Supporting Information

1. Syntheses and characterization of $1b \cdot PF_6$ and $[(\eta^6 - p - cymene)Ru(kNPh, k^2NO)]$ (3a).

[(η⁶-p-cymene)Ru(*k***NHBn,***k***NOH)CI]PF₆ (1b·PF₆): KPF₆ (0.05 g, 0.26 mmol) was added to a CH₂Cl₂ (15.0 mL) solution of 1b** (0.15 g, 0.26 mmol), and the mixture was stirred overnight. The resulting suspension was filtered to remove insoluble KCl and the solvent was evaporated to dryness from the orange solution to afford an orange solid, which was identified as compound **1b·PF₆** (yield 0.16 g, 90 %). C₂₇H₃₈ClF₆N₂OPRu (688.09): calcd. C 47.13, H 5.57, N 4.07; found C 46.80, H 4.89, N 3.32. IR (KBr): v = 3300-3100 (NH/OH), 1646, 1614 (C=N) cm⁻¹. ¹H NMR (400.1 MHz, 293 K, CDCl₃): δ = 7.41 (overlapped, 5H, -C₆H₅), 5.85, 5.81 (both d, each 1H, ³J_{HH} = 6, p-cymene-C₆H₄), 5.46, 5.44 (both d, each 1H, ³J_{HH} = 8, p-cymene-C₆H₄), 4.78 (s, 1H, =CH₂), 4.61 (m, 2H, -CH₂Ph) 4.53 (br, 1H, =CH₂), 3.92 (m, 1H, NH), 3.61 (d, 1H, ²J_{HH} = 14, -CH₂⁶), 2.58 (spt, 1H, ³J_{HH} = 6, p-cymene-CHMe₂), 2.55 (br, 1H, -CH⁵), 2.32 (dd, 1H, ²J_{HH} = 16, ³J_{HH} = 6, -CH₂⁶), 1.97 (overlapped, 4H, p-cymene-CH₃ + CH₂^{3.4}), 1.81 (m, 1H, -CH₂^{3.4}), 1.64 (m, 1H, -CH₂^{3.4}), 1.66 (s, 3H, CH₃-C=), 1.36 (m, 1H, -CH₂^{3.4}), 1.19, 0.99 (both d, each 3H, ³J_{HH} = 6, p-cymene-CH(CH₃)₂) ppm. ³¹P NMR (161.9 MHz, 293 K, CDCl₃): δ = - 144.0 (spt, J_{P-F} = 692 Hz, PF₆) ppm.

[(n⁶-p-cymene)Ru(kNPh,k²NO)] (3a): A THF solution of 1a (0.25 g, 0.44 mmol) was treated with NaOMe (0.05 g, 0.98 mmol) at room temperature. After stirring of the mixture during 2 hours, evaporation of the THF and extraction from the solid residue with toluene affords an orange solution from which an orange solid was isolated, washed with hexane (5x2 mL) and fully characterized as derivative **3a** (yield 0.18 g, 83 %). C₂₆H₃₄N₂ORu (491.63): calcd. C 63.52, H 6.97, N 5.70; found C 63.99, H 6.90, N, 5.53. IR (KBr): v = 1622, 1590 (C=N) cm⁻¹. ¹H NMR (plus HSQC, plus HMBC, plus COSY, 400.1 MHz, 293 K, CDCl₃): δ = 7.28 (m, 2H, C₆H₅^{o/m}), 7.16 (m, 1H, C₆H₅^p), 7.10 (m, 2H, C₆H₅^{o/m}), 5.26 (d, 1H, ${}^{3}J_{HH} = 6$, p-cymene-C₆H₄), 5.12 (1H, =CH₂), 5.10, 5.02, 4.81 (both d, each 1H, ${}^{3}J_{HH} = 6$, pcymene-C₆H₄), 4,73 (br, 1H, =CH₂), 3.88 (d, 1H, ${}^{2}J_{HH}$ = 16, -CH₂⁶), 2.63 (spt, 1H, ${}^{3}J_{HH}$ = 6, CHMe₂), 2.38 (br, 1H, -CH⁵), 2.12 (s, 3H, p-cymene-CH₃), 1.85 (dd, 1H, ${}^{2}J_{HH} = 16$, ${}^{3}J_{HH} = 6$, -CH₂⁶), 1.61 (overlapped, 4H, CH₃-C= + -CH₂⁴), 1.47 (overlapped, 2H, 1-CH₂⁴ + 1-CH₂³), 1.25, 1.23 (overlapped, both d, each 3H, ³J_{HH} = 6, CH(C*H*₃)₂), 1.17 (m, 1H, -CH₂³), 1.05 (s, 3H, HNC-C*H*₃) ppm. ¹³C-NMR (plus APT, plus gHSQC, plus HMBC, 100.6 MHz, 293 K, CDCl₃): δ = 163.4 (-, C=N-O), 158.3 (-, C_{ipso}-Ph), 144.9 (-, C=CH₂), 128.0, 126.6, 125.2 (+, -C₆H₅^{o,m,p}), 112.3 (-, =CH₂), 100.3, 89.9 (-, C_{ipso}-p-cymene), 83.1, 82.9, 82.6, 80.8 (+, p-cymene-C₆H₄), 77.7 (-, C-N-Ru), 42.1 (+, -CH⁵), 33.8 (-, -CH₂³), 31.4 (+, pcymene-CHMe₂), 26.2 (−, -CH₂⁴), 25.3 (-CH₂⁶), 24.1, 24.0 (both +, p-cymene-CH(CH₃)₂), 23.8 (+, CH₃-CNH), 22.8 (+, CH₃-C=), 20.0 (+, p-cymene-CH₃) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 329.0 (=NO), 263.5 (Ru-NPh) ppm.

Preligands a, b, c and compounds 1a, 1b and 2b

Syntheses and characterization of amino-oxime derivatives (2S,5R)- $[NHR,NOH]^1$ (R = a, b, c) and ruthenium compounds $[(\eta^6-p-cymene)Ru(kNHR,kNOH)CI]CI (R = Ph$ **1a**, Bn**1b** $)² and <math>[(\eta^6-p-cymene)Ru]$ (*k*NHBn, k^2 NO)CI] (**2b**)² was reported elsewhere. During this work, we performed the IR and ¹⁵N-¹H HMBC spectra of all these compounds, as well as the spectroscopic NMR characterization in methanol d_4 of compounds **1a** and **1b**, since their NMR spectra in CDCl₃ changed dramatically with the concentration (see Dilution Spectra, page S9). Solubility in water of 1a, 1b and 2b is given in mM concentration. Data are given in the following section:

(2S,5R)-[NHPh,NOH] (a). IR (KBr): v = 3100-3300 (NH/OH), 1644, 1602 (C=N) cm⁻¹. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 343.3 (=NOH), 84.1 (NHPh) ppm.

(2S,5R)-[NHBn,NOH] (b). IR (KBr): v = 3100-3320 (NH/OH), 1644, 1602 (C=N) cm⁻¹. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 340.0 (=NOH), 60.0 (NHBn) ppm.

(2S,5R)-[NH(2-pic),NOH] (c). IR (KBr): v = 3086-3314 (NH/OH), 1650, 1595 (C=N) cm⁻¹. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 343.3 (=NOH), 305.3 (=Npic), 51.8 (NH(2-pic)) ppm.

[(n⁶-p-cymene)Ru(kNHPh,kNOH)CI]CI (1a): IR (KBr): v = 3391-3151 (NH/OH), 1642, 1597 (C=N) cm⁻ ¹. Solubility in H₂O at 24 °C (mM): 21 ± 2. Value of pH ([9.0 mM]) in H₂O at 24 °C: 4.62.

¹H NMR (plus HMBC, gHSQC, plus COSY, 400.1 MHz, 293 K, CD₃OD): δ = 7.89, 7.65, 7.52, 7.41, 7.02 (all br, each 1H, C_6H_5), 6.19, 5.86, 5.52 (all d, each 1H, ${}^3J_{HH} = 6$, C_6H_4), 5.39 (s, 1H, NH), 4.85, 4.85 (overlapped with CD₃OD, 2H, C₆H₄ + =CH₂), 4.60 (br, 1H, =CH₂), 3.66 (d, 1H, ${}^{2}J_{HH}$ = 15, CH₂⁶), 2.71 (spt, 1H, ³J_{HH} = 7, p-cymene-CHMe₂), 2.53 (m, 1H, -CH⁵), 2.56 (m, 1H, -CH₂⁶), 2.27 (s, 3H, p-cymene-CH₃), 1.78 (m, 1H, -CH₂⁴), 1.79 (s, 3H, CH₃-C=), 1.67 (s, 3H, PhNC-CH₃), 1.55 (m, 3H, -CH₂⁴+ -CH₂³), 1.13, 0.62 (both d, each 3H, ${}^{3}J_{HH} = 7$, p-cymene-CH(CH₃)₂) ppm. ${}^{13}C$ NMR (plus APT, plus gHSQC, plus HMBC, 100.6 MHz, 293 K, CD₃OD): δ = 170.2 (-, C=NO), 146.3 (-, =C-Me), 144.1 (-, C_{ipso}-Ph), 130.8, 130.8, 129.2, 125.6, 126.2, 114.2 (-, =CH₂), 106.3 (-, C_{ipso}, p-cymene-CCHMe₂), 98.8 (-, C_{ipso}, p-cymene-CMe), 87.3, 86.1, 87.9, 81.9 (all +, p-cymene-C₆H₄), 71.6 (−, C-NH), 49.9 (+, -CH⁵), 36.0 (−, -CH₂³), 31.9 (+, p-cymene-CHMe₂), 28.9 (−, -CH₂⁶), 24.1 (+, p-cymene-CH(CH₃)₂), 24.7 (-CH₂⁴), 22.6 (+, CH₃-C=), 22.2 (+, CH₃-CNPh), 19.0 (+, p-cymene-CH(CH₃)₂), 18.6 (+, p-cymene-CH₃) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 272.1 (=NOH), 68.1 (NHPh) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CD₃OD): δ = 266.5 (=NOH), 68.2 (NHPh) ppm.

[(n⁶-p-cymene)Ru(*k*NHBn,*k*NOH)CI]CI (1b): IR (KBr): v = 3400-3040 (NH/NOH), 1643, 1600 (C=N) cm⁻¹. Solubility in H₂O at 24 °C (mM): 28 \pm 4. Value of pH ([9.0 mM]) in H₂O at 24 °C: 4.70.

¹ Carman, R. M.; Mathew, P. C.; Saraswathi, G. N.; Singaram, B.; Verghese, J. Aust. J. Chem. **1977**,

³⁰, 1323 ² Ibn El Alami, M. S.; El Amrani, M. A.; Dahdouh, A.; Roussel, P.; Suisse, I.; Mortreux, A. *Chirality* **2012**, 24, 675-682 and references therein.

¹H NMR (plus gHSQC, plus HMBC, plus COSY, 400.1 MHz, 293 K, CD₃OD): δ = 7.45 (m, 5H, C₆H₅), 5.85, 5.84, 5.46, 5.33 (d, each 1H, ³J_{HH} = 6, p-cymene-C₆H₄), 4.79 (m, 1H, =CH₂), 4.62 (second order system, 2H, -CH₂Ph), 4.60 (br, 1H, =CH₂), 4,02 (br, 1H, NH), 3.60 (d, 1H, ²J_{HH} = 16, CH₂⁻⁶), 2.53 (overlapped, 3H, p-cymene-CHMe₂ + CH₂⁻⁶ + CH⁵), 2.14 (m, 1H, -CH₂⁻³), 1.99 (s, 3H, p-cymene-CH₃), 1.83 (m, 2H, -CH₂⁴), 1.66, 1.65 (both s, each 3H, BnNC-CH₃ + CH₃-C=), 1.39 (m, 1H, -CH₂⁻³), 1.22, 1.02 (both d, each 3H, ³J_{HH} = 8, p-cymene-CH(CH₃)₂) ppm. ¹³C- NMR (plus APT, plus gHSQC, 100.6 MHz, 293 K, CD₃OD): δ = 170,8 (-, C=N), 145.9 (-, =C-CH₃), 137.1 (-, C_{ipso}-Ph), 130.1, 129.5, 129.4 (all +, -C₆H₅^(o,m,p)), 113.2 (-, =CH₂), 108.9, 98.8 (both -, C_{ipso}-p-cymene), 87.5, 84.8, 83.3, 83.2 (all +, -C₆H₄), 70.5 (-, C-NH), 55.9 (-, CH₂Ph), 39.4 (+, -CH⁵), 35.4 (-, -CH₂⁻³), 32.5 (+, p-cymene-CH(Me₂), 29.1 (-, -CH₂⁻⁶), 25.1 (-CH₂⁻⁴), 23.9 (+, p-cymene-CH(CH₃)₂), 22.3 (+, CH₃-C-NH), 20.8 (+, p-cymene-CH(CH₃)₂), 20.7 (+, CH₃-C=), 18.4 (+, p-cymene-CH₃) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 272.0 (=NOH), 50.4 (NHBn) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 272.0 (=NOH), 50.4 (NHBn) ppm. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CD₃OD): δ = 266.7 (=NOH), 50.0 (NHBn) ppm.

[(η⁶-p-cymene)Ru(*k***NHBn,***k***NO)Cl] (2b).** IR (KBr): v = 3400-3060 (NH/NOH), 1700, 1643 (C=N) cm⁻¹. Solubility in H₂O at 24 °C (mM): 20.0 ± 4. ¹⁵N NMR (gHMBC, 40.5 MHz, 293 K, CDCl₃): δ = 291.7 (=NOH), 50.4 (NHBn) ppm.

2. ¹H NMR dilution data

Dilutions experiments were carried out from an initial stock solution. This initial stock solution (500 μ L) was diluted with 100 μ L of CDCl₃ and the dilution process sequentially repeated for the next 9 samples.

OriginLab Software was used for least-squares curve fitting to the theoretical equation:

Dimerization model, Eq.1: $\delta = \delta m + ((\delta d - \delta m)^*(1 + ((1 - ((8^*Ka^*C) + 1)^*(1/2)))/(4^*Ka^*C)))$ or

Infinite association model, Eq.1: $\delta = \delta m + ((\delta a - \delta m)^*(1 + ((1 - ((4^*Ka^*C) + 1)^{(1/2)}))/(2^*Ka^*C))))$

Where δm = calculated chemical shift of the monomer, δd = calculated chemical shift of the dimer; Ka = association constant; C = Total concentration; δa = average chemical shift of aggregates.

1a. ¹H NMR dilution data of 1a and 1b in CDCI₃

Table S1. Tabulated ¹H NMR dilution data for the –CH₂⁶ protons of **1a** at 22 °C

Conc ^a	$\delta - CH_2^6$
65,185	3,752
32,592	3,780
21,728	3,799
16,296	3,810
13,037	3,818
10,864	3,824
9,312	3,829
8,148	3,831
7,243	3,836
6,518	3,839
δm^b	3.871±0.003
δd^{c}	3.619±0.009
Ka ^d	13.27±1.5
R^{e}	0.99915

^aTotal milimolar concentration of compound.^b calculated chemical shifts for the monomer. ^c calculated chemical shifts for the dimer. ^d Association constant of dimerization (M⁻¹). ^e goodness-of-fit value

Figure S1. Concentration dependence of ¹H NMR chemical shifts for the –CH₂⁶ proton of 1a in CDCl₃

Table S2. Tabulated ¹H NMR dilution data for the $-CH_2^{6}$ protons of **1b** at 22 °C

Conc ^a	$\delta - CH_2^6$			
67.406	3.661			
33.703	3.696			
22.469	3.717			
16.851	3.730			
13.481	3.742			
11.234	3.752			
9.629	3.761			
8,426	3.768			
7,489	3.772			
6,741	3.776			
δm^b	3.849±0.006			
δd^{c}	3.542±0.007			
Ka ^d	29.95±3.8			
R^{e}	0.99931			

^aTotal milimolar concentration of compound.^b Calculated chemical shifts for the monomer. ^c Calculated chemical shifts for the dimer. ^d Association constant of dimerization (M⁻¹). ^e goodness-of-fit value

Figure S2. Concentration dependence of ¹H NMR chemical shifts for the $-CH_2^6$ proton of **1b** in CDCl₃

3. DOSY NMR data

DOSY experiments were acquired in a Bruker Ultra Shield 400 spectrometer, using the ledbpgp2s pulse program. The gradient strength (g) was the variable parameter, while Δ (diffusion time) and δ (diffusion gradient length) were kept constant during the 2D-DOSY study. Appropriate Δ and δ values were selected for each sample by optimization of the attenuation of the ¹H NMR signals in 1D-versions of the diffusing ledbpgp1s pulse program. The values of Δ and δ were 40-100 ms and 1.5-2.5 ms, respectively; depending on the sample and the solution concentration (eddy current delay was set to 5 ms in all he experiments). The pulse gradients (g) were incremented from 2 to 95% of the maximum gradient strength in a linear ramp. The diffusion dimension was processed with Bruker topspin T1/T2 software.

Compound	Solvent	С	$10^{10} \cdot Dt_{(s)}$	10^{10} ·Dt _(TMSS)	10^{10} ·Dt _(TMSO)
1a	CDCl ₃	11.7	6.957	11.31	10.76
1a	CDCl ₃	63.0	5.180	11.06	10.56
1a	CDCl ₃ :C ₆ D ₆ ^a	5.31	6.685	10.88	10.13
1a	CDCl ₃ :C ₆ D ₆ ^a	65.5	3.676	10.62	9.952
1a	CD ₃ OD	14.5	6.966	9.648	9.063
1a	CD ₃ OD	76.5	6.280	9.265	8.661
1a	$(CD_3)_2CO$	7.75	11.67	18.49	16.72
1a	$(CD_3)_2CO$	64.9	10.02	17.08	15.59
1c	(CD ₃) ₂ CO	3.25	10.59	19.61	17.70
1c	(CD ₃) ₂ CO	62.1	10.42	19.61	17.70
1b	CDCl ₃	6.92	7.894	12.62	11.74
1b	CDCl ₃	30.7	4.442	10.72	10.13
1b	CDCl ₃	62.5	3.362	10.58	9.848
1b·PF ₆	CDCl ₃	6.10	5.473	10.71	10.17
1b PF ₆	CDCl ₃	52.3	4.346	10.62	10.07
2b	CDCl ₃	7.38	5.739	11.03	10.46
2b	CDCl ₃	81.2	4.830	11.03	10.27
3b	CDCl ₃	5.82	8.542	11.49	10.66
3b	CDCl ₃	87.1	7.341	10.67	9.914

Table S3. Full data of diffusion coefficients (Dt, $m^2 \cdot s^{-1}$) for solutions of TMSS (1mM) and TMSO (1mM) at various concentrations (C, mM) of compounds **1a-c**, **1b-PF**₆, **2b** and **3b** at 295 K.

 a CDCl₃:C₆D₆ = 8:2

4. Selected NMR spectra

4a. Dilution Spectra

a) ^{1}H NMR of **1a** in CDCl₃ at different concentrations (25 $^{\circ}C$)

6.52 mM			Jul.	h	J
7.24 mM	N	II	U	M	J.J.
8.15 mM	N		lh		J
9.31 mM			_L.M	h	J
10.86 mM	N		.L.I		J.
13.04 mM					
16.30 mM					han
21.73 mM			M	m	Alu
35.59 mM	t		<u> </u>	M	
65.18 mM				M	M
10.0	1 1 1	5.	0		I

ppm (t1)

b) ¹H NMR (full and expansion) of **1b** in CDCl₃ at different concentrations (25 °C)

Assignment of p-cymene proton resonances of 1b in CDCI₃

c) Expansion of ¹H-¹H COSY NMR spectrum of **1b** in CDCl₃ (67.41 mM)

d) Expansion of ¹H-¹³C HMBC NMR spectrum of **1b** in CDCl₃ (67.41 mM)

e) Expansion of ${}^{1}H{}^{-1}H$ COSY NMR spectrum of **1b** in CDCI₃ (3.45 mM)

f) Expansion of ¹H-¹³C HMBC NMR spectrum of **1b** in CDCl₃ (3.45 mM)

4b. DOSY spectra

d) DOSY NMR of 1a, (5.31 mM), TMSS (1mM) and TMSO (1mM) in C_6D_6 :CDCl₃ (8:2)

c) DOSY NMR of **1a**, (65.5 mM), TMSS (1mM) and TMSO (1mM) in C₆D₆:CDCl₃ (8:2)

e) DOSY NMR of 1a, (64.9 mM), TMSS (1mM) and TMSO (1mM) in acetone-d₆

g) DOSY NMR of 1a, (76.5 mM), TMSS (1mM) and TMSO (1mM) in methanol-d₄

4c. Selected NMR spectra of amino-oxime compounds a, b, b·HCl, c and corresponding ruthenium compounds 1a-c, 2b, 3a and 3b.

- 1. ¹H NMR of (2S,5R)-[CIH·NHBn,NOH] (**b·HCI**) in DMSO-*d*₆

2. $^{1}\text{H-}^{15}\text{N}$ HMBC NMR of (2S,5R)-[NHPh,NOH] (a) in CDCl₃

S16

3. ¹H-¹⁵N HMBC NMR of (2S,5R)-[NHBn,NOH] (**b**) in CDCl₃

4. $^{1}H^{-15}N$ HMBC NMR of (2S,5R)-[NH(2-pic),NOH] (c) in CDCl₃

5. $^{1}\text{H}^{-15}\text{N}$ HMBC NMR of **1b** in CDCl₃

6. ¹H NMR of **1a** in D_2O

7. ¹H NMR of **1b** in D_2O

8. ¹H NMR of **1c** in D_2O

NMR spectra of 1c in acetone-d₆

1. ¹H NMR of **1c**

2. ¹³C APT-NMR of **1c**

3. ¹H-¹³CHSQC NMR of **1c**

5. $^{1}\text{H}-^{15}\text{N}$ HMBC NMR of **1c**

NMR spectra of 3b in CDCl₃

1. ¹H NMR of **3b**

S24

1. ¹³C-¹H HSQC NMR of **3b**

NMR spectra of 3a in CDCl₃

1. ¹H NMR of **3a**.

2. ¹H-¹⁵N HMBC NMR of **3a**.

5. NMR experiments under physiological conditions.

Phosphate buffer saline (PBS) was prepared according to Cold Spring Harbor Protocols (http://cshprotocols.cshlp.org/content/2006/1/pdb.rec8247) using NaCl, KCl, Na₂HPO₄ and KHPO₄ in D₂O. Adjustment of pH to 7.40 was carried out using a DCl solution in D₂O (0.01M) with the help of a HANNA HI208 pHmeter. Compounds **1a-1c** were then dissolved in 2500 μ L of the freshly prepared PBS (6-9 mM of ruthenium compounds), final pH measured (7.36-7.38) and time-dependent ¹H NMR spectra of 500 μ L aliquots of final solutions were carried out at 25 °C.

Figure S3. ¹H NMR spectrum (25 °C) of: **A) 1b** in D₂O, **B)** Phosphate buffer saline (PBS) in D₂O, **C) 1b** in PBS solution after 24h at r.t. **D) 1b** in PBS solution after 48h at r.t. **E) 1b** in PBS solution after 72 h at r.t., **F) 1b** in PBS solution after 5 days at room temperature.

Figure S4. Full ¹H NMR spectrum (25 °C) of **1b** in PBS solution after 72 h at r.t.

A 500 μ L aliquot of **1b** in PBS (pH = 7.4), prepared as described above, was warmed up to ca. 36 °C, and time-dependent ¹H NMR spectra were carried out at 25 °C. Spectra of this experiment are shown in Figure S5.

Figure S5. ¹H NMR spectrum (25 °C) of: **A)** Phosphate buffer saline (PBS) in D_2O , **B) 1b** in D_2O , **C) 1b** in PBS solution after 24h at 36 °C **D) 1b** in PBS solution after 72h at 36 °C.

6. In vitro assays.

Figure S6. Effect of derivatives A) **1a**, B) **1b** and C) **1c** on PC3 cells viability, compared to that of ammonium-oxime compounds **a**-**HCI-c**-**HCI** and ruthenium dimer $[(\eta^6-p-cymene)RuCl_2]_2$. Cells were treated with increasing doses of organic and ruthenium compounds for 3 hours. Cell viability was measured by means of MTT assay. The results are expressed as a percentage of live cells compared to control. Data are the mean ± S.E.M. of at least three experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001 versus Control.

