record the minimum predicted number of parasites in each 

patient to check how close it lies to this critical value of 1.  

 

 

4. Running discrete- and continuous-time simulation in practice: 

relaxing the simple drug present/absent assumption 
 

The calibrations made above rest on the assumption that drug(s) are either present and killing 

at their maximal effect or are absent (or, more correctly, present at concentrations sufficiently 

low that they have no effects on the parasite). This was done to make the computational 

approaches more transparent. In practice, investigators will almost certainly wish to apply a 

more nuanced pharmacokinetic/pharmacodynamic approach that can be brought in as 

follows. The method is based on Equation 2 of the main text which gives the number of 

parasites P at time t after treatment (Pt), i.e. 

 

 




t

dtCf
at

t eePP 0

0  
Equation S29 

 

which uses drug concentration at time t to obtain a kill rate by a Michaelis-Menton equation 

as in Equation 3 of the main text, i.e. 
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Equation S30 
 

where Vmax has been calculated according to drug type (Table 1 of the main text). The simple 

approach used in the main text assumes drug is either present at sufficient concentrations to 

kill at Vmax, or is so low as to have no killing effect (represented by or Zt = 1 or Zt = 0 

respectively in Equation 4). In reality, Ct, the drug concentration at time t, may take a few 

hours to reach maximal concentrations as absorption and drug conversion processes take 

place and decays gradually over time violating this assumption of a strict drug 

presence/absence.  

 

The construction of f(C) therefore requires a function describing drug concentration over time 

following treatment, which is then converted to a drug kill rate. In this illustrative example 

we use the simplest pharmacokinetic equation (used previously by several authors e.g. (9-13)) 

describing drug concentration as a function of time following a drug dose that 

instantaneously distributes into a single physiological compartment, so that 
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kt

t e
Vd

D
C    

Equation S31 
 
where Ct is the drug concentration [mg/L] at time t after treatment, D is the dose [mg], Vd is 

the volume of distribution [L], and k is the drug elimination rate per hour or per day. Variants 

of Equation S31 that allow for multiple drug dosing and physiological processes such as drug 

absorption across the gut, conversion to active metabolites, and distribution into different 

physiological compartments are discussed elsewhere (8).  

 

The continuous-time methodology simply uses Equation S29 to describe the whole treatment 

dynamics. The use of a single differential equation (i.e. Equation S29) is more elegant and 

convenient as it makes it unnecessary to stop and restart the simulations at the boundaries 

where drugs change from present to absent (cf. Figure S2) because the boundaries are 

replaced by the gradual, time-dependent decay of drug concentration described by Equation 

S31.  

 

The discrete-time analyses require the calculation of the proportion of parasites in age-bin b 

surviving a one hour period i.e. tb, as in Equation 5 of the main text and as subsequently 

used in Equations 6 and 7 of the main text). This can be calculated from the above 

pharmacological model as follows. First incorporate stage specific killing into Equation S30 

(denoted by the prime symbol) as 

 

   CfYCf b       

Equation S32 
 

 then re-arrange Equation S29 to obtain  
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Equation S33 

 

There is no continuous growth in the discrete-time method because parasite reproduction is 

incorporated after parasites reach 48 hours (Equation 7 of the main text) so a = 0 and 

 

dt
t

t

Cf

etb
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
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1
)'(

,
 

Equation S34 

 

This can then be used in the discrete-time method as specified in Equations 6 and 7 in the 

main text.  
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Table S1. Calibration of artemisinin drug kill rates. The pharmacodynamic profiles of 

artemisinins are the ‘iso-sensitive’ or the ‘hyper-sensitive’ profiles as illustrated on Figure 1 

of the main text. PRR48 is parasite reduction ratio after 48 hours (assumed to be ~104). The 

prefix ‘t’ indicates ‘true’ PRR48, i.e. calculated assuming that all parasites are detected, while 

the prefix ‘a’ indicates that PRR48 calculations use only the ‘apparent’ or ‘observable’ non-

sequestered parasites. In the latter case sequestration may be immediate (‘imm’; all parasites 

immediately disappear after age-bin 14) or more gradual (‘grad’; parasites start to gradually 

sequester after age 11 hours as described previously (1)). We obtained the artemisinin kill 

rate, 48 max,

~̂
V  , by iteration to produce a PRR48 of ~104 with a precision of 0.1% (hence the 

PRR48 is never exactly 104 in the Table). The value of 48 max,

~̂
V   was then used to calculate 

PRR96 and 96 max,

~̂
V   as described in Section 3. 

Pharmacodynamic 

profile 

Bin distribution at start 

of treatment (mean, SD) 

Calibration PRR48 
48 max,

~̂
V   

Iso-sensitive uniform tPRR48 10,037 1.637 

Iso-sensitive uniform aPRR48 (imm) 10,054 1.164 

Iso-sensitive uniform aPRR48 (grad) 9,984 1.364 

Iso-sensitive normal (10.5, 5) tPRR48 10,057 1.415 

Iso-sensitive normal (10.5, 5) aPRR48 (imm) 9,945 1.087 

Iso-sensitive normal (10.5, 5) aPRR48 (grad) 9,933 1.143 

Hyper-sensitive  uniform tPRR48 10,017 1.711 

Hyper-sensitive  uniform aPRR48 (imm) 9,993 1.780 

Hyper-sensitive  uniform aPRR48 (grad) 10,036 1.766 

Hyper-sensitive  normal (10.5, 5)  PRR48 9,988 1.776 

Hyper-sensitive  normal (10.5, 5) aPRR48 (imm) 9,994 1.808 

Hyper-sensitive  normal (10.5, 5) aPRR48 (grad) 9,974 1.804 
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Table S2. Result of mass simulations of treatment by artemether-lumefantrine (AM-LF) and artesunate-mefloquine (AS-MQ). 

Simulations of 10,000 individuals were based on the original model of Kay and Hastings (8) with some of the individual drug IC50 values 

changed as described in the main text to generate predicted drug failure rates in the base model (mean 96 max,

~̂
V   = 27.6 and no correction for stage 

specificity) of 8% and 15% for AM-LF and AS-MQ respectively. The value of mean artemisinin kill rate, 96 max,

~̂
V  , was either 27.6 per day (as in 

the original paper (8)) or reduced to 14.4 per day (for reasons explained in the main text). The impact of correcting (‘corr.’) for the effects of 

parasites age-bin distribution at time of treatment was also investigated (see Equation S28). The minimum parasites number was recorded for 

each individual to find the percentage of simulations where the minimum number of parasites was close (within two log10 units) to the cure/fail 

threshold of one, i.e. between 0.01 and 100.  

 
96 max,

~̂
V   Min. Parasite number (%) 

Treatment 

outcome 

Drug mean corr. <0.01 0.01–0.1 0.1–1 1–10 10–100 >100 % cured 

AM-LF 27.6 No 89.71 1.42 1.16 1.24 1.12 5.35 92.29 

AM-LF 27.6 Yes 88.93 1.39 1.44 1.19 0.94 6.11 91.76 

AM-LF 14.4 No 76.73 2.66 2.37 2.25 2.50 13.49 81.76 

AM-LF 14.4 Yes 75.87 2.70 2.45 2.39 2.33 14.26 81.02 

AS-MQ  27.6 No 77.91 3.60 3.23 3.24 3.09 8.93 84.74 

AS-MQ  27.6 Yes 77.17 3.57 3.39 2.94 3.36 9.57 84.13 

AS-MQ  14.4 No 59.49 2.40 2.64 2.94 3.01 29.52 64.53 

AS-MQ  14.4 Yes 59.89 2.39 2.69 2.85 3.13 29.05 64.97 
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Figure S1. How starting age-bin distributions affect the parasite reduction ratio (PRR) 

and the effective parasite killing rate ( 96 max,

~̂
V  ) of artemisnins. Parasite drug sensitivity is 

described by the iso-sensitive pharamacodynamic profile (Figure 1 in the main text). Age-

bins at time of treatmenet are normally distributed (with SD = 5 hours) but have different 

mean values; the latter are plotted along the x-axis.  
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Figure S2. Estimating parasite number after treatment by a short half-life drug and 

equal killing in all age-bins. Parasite number P is shown on a log scale over time t (in hours) 

after treatment. The red line shows how the initial number of parasites P0 drops while the 

drug is present and acting with maximal kill rate max

~
V . At time point ta the drug concentration 

has declined such that it can no longer kill parasites (see Section 2). The parasite number at ta 

(red star) can be calculated using the equation in the red box (i.e. Equation S11). After time ta 

the parasites start to grow (green line) and the number of parasites can be calculated using the 

equation in the green box (i.e. Equation S12) to obtain the parasite reduction ratio (PRR48, see 

Equation S6) after 48 hours (green star).  
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Figure S3. Changes in parasite numbers following treatment by a drug with long half-

life and stage specific killing (e.g. piperaquine). This was produced using the 

pharmacodynamic profile of drug ‘piperaquine’. Parasites present at time of treatment were 

distributed among age-bins according to paradigm distributions (PD) 1–5 described in 

Section 1. The discrete-time model used drug killing rate maxV̂   = 0.3684, Yb = 1 for age-bins 

12 to 36 inclusive and Yb = 0 for age-bins 0 to 11 and 37 to 48 inclusive and the continuous-

time model used drug killing rate maxV̂  = 0.1919. Note that the number of parasites is the true 

number, i.e. circulating plus sequestered, plus one (it is conventional to plot parasites + 1 

when using a log scale because log(0) is undefined). 
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Figure S4. Changes in parasite numbers following treatment by a drug with short half-

life and stage specific killing such as artemisinin and assuming no drug is present 

after96 hours. The difference between discrete- and continuous-time predictions arise 

because parasites reproduce at the end of their 48-hour cycle. This is tracked in the discrete-

time methods but not by its continuous-time equivalent. Calibration (and dynamics up to 96 

hours) are as for Figure 4 of the main text. Note that the number of parasites is the true 

number, i.e. circulating plus sequestered, plus one (it is conventional to plot parasites + 1 

when using a log scale because log(0) is undefined). 
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Figure S5. Distribution of artemisinin drug kill rates, 
96 max,

~̂
V , among patients in a mass 

simulations of 10,000 patients treated with artemether-lumefantrine (AM-LF). (A) 

Original model from Kay and Hastings (8), i.e. the mean drug killing rate of 
96 max,

~̂
V = 27.6 per 

day for artemether (AM) and its active metabolite dihydroartemisinin (DHA) with no 

correction for stage specific killing. (B) As for (A) but with correction for stage specific 

killing of artemisinins included by resampling every value chosen from (A) from a two-fold 

uniform variation around that chosen value (Equation S28). (C) Mean drug killing rate  
96 max,

~̂
V  

for AM and DHA has been reduced to 14.4 with no correction for stage specific killing. (D) 

As for (C) but with correction for stage specific killing of artemisinins included by 

resampling every value chosen from (C) from a two-fold uniform variation around that 

chosen value (Equation S28). Note that neither the mean drug killing rate, 
96 max,

~̂
V , nor its 

variance was altered for lumefantrine (LF) and that the third column is included simply to 

make this point clear and to act as an internal ‘control’ demonstrating that neither the mean 

nor variance had changed for LF.  

 



 23 

 

Figure S6. Distribution of artemisinin drug kill rates, 
96 max,

~̂
V , among patients in a mass 

simulations of 10,000 patients treated with artesunate-mefloquine (AS-MQ). (A) 

Original model from Kay and Hastings (8), i.e. the mean drug killing rate of 
96 max,

~̂
V = 27.6 per 

day for artesunate (AS) and its active metabolite dihydroartemisinin (DHA) with no 

correction for stage specific killing. (B) As for (A) but with correction for stage specific 

killing of artemisinins included by resampling every value chosen from (A) from a two-fold 

uniform variation around that chosen value (Equation S28). (C) Mean drug killing rate  
96 max,

~̂
V  

for AS and DHA has been reduced to 14.4 with no correction for stage specific killing. (D) 

As for (C) but with correction for stage specific killing of artemisinins included by 

resampling every value chosen from (C) from a two-fold uniform variation around that 

chosen value (Equation S28). Note that neither the mean drug killing rate, 
96 max,

~̂
V , nor its 

variance was altered for mefloquine (MQ) and that the third column is included simply to 

make this point clear and to act as an internal ‘control’ demonstrating that neither the mean 

nor variance had changed for MQ. 
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Figure S7. How patients’ differing bin distribution at time of treatment introduces 

variance into the artemisinin killing rate (measured as 96 max,

~̂
V  ). Note that all patients 

harbour infections with the same sensitivity profile to artemisinins (i.e. calibrated to give 

PRR48 = 104 on a uniform age-bin distribution using the iso-sensitive pharmacodynamic 

profile on Figure 1; see text for details) so differing age-bin distributions at time of treatment 

is the sole source of variation in artemisinin kill rates. The effect is illustrated for three 

hypothetical parasite age-bin distributions in patient populations as described in the main 

text, i.e. for a simulated patient populations in a high transmission setting (SPP1), in a low 

transmission setting with good clinical infrastructure (SPP2) and in a low transmission setting 

with poor clinical infrastructure (SPP3). 
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Figure S8. Variance in artemisinin killing with high mean kill rate ( max
~̂ ). As for Figure 

S7 but with the value of the artemisinin killing rate, maxV 
~̂

, doubled so that maxV 
~̂

= 2.33. The 

values of the equivalent continuous time killing rate, 96 max,

~̂
V  , along the x-axis illustrate the 

effects of parasites initial age-bin distribution on killing rate.  
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Figure S9. Variance in artemisinin killing with low mean kill rate ( max
~̂ ). As for Figure 

S7 but with the value of the artemisinin killing rate, maxV 
~̂

, halved so that maxV 
~̂

= 0.58. The 

values of the equivalent continuous time killing rate, 96 max,

~̂
V  , along the x-axis illustrate the 

effects of parasites initial age-bin distribution on killing rate. 
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Figure S10. Total and circulating parasite numbers in paradigm distributions 1-5 

following artemisinin treatment at times 0, 24 and 48 hours post-treatment. This shows 

total parasite numbers (solid lines) over time (as in Figure 4 of the main text) and the number 

of circulating (i.e. observable) parasite (dashed lines). The symbols indicate true (circles) or 

observable (triangles) parasite numbers at start of treatment (empty symbols) and at 48 hours 

(filled symbols) used to calculate the true and apparent parasite reduction ratio in Table 2 of 

the main text. Note that the true reduction in parasite numbers at 48 hours is always less than 

the reduction in observable, circulating parasites. 
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Figure S11. Effect of artemisinin killing on the age-bin distribution of parasites. This 

illustrates the number of parasites in each age-bin at the start of treatment and 48 hours later 

for two of the paradigm distributions, i.e. (A) PD1 and (B) PD2, with daily doses of an 

artemisinin i.e. at times 0 and 24 hours after treatment. The short pulses of stage specific 

artemisinin killing significantly alter the age-bin distribution between the start of treatment 

(solid lines) and the census period 48 hours later (dashed lines). Depending on the initial age-

bin distribution of the parasites the magnitude of the effect on observable, circulating parsites 

(age-bins up to 14) and sequestered parasites (age-bins 15 and above, grey background) 

varies greatly. Note that the starting age-bin distribution in (B) has a large discontinuity; this 

arises because we limit the distribution to ± 15 hours around the mean and is largely an 

artefact of the log scale because at the point of discontinuity the number of parasites in the 

bins are already <10-3 those of the maximum value (the distribution is, of course, 

indistinguishable from normal on a arithmetic scale).  
 


