
ARTICLE

Integrative Multi-omic Analysis of Human Platelet eQTLs
Reveals Alternative Start Site in Mitofusin 2

Lukas M. Simon,1,2 Edward S. Chen,2 Leonard C. Edelstein,3 Xianguo Kong,3 Seema Bhatlekar,3

Isidore Rigoutsos,4 Paul F. Bray,3,* and Chad A. Shaw2,5,*

Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide.

Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of

how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed

cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by per-

forming allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate

significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of

platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues.

Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the

eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unan-

notated alternateMFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that

MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific reg-

ulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for in-

terpreting GWAS results.
Introduction

Cardiovascular disease (CVD) is a major cause of death

worldwide. Thrombotic events, such as myocardial infarc-

tion (MI) and stroke, occur when occlusive platelet

thrombi form at the site of a ruptured atherosclerotic pla-

que.1–5 The critical role of platelets in the pathophysiology

of CVD events is further underscored by the standard use

of anti-platelet agents in the management of the disease.

However, there is little mechanistic understanding to

explain why some individuals form occlusive thrombi at

the site of ruptured atherosclerotic plaques, whereas other

individuals repair the wound without occluding the vessel.

Inter-individual variation in platelet reactivity,6 volume,

and number7 are likely contributors given that these

platelet phenotypes have been prospectively shown to be

a risk for recurrent coronary syndromes.8 Abundant evi-

dence suggests that CVD has a genetic component.9–13

However, the genetic mechanisms underlying CVD risk

in the general population are not fully characterized.

Genome-wide associations studies (GWASs) have identi-

fied links between CVD risk and genetic variants. However,

many disease-associated variants are located in non-coding

regions of the genome, making it difficult to identify the

mechanism of function.14–16 Moreover, variations at the

DNA level do not pinpoint a tissue of action critical to

the development of a higher-level GWAS phenotype such

as CVD.17 Integration of expression quantitative trait loci

(eQTLs) from relevant tissues with GWAS results has
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been proposed as an important approach to overcoming

these challenges.18 eQTLs can provide mechanistic in-

sights into gene expression in disease-relevant tissues by

identifying cell-type-specific regulatory variants. There-

fore, eQTL data are considered a key intermediate to con-

necting expression changes with higher-level phenotypes

and clinical outcomes represented by GWAS results.19,20

Given the role platelets play in the etiology and patho-

genesis of CVD, we hypothesized that eQTL analysis in

human platelets might connect regulatory variants in

platelets with functional expression changes at loci previ-

ously linked to CVD by GWASs. Although platelets lack a

nucleus, they inherit their transcriptome from their parent

bonemarrow progenitors, megakaryocytes. Because it is far

easier to obtain platelets and because their transcriptome

strongly correlates with that of megakaryocytes,21,22

platelet RNA represents a valuable resource for identifying

and characterizing relevant gene expression in thrombotic

disorders. We now report a generalizable approach for link-

ing GWAS hits to physiology and disease. This approach

integrates cell-type-specific eQTL analysis with primary-

tissue multi-omic data from the platelet RNA and expres-

sion 1 (PRAX1) study together with other public datasets,

such as those of the Genotype-Tissue Expression (GTEx)

project23 and ENCODE.24 Our analyses and experiments

with rs1474868, previously associated with MI by

GWASs,25 revealed that rs1474868 marks the platelet

MFN2 (MIM: 608507) eQTL peak and drives expression

of a platelet-specific alternative 50 start site of MFN2. In
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addition, we identified a significant association between

MFN2 expression levels and platelet count. Overall, our

findings demonstrate the power of integrating primary-tis-

sue eQTL analysis with multi-omic data to interpret and

inform functional genomics of GWASs in CVD and other

diseases.
Material and Methods

The PRAX1 Study
The goal of the PRAX1 study was to identify gene-expression

correlates responsible for inter-individual variation in platelet

function. As described earlier,26,27 154 healthy individuals (80 of

European and 74 of African ancestry) were recruited between

2010 and 2011. For all individuals, demographic information

was collected, and platelet functional phenotyping, genome-

wide genotyping, and global mRNA profiling were performed.

We obtained a complete blood count and mean platelet volume

by using an ABX Micros 60 CS (Horiba ABX). Informed consent

was obtained from all participants with the approval of the insti-

tutional review boards of Baylor College of Medicine in Houston

and Thomas Jefferson University in Philadelphia. Research was

conducted in accordance with the Declaration of Helsinki.

Gene Expression Data from the PRAX1 Study
We measured gene expression of PRAX1 samples by using the

Human Gene 1.0 ST microarray (Affymetrix) as described previ-

ously28 (these data are available in the Gene Expression Omnibus

under accession number GEO: GSE49921). eQTL mapping anal-

ysis was restricted to 5,695 autosomal, uniquely mapping,

commonly expressed platelet mRNAs as defined in Table S1 of

Simon et al.28

RNA-Seq Data from the PRAX1 Study
A subset of ten subjects from the PRAX1 study were analyzed with

RNA-sequencing (RNA-seq) technology in an independent study

by Londin et al.29 (The corresponding next-generation sequencing

data files are available in the Sequence Read Archive under study

identifier SRA: SRP028846.)Next,weconverted raw sequencingfiles

from SOLiD to FASTQ format and trimmed adapters with the ‘‘cuta-

dapt’’ tool. To improvemapping accuracy, we performed a two-pass

alignment strategy as outlined in Engstrom et al.30 First, we used

STARv.2.3.1 to align reads to theUCSCGenomeBrowser hg19 refer-

ence genome.We then used the resulting file on splice junction loci

and the hg19 FASTA sequence to generate sample-specific genomes

with the –genomeGenerate and –sjdbFileChrStartEnd functions.

Reads were subsequently aligned to each sample-specific hg19

index. As mentioned, these RNA-seq data have been previously

published, and no global quantification of gene expressionwas per-

formed for this current study, given that the RNA-seq data were

exclusively used in the allelic-imbalance analysis and detailed

follow-up analyses of MFN2 transcription. The RNA-seq data were

not used in the eQTL-mapping analysis.

Genotype Data from the PRAX1 Study
DNA from the buffy coats of PRAX1 study subjects was hybridized

to the HumanOmni5 array (Illumina) as described earlier26 and

genotyped for approximately five million markers. Genotype

data were restricted to 1,927,172 markers passing a cohort-specific

minor-allele-frequency cutoff of 5%.
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eQTL Mapping
We applied a two-pass eQTL-mapping strategy. First, we used

cohort genotype- andmicroarray-based expression data to identify

612 genes containing at least one significant eQTL association (p<

1e�6, multiple linear regression), termed eGenes. Next, using

IMPUTE2 and data from the 1000 Genomes Project, we imputed

additional genotypes only for those 612 eGenes. Finally, we

repeated association testing by using the extended set of both gen-

otyped (368,794) and imputed (1,071,757) variants to fine map

the platelet eQTL landscape of these 612 eGenes. We used R statis-

tical software v.3.0.1 in conjunction with the MatrixEQTL pack-

age31 to determine significant associations between variant-allele

dosage and gene expression levels. We restricted the cis search

space to within 500 kb of the transcription start site and used

variant-allele dosage (0, 1, and 2) to additively model associations.

The following parameters were used: useModel ¼ modelLINEAR,

pvOutputThreshold.cis ¼ 1e�6, and cisDist ¼ 5e�5. To account

for hidden trans covariates, we used the probabilistic estimation

of expression residuals (PEER) framework32 and inferred 15 PEER

factors. These PEER factors capture trans variation, such as batch

effects or global ethnic differences, present in the gene expression

data. Accounting for these trans factors when modeling cis eQTLs

improves the power to detect true cis eQTLs by reducing spurious

false-positive associations.32 Therefore, we included these 15 PEER

factors—in addition to age, gender, and the first two genotype

principal components, which completely account for self-identi-

fied ethnicity26—as covariates in the model. The same settings

were used during the first (genotyped variants) and second (geno-

typed and imputed variants) passes of the eQTL mapping. Signif-

icant eQTLs were defined as variants associated with expression

levels of genes at a p value threshold of 1e�6 to account for mul-

tiple testing. eGenes were defined as genes associated with at least

one significant eQTL.
Imputation
To obtain amore granular view of the eQTL landscape, we imputed

additional genotypes across the cis search space of each eGeneprior

to the second pass of the eQTLmapping.We used IMPUTE2 v.2.3.2

software33 and the 1000 Genomes phase 1 integrated variant-set

release as a reference to infer additional genotypes. The imputation

software first phases the study genotypes and subsequently im-

putes additional genotypes by integrating study-subject phasing

informationwithknownhaplotypes fromthe1000Genomes refer-

ence data. We followed the instructions provided on the IMPUTE2

website. In short, original genotypeswere extracted for each eGene

spanning the 1 Mb cis search space. Genotypes were pre-phased

with the –prephase_g function. We downloaded prephased 1000

Genomes phase 1 integrated haplotypes. Using these pre-phased

haplotypes as a reference, we imputed samples from the PRAX1

study with the –use_prephased_g function, for which haplotype

and legend files for all 1,092 1000 Genomes samples (246 AFR [Af-

rican], 181AMR [admixedAmerican], 286EAS [EastAsian], and379

EUR [European]) and the PRAX1 study genotype were provided

with the –h, –l, and –g parameters, respectively. Imputed genotypes

called with high confidence (maximum probability > 0.9) were

used in subsequent analysis. Accuracy analysis was performed

with the IMPUTE2 internal cross-validation system. During each

run, IMPUTE2 masks a subset of observed variants and subse-

quently imputes these genotype data by using flanking markers.

The imputation accuracy can be quantified as the percentage of

concordance between known and imputed genotypes of these
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cross-validated variants. In the cross-validation analyses, the

percentage of concordance across the 612 eGene regions was very

high (minimum ¼ 96.4%, median ¼ 98.7%, maximum ¼ 99.7%),

indicating accurate imputation results. Because of the nature of

overlapping cis search spaces, somevariantswere imputedmultiple

times. In these cases, imputed genotypes with discordant results

were excluded.
Conditional eQTL Analysis
To investigate how many independent eQTL signals contribute to

the regulation of a single eGene, we performed conditional eQTL

analysis. This analysis followed the procedures outlined in the

eQTL Mapping section, but additionally, the genotype of the

marker for the corresponding eQTL peak was added as a covariate

for each of the 612 eGenes. If no variants remained significantly

associated with expression of the corresponding eGene (p <

1e�6) after we accounted for the genotype of the marker at the

eQTL peak, we defined the given eGene as regulated by a single ge-

netic signal. If a significant association remained, we interpreted it

as evidence of a second independent genetic signal.
Analysis of Allele-Specific Expression
We analyzed allele-specific expression (ASE) with our ten RNA-seq

samples from the PRAX1 study. Using the reference genome to

map RNA-seq data can be biased by genetic variation, given that

reads carrying the non-reference allele are less likely to map

correctly.34 This mapping bias is called reference-allele bias and is

a non-trivial confounding variable in ASE analysis.35 To overcome

this challenge, we aligned RNA-seq reads to inferred personalized

genomes on the basis of the genotype data observed in the study.

This specialized alignment was used in the ASE analysis only. To

generate personalized genomes corresponding to the ten RNA-seq

samples from thePRAX1 study,weused IMPUTE2v.2.3.2 to impute

genotypes across 22 autosomal chromosomes (as outlined in the

Imputation section); this procedure generates a high-density map

of the personal variation present in each sample. Following the rec-

ommendations on the IMPUTE2website regarding the imputation

of entire chromosomes, we divided each chromosome into 500 kb

intervals and imputed each interval separately. Phasing informa-

tion obtained from the imputation can be used for inferring

parental haplotypes across genetic regions, such as genes. We

used the ‘‘vcf2diplod’’ function provided in the AlleleSeq36 soft-

ware to generate two paternal-genome FASTA files for each sample.

Next, we used the –genomeGenerate parameter of STAR v.2.3.1 to

generate two separate parental-genome indices for each sample.

Because of imputed insertion and deletions, the ‘‘liftOver’’37 func-

tion was needed to convert genomic coordinates between ge-

nomes. Next, for each sample, we used STAR v.2.3.1 to align the

corresponding FASTQ read file to the two paternal genomes inde-

pendently. Figure S1 shows that reference-allele bias decreased

when RNA-seq reads were aligned to personalized genomes rather

than thehg19 reference genome.Next, readpileupswere generated

with an adapted version of the pipeline outlined in Harvey et al.38

In short, SAMtools39 was used to generate read pileups at 128,163

(genotyped and imputed) sites, which were used in the eQTL-map-

ping analysis and fell into coding regions according to the UCSC

Genome Browser hg19 knownGene table downloaded in January

2015. Next, heterozygous sites within each of the ten PRAX1 study

samples were identified and assessed for coverage. Heterozygous

coding sites with ten or more reads in a sample were required for

the site to be considered in the ASE analysis. To ensure that map-
The Am
pingbias didnot affect the calculations,we calculated and recorded

the pair of counts for each parental allele from the alignment to the

corresponding personalized parental genome. Because a gene can

harbor more than one heterozygous coding site in a given sample,

we picked the pileup site with the lowest eQTL association p value

to examine allelic imbalance. Allelic imbalance was defined as an

unequal count of two alleles at a given heterozygous pileup site

in a sample. To evaluate the global correspondence between allelic

imbalance and the genome-wide global eQTL findings, we used

Fisher’s exact test. The null hypothesis states that the directionality

of allelic imbalance is independent of the allelic directionality of

the eQTL. In other words, the likelihood of observing a higher frac-

tion of the reference allele than of the alternative allele at a given

pileup site is independent of the allele implicated with higher

expression levels in the eQTL analysis. Directional deviation from

this null hypothesis would indicate concordance between allelic

imbalances and eQTLs. For the exemplary eGeneCXCL5, we devel-

oped a separate statistical approach. In order to give equalweight to

each sample, we downsampled allelic counts of each heterozygous

sample to the minimum sum of allelic counts among all heterozy-

gous samples.Next,we summed these counts into anaggregatepair

of counts and performed a binomial test. The null hypothesis for

this test states that the likelihoods of observing the reference and

alternative alleles are equal, so that reads are generated as coin-flip-

ping trials of a fair coin. Appropriate deviation from this null hy-

pothesis can indicate that allelic imbalance corresponds to the

allelic directionality of the eQTL; p values were determined for a

one-sided binomial test.
GTEx Data
These data consist of a resource database and associated tissue

bank for studying the relationship between genetic variation

and gene expression in human tissues. We downloaded the

GTEx_Analysis_V6_eQTLs.tar.gz table, containing significant sin-

gle-tissue variant-gene associations from the GTEx website. These

data catalog eQTLs across 46 different tissues. To increase compa-

rability, we restricted analysis to 20 GTEx tissues with a sample size

equal to or higher than our PRAX1 study cohort (154) and rede-

fined all GTEx eGenes according to our definition: GTEx eGenes

for each tissue were defined as genes containing at least one signif-

icant eQTL (p< 1e�6) within 500 kb of the transcription start site.

Our definition of an eGene was more stringent than the rules

applied by GTEx. Across the 20 tissues analyzed, on average, a sub-

set of 71% of GTEx eGenes remained an eGene according to our

definition. An eQTL peak was defined as the genomic location of

the most strongly associated eQTL variant(s) within each eGene.

Table S3 lists eQTL peaks for GTEx and platelet eGenes. To account

for varying sample sizes inherent in the GTEx eQTL dataset, we

used Jaccard similarity to compare overlap between platelet and

GTEx eGenes. To perform a more granular comparison, we con-

ducted an additional analysis at the variant-gene association level.

For each eGene we identified the strongest platelet eQTL associa-

tion present in each of the GTEx tissues. Next, we compared the

sign of the allelic effect of the eQTL association. Concordance be-

tween the sign of the allelic effects of eQTL associations in plate-

lets and each GTEx tissue was calculated with Fisher’s exact test.

The null hypothesis is that the sign of the allelic effect of the

eQTL in platelets is independent of the sign of the allelic effect

in the tissue of comparison. Directional deviation from this hy-

pothesis can indicate concordance of allelic effects between the

tissues at the variant-gene level.
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CVD GWAS Associations
We used the Phenotype-Genotype Integrator25 to download previ-

ously published GWAS results. We restricted analyses to variants

associated with traits annotated to the Medical Subject Headings

(MeSH) category ‘‘cardiovascular diseases’’ and an association

p value below 1e�4. These data catalog variant-phenotype associ-

ations and were integrated with the variant-eGene associations

identified in our eQTL analysis.

Additional Platelet RNA-Seq Data
We downloaded additional platelet RNA-seq data from three previ-

ous studies by Rowley et al.,40 Kissopoulou et al.,41 and Eicher

et al.42 For the Rowley et al. data, RNA-seq alignments were down-

loaded according to the instructions outlined in Rowley et al.40 For

the Kissopoulou et al. data,41 next-generation sequencing FASTQ

files were downloaded from the ArrayExpress website under

accession number E-MTAB-1846. Reads were aligned to the hg19

reference genome with STAR v.2.3.1 using default parameters.

For the Eicher et al. data,42 next-generation sequencing FASTQ

files and corresponding metadata were downloaded from

study SRP053296 in the Sequence Read Archive. Sample runs

SRR1792698 and SRR1792703 contained errors in the read-pairing

annotation and were excluded from further analysis. Reads were

aligned to the hg19 reference genome with STAR v.2.3.1 using

default parameters. These data comprise RNA-seq data from

different library-preparation protocols (total RNA, polyA, and

rRNA depleted) and sequencing technologies (Illumina and

SOLiD). Using data produced by different groups via different

techniques and protocols to validate RNA-seq-based findings

limits the chance of false-positive associations due to technical ar-

tifacts of the sequencing pipeline. Therefore, we used these inde-

pendent observations as evidence supporting the expression of

exon 2b in platelet MFN2 and an increase in sample size for asso-

ciative analyses.

In Silico Cross-Tissue Analysis
The Epigenome Roadmap project contains mRNA-seq data from

stem cells and primary ex vivo tissues selected to represent the

normal counterparts of tissues and organ systems frequently

involved in human disease. We used the Genboree Workbench43

to analyze mRNA-seq expression data for the MFN2 region from

69 samples. As input, we provided a customized bed file of 10 bp

intervals spanning the MFN2 region. Using this file, we calculated

average read density per interval for each sample. Replicates

within a sample type were averaged. Read-density averages across

these intervals for all samples can be found in Table S4.

PCR Confirmation of MFN2 Exon 2b
Leukocyte-depleted platelet RNA (henceforth referred to as

‘‘platelet RNA’’) was obtained via density centrifugation and im-

mune depletion of CD45þ cells as described previously.44 500 ng

of platelet RNA and SuperScript III (ThermoFisher Scientific)

were used for cDNA generation. PCR was performed to amplify

and detect the presence of the canonical MFN2 sequence

(GenBank: NM_014874.3) spanning exons 1–3 (primers F1 and

R1), the plateletMFN2 sequence spanning exons 2b and 3 (primers

F2 and R2), and exons 7–10 in ITG2B as a positive control for RNA

quality (primers ITG2B-F and ITG2B-R). The primer sequences

were as follows: 50-GGTGACGTAGTGAGTGTGATG-30 (F1), 50-CA
CTTAAGCACTTTGTCACTGC-30 (R1), 50-CCCAGCTGACCTGTT

TATTTG-30 (F2), 50-CTACATCCAGGAGAGCGC-30 (R2), 50-AGA
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GTACTTCGACGGCTACTG-30 (ITG2B-F), 50-GCAGCCTCTGGTAG

TAGGAA-30 (ITG2B-R).

50 Rapid Amplification of cDNA Ends of MFN2
To map the definitive 50 end of the platelet MFN2 transcript, we

used the SMARTer RACE (50 rapid amplification of cDNA ends)

50/30 Kit (Clontech) as described by the manufacturer. In brief,

1 mg platelet RNA was used for synthesis of first-strand cDNA,

which added a universal priming sequence to the 50 end of the first

strand via template switching. The 50 end of the cDNA was then

amplified in two rounds of nested PCR using primers that anneal

to the universal priming sequence (provided by the manufacturer)

and two gene-specific primers: 50-CACTTAAGCACTTTGTCA

CTGC-30 (GSP-1) and 50-CGGGTAGAGGGCACAGATGGCCAT

GAGG-30 (GSP-2). The products of the second round of amplifica-

tion were run on an agarose gel cloned into the pRACE vector with

the provided In-Fusion HD Cloning Kit. The cloned products were

then sequenced.

Relative Abundance of MFN2 Isoforms
The relative abundance of MFN2 isoforms was calculated with the

splice-loci output generated from the STAR alignments for the

RNA-seq data from the PRAX1 study, Kissopoulou et al., and Eicher

et al. To estimate the relative abundance of theMFN2 isoform con-

taining exon 2b, we calculated the number of spliced reads that

mapped from the 30 border of exon 2b (chr1: 12,044,353, hg19)

to the 50 border of exon 3 (chr1: 12,049,221, hg19) and divided

it by the number of all spliced reads ending at the 50 border of

exon 3. Samples with ten or fewer junction reads ending at the

50 border of exon 3 were excluded.

Inference of rs1474868 Genotype
Because the variant rs1474868 falls into a coding region, we were

able to infer the rs1474868 genotype by using the STAR align-

ments for the Kissopoulou et al.41 and Eicher et al.42 data. Samples

withmore than one read containing the C or Tallele were assigned

the corresponding genotype. Samples with a total of fewer than

two reads were assigned the unknown status.

Transcription Factor Binding Sites
ENCODE chromatin immunoprecipitation followed by

sequencing (ChIP-seq) data on transcription factor binding were

downloaded from UCSC Genome Browser. We subsequently

restricted all data to experiments carried out in the hematopoiet-

ic-derived K562 cells.

MFN2 Luciferase Assays
DNA from two PRAX1 study subjects homozygous for C or T at

SNP rs3766744 was used as a template for amplifying two regions

surrounding this SNP: (1) a 655 bp region (chr1: 12,043,332–

12,043,986, hg19) was amplified with primers 50-GTTAGCC

AGGATGGTCTCGAAC-30 and 50-AACTTGCAAGCTGAGATTC

CAC-30, and (2) a 1,928 bp region (chr1: 12,042,341–12,044,268,

hg19) was amplified with primers 50-TTCGCTGGTTGCTTAGA

GAG-30 and 50-AAGTTCCCTGCCATCAGAAG-30. The amplified

fragments were then cloned upstream of a basal promoter in the

pGL4.28-luc vector (Promega). A total of four vectors were pro-

duced: MFN2:655(C)-Luc, MFN2:665(T)-Luc, MFN2:1928(C)-Luc,

andMFN2:1928(T)-Luc. 2 mg of aMFN2-Luc vector was transfected

along with 0.5 mg CMV-b-gal-expressing plasmid into 5 3 105

K562 cells. 24 hr after transfection, lysates were measured for
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Figure 1. Genome-wide View of Platelet
eGenes
The y axis shows maximum �log10
p values of eQTLs for 612 platelet eGenes.
The x axis corresponds to ordering along
22 autosomal chromosomes. The top 40
eGene symbols have been added to the
plot. Color coding of points and back-
grounds is used to help separate chromo-
somes visually.
luciferase activity on a FLUOstar OPTIMA plate reader (BMG

Labtech) and b-gal activity with a beta-Galactosidase Assay Kit

(ThermoFisher). Results are expressed as a ratio of luciferase activ-

ity normalized to b-gal activity.

Statistical Analyses
Statistical analyses were conducted with R statistical software. To

evaluate the significance of differences in the distribution of

eQTL peaks between platelets and GTEx tissues, we performed

the Grubbs single-outlier test on the proportion of eQTL peaks

mapping into the gene body by using the ‘‘grubbs.test’’ function

from the ‘‘outliers’’ R package. We used Spearman’s rank correla-

tion to assess significance between the exon 2b inclusion rate

and rs1474868 allele dosage. We used Mann-Whitney tests as im-

plemented in the ‘‘wilcox.test’’ R function to evaluate significance

of differential luciferase activity. We used the LDlink online tool

to assess linkage disequilibrium. To best represent our study

cohort, we restricted linkage-disequilibrium calculations to the

1000 Genomes populations ASW (Americans of African ancestry

in southwest USA) and CEU (Utah residents with ancestry from

northern and western Europe from the CEPH collection). We

used a multiple-linear-regression framework implemented in the

R ‘‘aov’’ function to evaluate the significance of the association

among platelet count, the rs3766744 genotype, and MFN2

expression levels in the PRAX1 study data. For the rs3766744

variant, the model explained platelet count by using rs3766744

allele dosage after accounting for the marginally significant cova-

riates body mass index, gender, and self-identified ethnicity.

For MFN2 expression levels, the model explained platelet count

by using MFN2 expression levels after accounting for the same

covariates.
Results

Two-Pass cis eQTL Mapping Identifies 612 Platelet

eGenes

The PRAX1 study profiled mRNA expression levels from

platelets and genotypes of 154 healthy human subjects

on array platforms.26 To decrease computational burden

while increasing genetic resolution, we applied a two-

pass strategy for mapping the landscape of human platelet

cis eQTLs (see Material and Methods). 5,695 autosomal

commonly expressed platelet genes, as defined in Simon

et al.,28 were used in the analysis. We identified a total of

44,940 significant eQTLs (p < 1e�6) implicated in expres-

sion association with 612 unique genes, termed platelet
The Am
eGenes. The rates of the number of eGenes per gene tested

and significant eQTLs per eGene were comparable to those

of other studies with similar sample sizes (Figure S2).

Figure 1 presents the distribution of the strongest associa-

tion p values for each eGene across the 22 autosomal chro-

mosomes tested. To assess how many eQTLs contribute to

the association signal of an eGene, we performed condi-

tional eQTL analysis. 560 (92%) eGenes did not contain

any significant eQTLs after we accounted for the eQTL

peak, indicating that most platelet eGenes are regulated

by a single genetic signal. The MatrixEQTL output for all

612 platelet eGenes is contained in Table S1. These results

can be interactively queried on our Plateletomics website

(see Web Resources).

ASE Analysis Confirms Global eQTL Results In Silico

An eQTL measures the association between genotype and

gene expression across samples, whereas ASE measures

allelic imbalance at a heterozygous site within a single

sample.45 Concordance between the allelic directionality

of allelic imbalance and an eQTL can be interpreted as

an independent validation of the eQTL.46 Figure S3

contains a detailed schematic describing the relationship

between eQTLs and ASE. Therefore, we performed

allelic-imbalance analysis (see Material and Methods). In

brief, to validate eGenes by using allelic imbalance, we

generated read pileups at heterozygous coding sites of

all platelet eGenes in all ten RNA-seq samples from the

PRAX1 study. A total of 116 (19%) eGenes contained at

least one qualifying pileup site with marginal eQTL effect

(p < 1e�4) in one or more of the ten samples and pro-

vided the opportunity to confirm eQTL effects via

allelic-imbalance analysis. We classified all pileup sites of

these 116 eGenes according to the allelic directionality

of the linked eQTL. Reference and alternatives sites were

defined as pileup sites where the linked eQTL showed

higher expression of the reference and alternative allele,

respectively.

Figure 2A presents the counts of reference and alterna-

tive alleles observed at 358 pileup sites corresponding to

116 unique eGenes (Table S2). 266 (75%) alternative and

reference sites fell above and below the diagonal line,

respectively. The allelic imbalances are in concor-

dance with the allelic directionality of the eQTLs and
erican Journal of Human Genetics 98, 883–897, May 5, 2016 887



Figure 2. Confirmation of eQTLs via ASE
(A) Points represent allele counts at 358 heterozygous coding sites
with amarginal eQTL effect (p< 1e�4). Reference and alternatives
sites are colored in blue and red, respectively. The black diagonal
line indicates the null-hypothesis distribution of equal counts of
the reference and alternative alleles.
(B) Manhattan plot of eQTL landscape for eGene CXCL5. The
y and x axes correspond to association p values and genomic coor-
dinates, respectively. Blue and black points show imputed
and genotyped variants, respectively. The red point shows refer-
ence site rs425535, and the green point shows lead eQTL
rs201022772. Transcription start and end sites of CXCL5 are indi-
cated by green and red vertical lines, respectively. Gray rectangles
below the plot represent CXCL5 exons.
(C) Boxplot shows significant association between CXCL5 expres-
sion levels and rs425535 allele dosage (p< 10e�12,multiple linear
regression).The x axis shows the alternative allele count. Numbers
in parentheses indicate the number of samples within each group.
The y axis represents expression levels of CXCL5 corrected for co-
variates. The box represents the interquartile range, the horizontal
line in the box indicates the median, and the whiskers represent
1.53 the interquartile range.
(D) Reference and alternative allele counts at rs425535 for six het-
erozygous RNA-seq samples from the PRAX1 study are shown on
the x and y axis, respectively.
demonstrate the agreement between eQTLs and ASE (p <

1e�19, Fisher’s exact test).

Figures 2B–2D depict CXCL5 (MIM: 600324), a represen-

tative eGene. CXCL5 was chosen because it shows signifi-

cant allelic imbalance in concordance with the allelic

directionality of the eQTL (p < 2.2e�16, binomial test;

see Material and Methods for additional details). CXCL5

is a neutrophil-recruiting chemokine that is secreted by

platelets. Platelet-released CXCL5 participates in the path-

ogenesis of coronary artery disease and tumor metasta-

ses.47,48 The Manhattan plot in Figure 2B shows the

eQTL landscape of CXCL5. The reference site rs425535

(red point) is in the second exon of the gene and was in
888 The American Journal of Human Genetics 98, 883–897, May 5, 2
linkage disequilibrium with the lead eQTL rs201022772

(green point). High CXCL5 expression levels were associ-

ated with the reference allele of variant rs425535 (p <

10e�12, multiple linear regression; Figure 2C). Corre-

spondingly, ASE analysis at rs425535 revealed a higher

proportion of the reference allele within all six heterozy-

gous samples (Figure 2D). We interpret these results as

in silico ASE validation of the eGene CXCL5.

Platelets Share eGenes with Other Tissues

To compare our platelet eQTLs to those identified in other

tissues, we reanalyzed GTEx eQTL data23 from 20 different

tissues isolated from human cadavers. To improve compa-

rability, we applied our definition of eGenes to the GTEx

data (Material and Methods; Table S3). 525 platelet

eGenes (86%) were also identified as eGenes in at least

one of the GTEx tissues analyzed (p < 2.2e�16, binomial

test), additionally validating our eQTL results. To investi-

gate eGenes at a higher resolution, we compared

variant-gene associations of our platelet eQTLs to corre-

sponding variant-gene associations tested in the GTEx

data. We observed a 75% median concordance rate for

the sign of the effect between platelet eQTLs and GTEx

tissues, indicating that eGenes commonly share the allelic

directionality of their eQTLs (median p value across tis-

sues < 1e�6, Fisher’s exact test; Figure S4). 33 platelet

eGenes were classified as eGenes in all 20 GTEx tissues

and were therefore considered global eGenes. To evaluate

overlap between platelet eGenes and each GTEx tissue

separately, we calculated Jaccard similarity. The GTEx tis-

sue ‘‘whole blood’’ shared the highest fraction of eGenes

with platelets (258 common eGenes). A total of 110

platelet eGenes were identified as platelet specific because

they were observed exclusively in platelets, exempting the

GTEx tissue ‘‘whole blood,’’ of which platelets are a

component (Figure 3A).

Platelet eQTL Peaks Tend to Localize in the Gene Body

To examine eGenes at a more granular level, we defined

eQTL peaks as the genomic location of the variant(s)

with the strongest association with a given eGene. We

identified all eQTL peaks in platelets and GTEx tissues

independently. When we compared eQTL peaks to the

eGene’s transcription start and stop sites across tissues,

platelets had an unusually large proportion of eQTL peaks

(54%)mapping to the gene body (p< 1e�8, Grubbs single-

outlier test; Figure 3B). This finding suggests that anucleate

platelets might be subjected to an expression-regulation ar-

chitecture that is distinct from that of other tissues with

active transcription.

When both GTEx data and platelets have eQTLs for the

same eGene, a variety of patterns can emerge. We high-

light two exemplary eGenes, such as FHL3 (MIM:

608898), known to play a role in platelet biology. Platelets

require Munc13-4 for granule fusion and release,49 and

mutations in FHL3 cause defective secretion and familial

hemophagocytic lymphohistocytosis.50 Figure 3C depicts
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Figure 3. Comparison of Platelet eQTLs
with GTEx
(A) Heatmap columns and rows represent
platelet eGenes and GTEx tissues, respec-
tively. The color of the heatmap represents
the classification of each platelet eGene as
either an eGene (green) or not an eGene
(purple) in each of the GTEx tissues. Gray
colors indicate genes not tested for eQTLs
in the given tissue. In the bar above the
heatmap, green and red represent global
and platelet-specific eGenes, respectively,
and gray indicates platelet eGenes co-
occurring in one or more GTEx tissues.
The adjacent barplot shows Jaccard simi-
larity comparing the overlap between
platelet eGenes and GTEx tissues.
(B) The relative distribution of eQTL peaks
across the gene body for all tissues. The
box represents the interquartile range,
the horizontal line in the box indicates
the median, and the whiskers represent
1.53 the interquartile range.
(C and D) The location of eQTL peaks
for eGenes FHL3 and GRB14. The y and
x axes correspond to the �log10 p value
of eQTL peaks and genomic location,
respectively. Green and red vertical lines
illustrate the transcription start and stop
sites, respectively, for each gene.
the eQTL peaks for the eGene FHL3 across studies. A clus-

ter of eQTL peaks mapped just downstream of the tran-

scription stop site (red vertical line) in multiple tissues,

and eQTL peaks fell even further downstream in ‘‘heart-

atrial appendage’’ and ‘‘breast-mammary tissue.’’ How-

ever, the eQTL peaks for platelets (red asterisk) and the

GTEx tissue ‘‘whole blood’’ (purple square) overlapped

each other and mapped, distinct from the other GTEx

tissues, into the gene body. This observation suggests

that the molecular regulation underlying FHL3 expression

might be similar in platelets and blood and different from

that in other tissues.

Figure 3D depicts the eQTL peaks for an additional exem-

plary platelet eGeneGRB14 (MIM: 601524), which encodes

growth factor receptor-bound protein 14. This protein is an

adaptor that regulates receptor tyrosine kinase signaling,

platelet signaling, and integrin activation.51 The platelet

eQTL peak localized to the gene body, whereas in the

GTEx tissue ‘‘esophagusmuscularis,’’ the eQTL peak fell up-

stream of the gene.
The American Journal of Huma
Overlap between Platelet eQTL

Peaks and MI Variants in MFN2

To assess our eQTL findings in the

context of CVD GWAS results, we sys-

tematically compared our eQTL find-

ings to data from the Genotype and

Phenotype Integrator.25 A total of

3,850 unique variants were previ-

ously reported to be associated with

the risk of CVD in various studies at
a p value threshold of 1e�4. After restricting this set of var-

iants to those implicated in our eQTL analysis at amarginal

p value cutoff of 1e�4, we identified 40 associations, where

platelet eQTLs were previously linked to CVD by GWASs

(Table 1). The genetic variant rs1474868 was identified as

the variant most strongly associated with platelet MFN2

expression levels (p < 1e�47, multiple linear regression;

Figure 4) and was the strongest eQTL of all GWAS CVD-

linked variants. The variant rs1474868 was previously

associated with MI in the STAMPEED: Cardiovascular

Health Study (phs000226) and localized to the second

intron of the first transcript isoform (GenBank:

NM_014874) of MFN2. Using our ASE approach, we vali-

dated the eQTL association between rs1474868 and

MFN2 expression levels (Figure S5).

Platelet RNA-Seq Data Reveal Unannotated Exon 2b

in MFN2

MFN2 encodes mitofusin-2, a critical membrane protein

involved in mitochondrial fusion, and normal platelet
n Genetics 98, 883–897, May 5, 2016 889



Table 1. Platelet eQTLs Overlap Variants Implicated in CVD GWASs

SNP Gene Gene MIM No. eQTL p Value Trait Study ID

rs1474868 MFN2 608507 8.94e�47 myocardial infarction 2873

rs780633 RSU1 179555 2.71e�42 stroke 2887

rs2701268 PDK1 602524 1.66e�21 stroke 2886

rs7349405 CLHC1 (C2orf63) NA 7.72e�20 hypertension 3041

rs2285515 FXYD5 606669 1.96e�19 Behcet syndrome 2888

rs6869332 ELOVL7 614451 1.06e�14 stroke 2887

rs6738196 PDK1 602524 1.37e�12 stroke 2886

rs3769321 PDK1 602524 1.00e�11 stroke 2886

rs514659 ABO 110300 2.85e�10 cardiovascular diseases NA

rs10863938 LPGAT1 610473 2.26e�9 stroke 2886

rs10499859 CD36 173510 5.12e�9 hypertension NA

rs712665 REEP5 125265 6.46e�9 stroke 2886

rs9962325 NAPG 603216 6.47e�9 carotid stenosis 966

rs411356 REEP5 125265 8.28e�9 stroke 2886

rs505922 ABO 110300 1.60e�8 venous thrombosis NA

rs505922 ABO 110300 1.60e�8 venous thromboembolism NA

rs4756196 CD44 107269 8.27e�8 stroke 2887

rs12242391 TSPAN15 613140 3.21e�7 stroke 2887

rs4937126 ST3GAL4 104240 3.30e�7 coronary artery disease NA

rs2522447 PAPSS1 603262 7.90e�7 coronary disease 3056

rs102275 FADS2 606149 1.69e�6 hypertrophy, left ventricular 3052

rs6935954 HIST1H2BD 602799 2.44e�6 stroke 2887

rs102275 FADS1 606148 2.77e�6 hypertrophy, left ventricular 3052

rs2980996 PIGN 606097 2.81e�6 heart failure 2884

rs174576 FADS1 606148 3.54e�6 hypertrophy, left ventricular 3052

rs174576 FADS2 606149 3.68e�6 hypertrophy, left ventricular 3052

rs973126 PAPSS1 603262 4.38e�6 coronary disease 3056

rs973126 PAPSS1 603262 4.38e�6 coronary disease 3055

rs9258966 HLA-H NA 4.42e�6 Behcet syndrome 2888

rs3094654 HLA-H NA 4.42e�6 Behcet syndrome 2888

rs2256919 ZFP57 612192 5.73e�6 Behcet syndrome 2888

rs6594646 REEP5 125265 6.88e�6 stroke 2886

rs663354 PIGN 606097 7.78e�6 heart failure 2884

rs2431512 REEP5 125265 8.53e�6 stroke 2886

rs12719151 REEP5 125265 1.15e�5 stroke 2886

rs4694656 CXCL5 600324 2.18e�5 heart failure 2885

rs13325747 RPN1 180470 2.65e�5 heart failure 2885

rs4601174 CD164 603356 2.95e�5 heart failure 2885

rs2071653 ZFP57 612192 3.91e�5 Behcet syndrome 2888

rs1339965 SMYD3 608783 4.58e�5 heart failure 2885

This table contains marginal platelet eQTLs (p< 1e�4) that have been previously associated with CVD. The ‘‘Study ID’’ column contains the study cohort in which
the association between SNP and trait was detected. NA stands for ‘‘not available.’’
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Figure 4. MFN2 eQTL Manhattan Plot
The y and x axes correspond to association p values and genomic
coordinates, respectively. Blue and black points show imputed and
genotyped variants, respectively. Four variants (points fall on top
of each other) were strongly associated with MFN2 expression
levels (p < 1e�45, multiple linear regression), and the red point
highlights the eQTL peak rs1474868 (genotyped). Transcription
start and stop sites are indicated by green and red vertical lines,
respectively.
(Inset) The association between rs1474868 allele dosage andMFN2
expression levels (significant at p < 1e�47, multiple linear regres-
sion). The y and x axes indicate the corrected MFN2 expression
levels and rs1474868 genotype, respectively. Numbers below the
genotype labels indicate the number of samples within each
group. The box represents the interquartile range, the horizontal
line in the box indicates the median, and the whiskers represent
1.53 the interquartile range.
number and function depend on mitochondrial func-

tion.52 Because the presence of a number of transcribed in-

tronic regions was previously noted in human platelets,53

we hypothesized that platelets might contain uncharacter-

ized transcripts that coincide with our platelet eQTL sig-

nals. Motivated by this hypothesis, we analyzed human

platelet RNA-seq data from multiple groups29,40–42 to

examine the transcriptional landscape of platelet MFN2.

A large number of reads mapped to MFN2 intron 2, over-

lapping the eQTL peak rs1474868 (Figure 5A and

Figure S6). RNA-seq data from mouse platelets40 lacked

reads mapping to this region in the MFN2 homolog

(Figure S7). We hypothesized that this RNA-seq mapping

represents the existence of an unannotated human-

platelet-expressed exon, which we call ‘‘exon 2b.’’ We

used RT-PCR of RNA from human platelets to confirm

the presence of exon 2b in the MFN2 transcript

(Figure S8), and sequencing of the RT-PCR products re-

vealed a precise exon 2b location (chr1: 12,043,880–

12,044,352, hg19). To test whether exon 2b is present in

other tissues, we performed in silico cross-tissue analysis.

We were unable to identify comparable expression levels
The Am
of exon 2b in mRNA-seq data from any of the 69 Epige-

nome Roadmap sample types queried, suggesting that

exon 2b is preferentially expressed in human platelets

(Figure 5B).

Exon 2b Is an Alternative Start Site of MFN2

To infer how exon 2b fits into the splicing pattern ofMFN2,

we examined RNA-seq junction reads from a total of 45

RNA-seq samples of human platelets. We were unable to

detect any reads connecting exon 2b to any upstream

exon, suggesting that exon 2b is an alternative 50 start

site. Using the 50 RACE assay, we verified the presence of

two separate platelet MFN2 isoforms starting at either

exon 2b or exon 1 (Figure S9). Next, we estimated the

relative abundance of the MFN2 isoform containing exon

2b. Using junction reads connecting the 50 border of

exon 3 to any upstream exon can unambiguously distin-

guish between MFN2 isoforms. A median of 86% of junc-

tion reads mapped from the 30 border of exon 2b to the

50 border of exon 3, suggesting that exon 2b is included

in the pre-dominant platelet MFN2 isoform (Figure 5C).

Moreover, the relative abundance of this MFN2 isoform

was significantly associated with the rs1474868 genotype

(p < 1e�6, Spearman’s rank correlation; Figure 5D).

The Variant rs3766744 Alters Transcriptional Activity

eQTLs have been shown to regulate gene expression by

altering transcription factor binding sites;54 therefore, we

integrated ENCODE transcription factor ChIP-seq data

from K562 myeloid leukemia cells to identify the most

likely causal eQTL for MFN2. Three noncoding variants

(rs4846082, rs4845891, and rs3766744) were in near per-

fect linkage disequilibrium with rs1474868 and also

strongly associated with MFN2 expression levels (all three

p < 1e�45, multiple linear regression). Among this set of

variants, we observed an overlap of 32 transcription factor

ChIP-seq peaks with rs3766744 (Figure 6A), suggesting a

potential mechanism for this variant.

To evaluate the effect of genotype on transcriptional ac-

tivity, we generated vectors containing short (S: 655 bp) or

long (L: 1,928 bp) DNA fragments flanking rs3766744

upstream of a luciferase reporter gene. Clones of the

rs37466744 C and T alleles were generated. Transfection

of these reporter constructs into K562 cells resulted in a sig-

nificant difference of luciferase activity between the C and

T alleles for both S and L clones (Figure 6B). These results

are in concordance with the allelic directionality of our

MFN2 eQTL and ASE findings and support rs3766744 as

the causal regulatory variant.

MFN2 Expression Is Associated with Platelet Count

After identifying rs3766744 as the probable causal regula-

tory variant that controls MFN2 expression levels, we

investigated the association among rs3766744 allele

dosage, MFN2 expression, and platelet count by using

our data from the PRAX1 study. Platelet count was signifi-

cantly associated with rs3766744 allele dosage (p < 1e�4,
erican Journal of Human Genetics 98, 883–897, May 5, 2016 891



Figure 5. Novel Exon in MFN2
(A) Read coverage across MFN2 for a single representative human
platelet RNA-seq sample (SRA: SRR957099). Blue bars represent
RNA-seq read coverage. Gray rectangles indicate exons of MFN2
transcripts uc001atn.4 and uc009vni.3. The black arrow high-
lights a pile of reads mapping to an intronic region overlapping
rs1474868 (red vertical line).
(B) Average exon 2b expression levels across 69 Epigenome
Roadmap mRNA-seq sample types (gray bars) and the Londin
et al.29 human platelet RNA-seq data (purple bar). The y axis indi-
cates the exon 2b expression level in relation to that of the most
highly expressed MFN2 exon.
(C) Estimated relative abundances of MFN2 isoforms in platelets.
The schematic below the plot depicts annotated exons 1–3 and
novel platelet exon 2b of MFN2. Red, green, and blue lines indi-
cate mapping of informative RNA-seq junction reads for the
isoform containing the novel exon 2b and annotated MFN2
isoforms uc001atn.4 and uc009vnl.3, respectively. The boxplot
shows the estimated relative abundance for each of these isoforms
across human platelet RNA-seq samples. The box represents the
interquartile range, the horizontal line in the box indicates the
median, and the whiskers represent 1.53 the interquartile range.
(D) Estimated relative abundance of theMFN2 isoform containing
exon 2b by the inferred rs1474868 genotype. The relative abun-
dance of this isoform was significantly associated with the
rs1474868 genotype (p < 1e�6, Spearman’s rank correlation).
The box represents the interquartile range, the horizontal line in
the box indicates the median, and the whiskers represent 1.53
the interquartile range.
multiple linear regression; Figure 7A) andMFN2 expression

levels (p < 1e�3, multiple linear regression; Figure 7B).

Moreover, after conditioning on MFN2 expression levels,

the association between rs3766744 and platelet count dis-

appeared; however, the association between rs3766744
892 The American Journal of Human Genetics 98, 883–897, May 5, 2
and MFN2 expression levels remained significant after

platelet count was accounted for. Together, these condi-

tional association analyses support a causal model where

MFN2 expression levels mediate the association between

rs3766744 and platelet count (Figure 7C).
Discussion

CVD GWASs have been successful at identifying loci asso-

ciated with disease risk,55,56 but linking these variants with

gene function in relevant tissues has been a challenge.16

Platelets are a critical tissue for this analysis because they

are an important contributor to clinical CVD phenotypes

and are the target of pharmacologic interventions. In this

study, we used platelet transcriptomics and eQTL analyses

to uncover platelet-specific gene regulation that corre-

sponds to a CVDGWAS signal inMFN2. This study demon-

strates the power of combining tissue-specific eQTL and

RNA-seq data with large-scale genomic databases to gain

greater insight into the molecular mechanisms underlying

GWAS signals.
Validation of Platelet eQTLs

To corroborate the expression associations revealed in our

study, we pursued both overlap with external data and ASE

analysis of our own genome-wide genotype and transcrip-

tome data. We utilized imputation to provide a more gran-

ular view of the eQTL landscape, enhancing our ability to

make direct comparisons tomarkers in other studies.57 Sec-

ond, the imputation approach also determined a more

fine-scale substrate for overlap with ChIP-seq analyses. A

third benefit of imputation is the improved ability to

perform ASE analysis by extending the set of coding vari-

ants linked to eQTLs.

Wevalidated eGenesbyanalyzingallelic imbalance athet-

erozygous coding sites that had sufficient read coverage and

were also in strong linkage disequilibrium with our eQTL

peaks.35Wewere able to examine 19% of all platelet eGenes

despite the following limitations: (1) only a subset (6.4%) of

our cohort was profiled by RNA-seq technology, (2) only a

subset (79%) of eGenes contained at least one heterozygous

coding site, and (3) only a subset (13%) of pileup sites con-

tained sufficient read coverage for analysis. Globally, the

trends indicated a significant concordance between the

allelic directionality of eQTLs andRNA-seq allelic-imbalance

events inplatelet eGenes.Our data suggest that RNA-seq of a

subset of subjects for ASE analysis is a useful approach for

validating eQTLs developed through microarray studies of

geneexpression.This approachcouldbeadoptedonexisting

data where microarray studies have determined eQTLs but

where subsampleRNA-seqcould refinecandidates for valida-

tion and further functional studies.
Characterization of Platelet eQTLs

We integrated and analyzed our primary dataset with GTEx

findings to both validate our results and investigate tissue
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Figure 6. Differential Regulation of
MFN2 Expression by Single-Nucleotide
Variant
(A) ENCODE K526 ChIP-seq transcription
factor binding peaks clustered near
rs1474868. Red vertical lines indicate
the location of genetic variants strongly
associated with MFN2 expression levels.
rs3766744 overlapped a number of tran-
scription factor binding sites. The names of
transcription factors are ordered from bot-
tom to top. Exon 2b is displayed as a cyan
rectangle. The S and L clones are shown as
purple and gray rectangles, respectively.
(B) Differential luciferase activity for the
C and T alleles of rs3766744 in the S and
L clones. The luciferase levels were higher
for the C allele than for the T allele (both
p < 0.05, Mann-Whitney test). Error bars
correspond to SE.
specificity of platelet eQTLs. We acknowledge the diffi-

culties of making comparisons across data produced by

different groups on different platforms. Our study has

the advantage of highly purified cells obtained from living,

healthy subjects. Samples from the PRAX1 study were sub-

jected to a uniform and immediate specimen processing,

including RNA isolation and extraction within 1 hr of

phlebotomy. Our results indicate that platelets have tis-

sue-specific eQTLs distinct from those identified by

GTEx, highlighting the need to extend GTEx studies to

additional tissues and biological contexts.

Compared to other cell types, platelet eQTL peaks show

an unusually high representation in the gene body

(Figure 3D). This finding is intriguing because platelets

are anucleate cells free of genomic DNA. RNA messages

are inherited from parent megakaryocytes, potentially

decreasing the relative impact of transcriptional regulatory

regions and increasing the significance of post-transcrip-

tional regulation. This stands in sharp contrast to the

other cell types profiled in GTEx, where the transcriptome

reflects a balance between transcription and RNA degrada-

tion. Further analyses of other anucleate cells, such as

erythrocytes, might yield additional insights.

Functional Genomics of Platelet MFN2

Our genome-wide eQTL analysis revealed that rs1474868

marks the eQTL peak of MFN2. The function of MFN2 in

platelets and megakaryocytes has not been studied, and

our work demonstrates the presence of MFN2 transcripts

(Figure 5) and protein (Figure S10) in human platelets.

MFN2 is a gene previously reported to function in mito-

chondrial structure and function.58,59 Follow-up analyses

using RNA-seq data determined that MFN2 has an un-

annotated alternate first exon, exon 2b, which overlaps

rs1474868. Inclusion of exon 2b is predicted to add 34

amino acids to the N terminus of the MFN2 RefSeq

coding sequence; we term this extended protein pMFN2

(Figure S11). The anti-MFN2 antibody used to detect

MFN2 does not distinguish between MFN2 and pMFN2.

We raised a polyclonal antibody against amino acid
The Am
sequence unique to the predicted pMFN2, but unfortu-

nately it reacted non-specifically with numerous polypep-

tides and was not useful (data not shown). However,

because 86% of MFN2 transcripts contained exon 2b

(Figure 5C), we presume the major form observed by west-

ern blotting is pMFN2 (Figure S10), but until additional re-

agents are developed or mass spectrometry of purified

pMFN2 is performed, we cannot be certain.

In addition, in silico cross-tissue analysis suggests that

this alternate start site is platelet specific. A previous study

by Nuernberg et al.60 identified a novel 50 start site in RNA-

seq data from megakaryocytes in the gene DNM3, and we

also found this start site in our platelet RNA-seq data

(data not shown). Our discovery of an unannotated 50

alternative start site in platelet MFN2, along with similar

observations of platelet-specific exons by others,61 suggests

that unannotated lineage-specific alternative 50 start sites
might be common in platelets and platelet progenitor

cells. This is an exciting area for further studies.

MFN2 and Platelet Count

We observed a significant association between platelet

count and rs3766744, which is in linkage disequilibrium

with rs1474868 (Figure 7). Conditional association anal-

ysis suggests that this relationship is mediated through dif-

ferential MFN2 expression driven by allele dosage. Variant

rs3766744 is also in linkage disequilibriumwith rs2336384

(R2 ¼ 0.49, LDlink), which has previously been linked to

platelet count.7 We were able to verify this association in

our data from the PRAX1 study (p < 0.05, multiple linear

regression). However, in the analysis of these data, the as-

sociation between rs3766744 and platelet count was stron-

ger than the association between rs1474868 and platelet

count, suggesting that the platelet-count association

might be driven by rs3766744.

Our working hypothesis is that rs3766744 regulates

exon 2b utilization by altering transcriptional enhancer ac-

tivity, which in turn leads to increased MFN2 expression.

Numerous transcription factors were shown to bind to

the sequence potentially altered by rs3766744 in K562
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Figure 7. Associations with Platelet Count in the PRAX1 Study
Dataset
(A) The association between rs3766744 and platelet count (p <
1e�4, multiple linear regression). The box represents the inter-
quartile range, the horizontal line in the box indicates themedian,
and the whiskers represent 1.53 the interquartile range.
(B) The association between platelet count and MFN2 expression
levels (p < 1e�3, multiple linear regression).
(C) Our proposed model. The variant rs3766744 controls MFN2
expression levels, which in turn affect platelet count.
cells (Figure 6A). Particularly interesting candidates are

GATA2, TAL1, and ETS1, which are known to regulate meg-

akaryocytopoiesis and expression of many platelet-specific

genes. We further hypothesize that variation in MFN2

expression alters platelet production given that low Mfn2

expression has been linked to mitochondrial damage in

mice,62 and mitochondrial number and function are crit-

ical for platelet production by megakaryocytes. Never-

theless, addressing these testable hypotheses will require

much more work and the development of new reagents.

MFN2 and Human Disease

Normal platelet function and lifespan depend on healthy

mitochondria as a critical energy source during their

10 day period in circulating blood. There are numerous

clinical conditions wherein the platelet count is signifi-

cantly reduced in association with dysfunctional mito-

chondria, including inherited and acquired diseases

inducing mitochondrial dysfunction.52,63–67

Variation in MFN2 has been linked to Charcot-Marie-

Tooth disease (CMT) type 2A2 (MIM: 609260) and heredi-

tary motor and sensory neuropathy VIA (MIM: 601152).

MFN2 mutations are associated with the disease subtype

CMT2A, where diverse coding mutations inMFN2 account

for up to 20% of the CMT2A subtype and about 4% of

CMT disease overall.68 The CMT2A-linked mutations in

MFN2 comprise a diverse collection of variants, including

stop-gain and non-synonymous pathogenic changes.

Pathogenicity has been connected to more variants in

the N terminus of the protein, but variations across the

protein have been linked to the disease.69

Not only does MFN2 play a role in Mendelian disease,

but there is also evidence thatMFN2might have a function
894 The American Journal of Human Genetics 98, 883–897, May 5, 2
in later-onset complex diseases such as CVD. Common

variants in MFN2 have been linked to platelet count7 and

the risk of MI25 and hypertension.70 In addition, muta-

tions in MFN2 have also been linked to early-onset

stroke.71 Furthermore, it is generally believed that an

elevated platelet count is a risk factor for ischemic cardio-

vascular complications, although this has not been rigor-

ously studied in a prospective fashion. Subjects with very

high platelet counts due to acquired, clonal myeloprolifer-

ative diseases are at an increased risk of MI and stroke, and

standard management most often includes anti-platelet

therapies.72
Sharing of Results

Wehavemadeour results availablebyextendingour interac-

tive Plateletomics website (see Web Resources). We added a

platelet-eQTL browser function, allowing users to quickly

and easily query our platelet-eQTL results. This eGene anal-

ysis can be particularly useful in cases where wet-bench ex-

periments might give conflicting results if the investigator

does not consider the genotype of the donors used.
Conclusion

Our study of platelet eQTLs identified 612 platelet eGenes.

Among these, MFN2 harbored the strongest eQTL that

corresponded to a previously reported CVD GWAS variant.

Integrative analysis demonstrated that the MFN2 eQTL

identified an unannotated alternate platelet-specific 50

start site driving MFN2 expression. Moreover, MFN2 levels

were strongly associated with platelet count, a known risk

factor for CVD. Our results reinforce using multi-omic data

integration of relevant primary tissues to functionalize

GWAS signals.
Supplemental Data

Supplemental Data include 11 figures and 4 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.
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1000 Genomes phase I integrated haplotypes, https://mathgen.

stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_

SHAPEIT2.html

AlleleSeq, http://alleleseq.gersteinlab.org/

ArrayExpress, https://www.ebi.ac.uk/arrayexpress/

Cutadapt, https://cutadapt.readthedocs.org/en/stable/

ENCODE, https://www.encodeproject.org/

ENCODE ChIP-seq data on transcription factor binding sites,

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.

bed.gz

EpigenomeRoadmapProject,http://www.roadmapepigenomics.org/

Genboree Workbench, http://genboree.org/site/

Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.
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RefSeq, http://www.ncbi.nlm.nih.gov/refseq/
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STAR, https://github.com/alexdobin/STAR
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Figure S1. Decrease of reference allele bias through personalized genome alignment. The blue 
and the red curves represent density estimates of the proportion of reference alleles based on 
data from 2764 heterozygous coding sites with 10 or more reads (not restricted to eGenes) 
when aligning RNA-seq reads to the hg19 reference genome or personalized genomes, 
respectively. Vertical lines indicate corresponding medians. Reference allele bias is significantly 
lower when aligning to personalized genomes (P<1e-5, KS-test). 

  



 

  



Figure S2. Comparison of eGene per genes tested and eQTLs per eGene rates across tissues. 
Panel A depicts the number of eGenes per genes tested and sample size for all tissues on the Y 
and X axis, respectively. Given the sample size of our PRAX1 cohort, the rate of eGenes per 
gene tested is comparable to the GTEx data. Boxplot in panel B shows the distribution of eQTLs 
per eGene across tissues. The box represents the interquartile range, the horizontal line in the 
box is the median and the whiskers represent 1.5 times the interquartile range. For both panels, 
coloring scheme represents tissue. 

  



 

  



Figure S3. Schematic of the relationship between eQTLs and ASE events. Non-coding eQTL is 
in strong linkage disequilibrium with a coding variant. Samples 1, 2 and 3 represent all of the 
genotypic variation at the eQTL. RNA-seq reads from the exonic region contain information on 
expression level as measured by the total number of reads and allele content as illustrated by 
the horizontal bars in number and color, respectively. The ‘A’ allele of the eQTL is associated 
with increased transcription and correspondingly samples 1, 2 and 3 show high, intermediate 
and low expression levels, respectively. Bottom left, eQTL boxplot cartoon depicts this 
association between expression levels and genotype across samples. ASE information can be 
found in heterozygous samples by observing the allelic counts in the RNA-seq reads. Bottom 
right, ASE scatter plot shows the allelic counts of the linked coding variant in sample 2. RNA-
seq reads contain a higher proportion of the ‘G’ allele, which corresponds to the ‘A’ allele of the 
eQTL, thereby validating the eQTL association. 





Figure S4. Concordance between platelet eQTL effect sizes and GTEx tissues. Each plot 
represents the comparison between platelets and one of the 20 GTEx tissues analyzed. For all 
plots, X and Y axes correspond to the GTEx tissue and platelet effect size, respectively. Each 
point represents a variant-gene eQTL association. Points are colored by their mean –log10 p-
value in platelets and GTEx tissue. P-value on bottom right corners indicate Fisher’s exact test 
p-value for the concordance between the sign of the effect size in platelets and GTEx tissue of 
comparison.





Figure S5. ASE validation of MFN2 eQTL. Allelic counts extracted from Londin et al RNA-seq 
data at the genetic variant rs1474868. X and Y axes represent the count of the ‘T’ and ‘C’ alleles 
across 10 PRAX1 samples, respectively. Black, red and green colors indicate ‘CC’, ‘CT’ and 
‘TT’ genotype, respectively. Most points fall above the diagonal line indicating that the RNA-seq 
reads contained a higher proportion of the ‘C’ compared to the ‘T’ allele. 

  



  



Figure S6. RNA-seq read coverage across MFN2 for all PRAX1 RNA-seq samples. Red vertical 
bars indicate RNA-seq read density across 10 PRAX1 RNA-seq samples. Blue rectangles at the 
bottom represent the MFN2 gene body. Green rectangle highlights a number of reads mapping 
into the second intron representing exon 2b. 

 

  



 

  



Figure S7. RNA-seq read coverage across Mfn2 in mouse sample. Mouse RNA-seq data was 
taken from the Rowley et al data. Y and X axes correspond to read coverage and genomic 
coordinates. Blue rectangles below plot illustrate Mfn2 gene body. There are no RNA-seq 
reads mapping into the second intron. 



 

  



Figure S8. RT-PCR validation of exon 2b presence in human platelets. Non-quantitative RT-
PCR was performed on LDP RNA using primers designed to amplify MFN2 (spanning exons 1-
2-3) or exon 2b containing MFN2 (spanning exons 2b-3). Both reactions produced the expected 
sized products indicating the presence of exon 2b in platelet RNA. Integrin αIIb RNA was used 
as a control for RNA quality.  

  



 

  



Figure S9. 5’ RACE assay validation of exon 2b as alternative start site. The 5’ end of MFN2 
transcripts in platelets were identified using 5’-RACE. Nested PCR using two gene specific 
primers (GSP-1 and GSP-2) and a universal primer mix (UPM) which anneals to sequence 
which is added at the 5’ end (dashed line). Sequencing of the two bands that resulted from this 
reaction indicated that platelets contain two MFN2 isoforms with two different starting exons, 1 
and 2b. 

 

  



 

  



Figure S10. pMFN2 western blot. Platelet lysates from 2 different donor separated by SDS 7% 
polyacrylamide get electrophoresis, transferred and probed with affinity purified anti-MFN2 
rabbit polyclonal antisera (Sigma #M6319 N-terminal). Molecular weight standards are in 
rightmost lane. 

  



  



Figure S11. Predicted platelet pMFN2 schematic. Cartoon is comparing MFN2 and pMFN2. The 
blue rectangles represent shared amino acid sequence. Inclusion of exon 2b is predicted to add 
34 amino acids (green rectangle) to the N-terminal of MFN2. The custom Ab arrow points to the 
pMFN2 specific sequence targeted by a custom antibody generated by the Bray lab. The m6318 
arrow points to the non-specific target binding site for the Sigma #M6319 antibody. 

  


	Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2
	Introduction
	Material and Methods
	The PRAX1 Study
	Gene Expression Data from the PRAX1 Study
	RNA-Seq Data from the PRAX1 Study
	Genotype Data from the PRAX1 Study
	eQTL Mapping
	Imputation
	Conditional eQTL Analysis
	Analysis of Allele-Specific Expression
	GTEx Data
	CVD GWAS Associations
	Additional Platelet RNA-Seq Data
	In Silico Cross-Tissue Analysis
	PCR Confirmation of MFN2 Exon 2b
	5′ Rapid Amplification of cDNA Ends of MFN2
	Relative Abundance of MFN2 Isoforms
	Inference of rs1474868 Genotype
	Transcription Factor Binding Sites
	MFN2 Luciferase Assays
	Statistical Analyses

	Results
	Two-Pass cis eQTL Mapping Identifies 612 Platelet eGenes
	ASE Analysis Confirms Global eQTL Results In Silico
	Platelets Share eGenes with Other Tissues
	Platelet eQTL Peaks Tend to Localize in the Gene Body
	Overlap between Platelet eQTL Peaks and MI Variants in MFN2
	Platelet RNA-Seq Data Reveal Unannotated Exon 2b in MFN2
	Exon 2b Is an Alternative Start Site of MFN2
	The Variant rs3766744 Alters Transcriptional Activity
	MFN2 Expression Is Associated with Platelet Count

	Discussion
	Validation of Platelet eQTLs
	Characterization of Platelet eQTLs
	Functional Genomics of Platelet MFN2
	MFN2 and Platelet Count
	MFN2 and Human Disease
	Sharing of Results
	Conclusion

	Supplemental Data
	Acknowledgments
	Web Resources
	References




