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A Syndromic Intellectual Disability Disorder
Caused by Variants in TELOZ2, a Gene Encoding
a Component of the TTT Complex

Jing You,.2 Nara L. Sobreira,23 Dustin L. Gable,1.25.¢ Julie Jurgens,.2 Dorothy K. Grange,*

Newell Belnap,’-8 Ashley Siniard,”.® Szabolcs Szelinger,”-® Isabelle Schrauwen,’.8 Ryan FE Richholt,”.8
Stephanie E. Vallee,” Mary Beth P. Dinulos,? 10 David Valle,23.* Mary Armanios,°

and Julie Hoover-Fong?23,11

The proteins encoded by TELOZ2, TTI1, and TTI2 interact to form the TTT complex, a co-chaperone for maturation of the phosphatidy-
linositol 3-kinase-related protein kinases (PIKKs). Here we report six affected individuals from four families with intellectual disability
(ID) and neurological and other congenital abnormalities associated with compound heterozygous variants in TELOZ2. Although their
fibroblasts showed reduced steady-state levels of TELO2 and the other components of the TTT complex, PIKK functions were normal
in cellular assays. Our results suggest that these TELO2 missense variants result in loss of function, perturb TTT complex stability,

and cause an autosomal-recessive syndromic form of ID.
Introduction

Early-onset intellectual disability (ID) describes a common
(incidence 1%-3% in the Western world) and highly het-
erogeneous group of phenotypes.' It is estimated that
variants in >1,000 genes result in the autosomal-recessive
forms of ID.” Customarily, ID is divided into two categories:
syndromic forms in which the intellectual problems occur
together with a constellation of other phenotypic features
and non-syndromic forms in which the only constant
manifestation is ID. In practice, this distinction is often
difficult to make until a large number of individuals with
variants in the same gene are well phenotyped.®

TELO2 (MIM: 611140) is the human ortholog of Tel2,
an S. cerevisiae gene identified in a screen for genes involved
in maintenance of telomere length.**° Located at 16p13.3,
TELOZ has 21 exons and encodes an 837 amino acid protein
that interacts physically with TELO2 interacting proteins
1 and 2 (TTI1 and TTI2) to form the TTT complex.® Homo-
zygosity for a Telo2 knockout allele in mice produces
embryonic lethality and S phase cell-cycle arrest in mouse
embryonic fibroblasts (MEFs). Mice heterozygous for
the Telo2 null allele are viable, fertile, and apparently
healthy.”

The TTT complex interacts with Hsp90 and the R2TP
complex forming a supercomplex that acts as a co-chap-
erone for maturation of a set of six phosphatidylinositol
3-kinase-related protein kinases (PIKKs).°™ The PIKKs are

involved in a variety of key cellular processes, including
the double strand DNA breakage response (ATM [MIM:
607585], PRKDC [MIM: 600899]),'°'* DNA replication
stress (ATR [MIM: 601215]),'>'" growth response to
nutrient availability (MTOR [MIM: 601231]),"* nonsense-
mediated RNA decay (SMGI [MIM: 607032]),'*'> and
epigenetic modifications through regulation of histone
acetylation (TRRAP [MIM: 603015]).'®'” Genetically medi-
ated deficiency of various PIKK proteins is associated with
specific disease phenotypes: pathogenic biallelic variants
in ATM cause ataxia telangiectasia (MIM: 208900),"® those
in ATR cause Seckel syndrome 1 (MIM: 210600),"° and
those in PRKDC result in immunodeficiency 26 (IMD26
[MIM: 615966]).'%2° Heterozygosity for missense variants
in MTOR have been associated with ID, megalencephaly,
and dysmorphic facial features.”'** Deregulation in the
mTOR pathway is associated with certain cancer syn-
dromes,”* and pathogenic variants in the mTOR interac-
tor TSC1 (MIM: 605284) cause tuberous sclerosis-1 (MIM:
191100), a disorder characterized by abnormally regulated
cellular growth."? Somatic TRRAP variants have been asso-
ciated with melanoma”* and in mice, homozygosity for a
Trrap-null variant results in early embryonic lethality.”>*°

Here we report six individuals from four families with
ID and assorted neurological and physical abnormalities.
All individuals are compound heterozygotes for rare vari-
ants (five missense and one complex allele consisting of
a nonsense and splice site variant) in TELOZ2. Our results
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indicate that variants in TELOZ2 are responsible for syn-
dromic ID.

Material and Methods

Subjects

Family 1 was recruited from the Johns Hopkins Hospital Genetics
Clinic as part of the Baylor-Hopkins Center for Mendelian Geno-
mics (BHCMG) project. Family 2 was recruited through the Wash-
ington University Genetics Clinic based on shared abnormalities
in TELOZ2 detected by clinical WES performed by GeneDx. Family
3 was recruited through the TGEN Center for Rare Childhood
Disorders. Family 4 was recruited through the University of Ver-
mont Genetics Clinic after clinical WES performed at GeneDx
and subsequent matching of TELOZ2 as a candidate causative
gene through entry into GeneMatcher.?” Our study was approved
by the Johns Hopkins Medicine Institutional Review Board and by
the IRBs of the other participating institutions. We obtained
informed consent from responsible individuals in all four families.

Whole-Exome Sequencing and Analysis

For family 1, we captured the CCDS exonic regions and flanking
intronic regions totaling ~51 Mb by using the Agilent SureSelect
XT kit and performed paired end 100 bp reads with the Illumina
HiSeq2500 platform. We aligned each read to the 1000 Genomes
phase 2 (GRCh37) human genome reference with the Burrows-
Wheeler Alignment (BWA) v.0.5.10-tpx.”® Local realignment
around indels and base call quality score recalibration were per-
formed with the Genome Analysis Toolkit (GATK)*’ v.2.3-9-
geSebf34. Variant filtering was done via the Variant Quality Score
Recalibration (VQSR) method.>° For SNVs, the annotations of
MQRankSum, HaplotypeScore, QD, FS, MQ, and ReadPosRankSum
were used in the adaptive error model (6 max Gaussians allowed,
worst 3% used for training the negative model). HapMap3.3*'
and Omni2.5 were used as training sites with HapMap3.3 used as
the truth set. SNVs were filtered to obtain all variants up to the
99th percentile of truth sites (1% false negative rate). For indels,
the annotations of QD, FS, HaplotypeScore, and ReadPosRankSum
were used in the adaptive error model (4 max Gaussians allowed,
worst 12% used for training the negative model, indels that had
annotations more than 10 SD from the mean were excluded from
the Gaussian mixture model). A set of curated indels obtained
from the GATK resource bundle (Mills_and_1000G_gold_standar-
d.indels.b37.vcf) were used as training and truth sites. Indels were
filtered to obtain all variants up to the 95™ percentile of truth sites
(5% false negative rate). Using the PhenoDB Variant Analysis Tool
of PhenoDB,?”” we prioritized rare functional variants (missense,
nonsense, splice site variants, and indels) that were homozygous
or compound heterozygous in all three affected subjects and
excluded variants with a minor allele frequency (MAF) > 0.01 in
dbSNP 126, 129, and 131, the Exome Variant Server (release
ESP6500S1-V2), or 1000 Genomes Project.***> We also excluded
all variants found in our in-house controls (CIDRVar 51Mb). We
generated lists of homozygous and compound heterozygous vari-
ants shared by the affected siblings but heterozygous in the
unaffected parents.

For families 2 and 4, clinical WES was performed at GeneDx.
Candidate variants were validated by Sanger sequencing of PCR
amplified products of genomic DNA. Annotated variants are based
on RefSeq transcript GenBank: NM_016111.3 and NCBI human
genome assembly build 37.

For family 3, WES was performed at TGEN and variants vali-
dated by Sanger sequencing.

Telomere Length, Colony Survival, and Mitomycin
Sensitivity Assays

Telomere length was measured on peripheral blood lymphocytes
by flow cytometry and fluorescence in situ hybridization as previ-
ously described.*® Diepoxybutane testing was performed per stan-
dard procedure on fresh blood as described.?” EBV-transformed
lymphoblastoid cell lines were generated as described.*® Modified
colony survival was performed as described,’” and cells were
counted on day 8 after irradiation (CK04-01, Dojindo Molecular
Technologies). The final surviving fraction was calculated by
dividing absorbance at 0.5-2.0 Gy for each sample by absorbance
at 0 Gy. Mitomycin C sensitivity was examined as described.*’

Immunoblot and Quantitative RT-PCR

We performed immunoblot assays on protein extracted from lym-
phoblastoid cells and fibroblasts via standard procedures.*? Anti-
body sources and concentrations were as follows: TTI2 (1:1,000;
Bethyl cat# A303-476A; RRID: AB_10948973), TTI1 (1:2,000;
Bethyl cat# A303-451A; RRID: AB_10953982), TELO2 (1:2,000;
Proteintech cat# 15975-1-AP; RRID: AB_22033337), ATM (1:1,000;
Novus Biologicals cat# NB110-55475; RRID: AB_837630), ATR
N-19 (1:1,000; Santa Cruz cat# sc-1887; RRID: AB_630893),
PRKDC (1:1,000, Thermo Scientific cat# MS-423-P0,), mTOR
(1:1,000; Cell Signaling cat# 2983; RRID: AB_10830890),
SMG1 (1:1,000; Cell Signaling cat# 9592; RRID: AB_2192936),
TRRAP (1:1,000; Cell Signaling cat# 3967; RRID: AB_2209656),
and B-actin (1:20,000; Ambion cat# AM4302; RRID: AB_437394).
We incubated the membranes with horseradish peroxidase labeled
secondary antibodies (goat anti-rabbit IgG-HRP antibody [Santa
Cruz cat# sc-2004; RRID: AB_631746] or goat anti-mouse IgG-HRP
antibody [Santa Cruz cat# sc-2031; RRID: AB_631737]) diluted
1:20,000, developed the exposed film in a Kodack X-OMAT proces-
sor, and analyzed signal intensities with ImageJ software.

To inhibit fibroblast Hsp90, we added 17-allylamino-17-desme-
thoxygeldanamycin (17-AAG) (Sigma) to the culture medium for
the indicated time points and concentrations.' For quantitative
RT-PCR, we isolated total RNA from fibroblasts using Trizol
(GIBCO) and subjected 1.25 pg of total cellular RNA to reverse
transcription using qScript ¢cDNA SuperMix system (Quanta
Biosciences, #95048-100) and PerfeCta SYBR Green FastMix, Rox
(95073-012) according to the manufacturer’s protocol. We per-
formed qRT-PCR for TELO2 mRNA in triplicate and normalized
to three control genes, GAPDH, HPRT, and YWH4.

Results

Identification of Variants in TELO2

Initially, we identified a single non-consanguineous family
(family 1) with three non-ambulatory teenage sibs, all
with severe ID, visual and hearing impairments, abnormal
movements, and structural abnormalities of the great vessels.
Subsequently, we identified three additional unrelated
singletons in non-consanguineous families, all with severe
ID and clinical features partially overlapping those of
the affected individuals in family 1 (Figure 1, Table 1, and
the case reports in Supplemental Data). Whole-exome
sequencing (WES) of the affected individuals and their
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Figure 1.

Clinical Phenotype of Individuals with TELO2 Variants
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(A) The pedigrees of families 1-4. The TELOZ2 genotype segregating in each family is shown. Individual II-1 in family 4 has an unaffected

paternal half-sibling (not shown).
(B) Current portraits of each affected individual.
(C) Full body pictures of affected individuals in family 1.

(D) Coronal view of chest CT angiogram of 1I-2 in family 1 showing an incomplete vascular ring with a right ascending aortic arch
(RA0A), right common carotid artery (RCC), left common carotid artery (LCC), and descending aorta (DAo). There are also venous
anomalies with a retroaortic left brachiocephalic vein (LBCv) that joins the azygous vein and enters the superior vena cava.

parents in family 1 identified rare compound heterozygous
missense variants in TELOZ2: ¢.1100G>T (p.Cys367Phe)
in exon 8 and c.2159A>T (p.Asp720Val) in exon 18
(variant annotation based on RefSeq transcript GenBank:
NM_016111.3). These TELOZ2 variants were the only ones
that met our analytic criteria of rare, function-altering
alleles in compound heterozygosity or homozygosity pre-
sent in all three affected siblings. The mother and father
are heterozygous for the p.Asp720Val and p.Cys367Phe
variants, respectively (Figure 2A). We validated these
variants by Sanger sequencing (Figure S1). Both variants are
rare: p.Asp720Val is not reported in the 1000 Genomes
Project (2,577 samples, build 20130502, accessed November
2015),>* dbSNP build 131,** Exome Variant Server release
ESP6500SI-V2 (6,503 samples, accessed November 2015),
or Exome Aggregation Consortium (ExAC) database (60,706
samples, accessed November 2015); and p.Cys367Phe is ab-

sent from the 1000 Genomes Project and Exome Variant
Server and has an allele frequency of 0.01959% in the
ExAC database and is not described in homozygosity. Both
variants are likely to be damaging: p.Cys367Phe is in
the N-terminal domain of TELOZ2 and alters a residue
conserved among representative vertebrates (Figure 2B)
with a PolyPhen-2 score of 0.997 (probably damaging,
score range O [benign] to 1.0 [probably damaging])** and
SIFT score of 0.01 (scores < 0.05 predicted damaging,
damaging, score range 0-1.0"°*); p.Asp720Val falls in the
C-terminal domain of TELO2 and is also highly conserved,
with PolyPhen-2 and SIFT scores of 1 and O, respectively.
The affected individuals in families 2, 3, and 4 are
also compound heterozygotes for rare TELOZ2 vari-
ants. The proband in family 2 is heterozygous for
c.1100G>T (p.Cys367Phe), the same variant observed
in family 1, and a rare heterozygous missense variant
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Table 1. Phenotypic Features of Individuals with TELO2 Variants

Family ID Family 1 Family 2 Family 3 Family 4
Subject 1I-2 II-3 11-4 II-2 1I-1 II-1
Age (years) 17 17 10 6 17 9
Intellectual disability + + + + + +
Microcephaly + + + + + +
Hearing loss + + + - - -
Cortical visual + + + - - +
impairment
Oral frenuli/ankyloglossia — — + + - - -
Cleft palate - + - - - -
Congenital heart +; double aortic arch, +; double aortic arch, +; coarctation  — - —
disease vascular ring, cleft atretic L arch, incomplete  of aorta
mitral valve vascular ring
Kyphoscoliosis/scoliosis - + - - + +
Brachydactyly & + + + - - clinodactyly
clinodactyly
4/5 toe syndactyly + + + - - -
Abnormal balance + + + + + +
Abnormal sleep - - - + + +
pattern
Laughter outbursts + - - - + +
Movement disorder + + + + + +
Seizures - - - - + -
Rotatory nystagmus - + - - + -
TELO2 genotype ¢.1100G>T, c¢.2159A>T  ¢.1100G>T, c.2159A>T ¢.1100G>T, c.1100G>T, c.779C>T, €.2034+1G>A,
C.2159A>T €.2296G>A c.1826G>A c.514C>T,
c.2159G>A
TELO2 alteration p-Cys367Phe, p-Cys367Phe, p.Cys367Phe, p.Cys367Phe, p.Pro260Leu, p.GIn172X,
p.Asp720Val p-Asp720Val p-Asp720Val p-Val766Met  p.Arg609His  p.Asp720Val

All major abnormalities present in two or more of the individuals plus selected abnormalities present in only one patient. See Supplemental Data for case descrip-

tions and specific data.

c.2296G>A (p.Val766Met), which has a minor allele fre-
quency of 0.02283% in the ExAC database and is not
reported in homozygosity. p.Val766Met variant alters a
highly conserved residue in the C-terminal domain of
TELO2 and has a PolyPhen-2 score of 0.986 (probably
damaging) and a SIFT score of 0.02 (damaging) (Figures
1A, 2A, and 2B). This variant is represented in dbSNP build
138 (rs371675497) but lacks an associated allele frequency.
The proband in family 3 is a compound heterozygote for
two additional TELOZ2 variants: ¢.779C>T (p.Pro260Leu),
a substitution with a PolyPhen-2 score of 1 and SIFT score
of 0.23, and c.1826G>A (p.Arg609His) with PolyPhen-2
score of 1 and SIFT score of 0. The p.Pro260Leu variant is
represented in dbSNP build 138 (rs369656775) without
an associated allele frequency, while p.Arg609His is not
listed in the dbSNP, 1000 Genomes, EVS, or ExAC
databases. The proband in family 4 is a compound
heterozygote for p.Asp720Val, the same allele segre-
gating in family 1, and a complex allele, ¢.514C>T
(p.GIn172X) plus ¢.20344+1G>A (IVS16+1G>A) produc-

ing an aberrantly spliced transcript that is likely subject
to nonsense-mediated mRNA decay (NMRD) and encodes
a severely C-terminal truncated protein. For these reasons,
itis almost certainly a null allele. The fact that this individ-
ual’s second allele, p.Asp720Val, does not rescue TELO2
function supports our earlier conclusion for family 1 that
this missense variant results in loss of function of TELO2.

TELOZ2 Variants Reduce Steady-State Levels of TELO2
Protein

In preliminary studies, we found that there was no alteration
in the levels of TELO2 mRNA in total cellular RNA isolated
from cultured skin fibroblasts of affected individuals in fam-
ily 1 (Figure S2). To determine the functional consequences
of the TELOZ variants on TELO2 protein, we first evaluated
steady-state levels of TELOZ2 and its interacting partners in
cultured lymphoblast cell lines (LCLs) and fibroblasts from
the affected individuals in family 1. Using immunoblot as-
says on protein extracts of both cell types, we found that
TELO2 levels were reduced to about 34% of control levels
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(B) Evolutionary conservation of the amino
acid residues altered by the missense vari-
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mined in 3 independent experiments as
measured by immunoblot analysis. The
right panel shows that TELO2, TTI1, and
TTI2 levels in extracts of skin fibroblast
from the proband (II-2) from family 2 were
reduced to about 17%, 18%, and 14% of
these in controls in 3 independent experi-
ments. The error bar shows 1 SD in three
independent Western blots.

(D) Immunoblot analysis of TTT complex in
LCLs in family 1. Three controls LCL (C.1,
C.2, and C.3) are shown. I-1 and I-2 are
the heterozygous parents of the affected in-
dividuals in family 1. The three affected in-
dividuals in family 1 (II-2, II-3, and II-4) are
shown. TELO2 protein levels were reduced
to 31.8% of the mean of control subjects
while the levels in the heterozygous parents
are reduced to 74% of control subjects (p >
0.1, Student’s t test). Similarly, TTI1 and
TTI2 proteins in the heterozygous parents

Tl

Bheterozygous (n=2)
B C367F/D720V (n=3)

of family 1 showed a decrease as compared to control levels which was not statistically significant (for TTI1, mean = 70%, p > 0.1; for
TTI2, mean = 62%, p > 0.1, Student’s t test). In the affected individuals the level of TTI1 is reduced to 17% and TTI2 to 13% of control levels
in LCL, respectively (p < 0.05, Student’s t test). The error bar shows 1 SD in 3 independent experiments.

See also Figure S3.

in LCLs and 33% of control levels in fibroblasts harvested in
three separate experiments (p < 0.05, Student’s t test, Figures
2C, 2D, and S3). TELO2 levels in extracts of LCL cells from
the heterozygous parents of family 1 were nominally
reduced (mean of three measurements = 74%), but this
reduction was not statistically significant (Figures 2C and
2D). In family 2, TELO2 levels in extracts of cultured skin fi-
broblasts from the proband were reduced to a mean of 17% of
those in control samples (3 independent experiments, range
2%-33%, Figures 2C and 2D). Cultured cells from the
affected individuals in families 3 and 4 are not available.
We conclude from these results that the TELO2 missense var-
iants in affected individuals from families 1 and 2 destabilize
TELO2. Although we were not able to make this measure-
ment in the probands of families 3 and 4, they each share
at least one missense allele with the affected individuals in
families 1 and 2.

TELO2 Alterations Affect Steady-State Levels of TTI1
and TTI2

We next tested the consequence of the TELO2 variants
on steady-state levels of its partner proteins in the TTT
complex, TTI1 and TTI2. We found that both proteins
were significantly decreased in the affected individuals
in family 1 (mean 14.6% and 51.4% of control levels in
fibroblast extracts, and mean 27.2% and 14.7% of con-
trols in LCL extracts, respectively, p < 0.05, Student’s
t test; Figures 2C, 2D, and S3) and in the proband of
family 2 (mean 18% and 14% of control levels in fibro-
blasts, respectively, 3 independent experiments; Figures
2C and 2D). The heterozygous parents in family 1 ex-
hibited a modest reduction that did not reach statistical
significance (70% and 63% of TTI1 and TTI2, respec-
tively, in extracts of LCL, p > 0.1, Student’s t test, 3
independent experiments; Figure 2D). These results
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indicate that the mutations in TELOZ2 destabilize the
entire TTT complex.

Consequences of TTT Complex Reduction on the
Stability and Function of the PIKKs

The TTT complex is a component of a large protein
super-complex that includes an Hsp90 dimer and the
R2TP complex comprising RUVBL1 (MIM: 603449)
and RUVB2 (MIM: 604788), RPAP3 (MIM: 611477), and
PIH1ID1 (MIM: 611480).”%*7 Although the function of
the TTT complex is incompletely understood, available
evidence suggests that it is necessary for the folding and
stability of newly synthesized PIKKs.”*’~*’ In view of
the reduction in TTT complex components in individuals
with TELO2 variants, we next measured the steady-state
levels of the PIKK proteins ATM, ATR, PRKDC, mTOR,
SMG1, and TRRAP in extracts of LCL cells cultured from
the affected individuals in family 1. We found no signifi-
cant change in the levels in affected individuals and their
parents compared to controls (Figure S3). We also tested
the functional integrity of DNA repair in cells with
compromised TTT complex by assessing de novo sensi-
tivity to ionizing radiation, mitomycin C, and diepoxybu-
tane (not shown) but found no abnormalities (Figures S4
and S5). These results suggest that despite reduction of the
components of the TTT complex, TELO2 mutant cells
retain functional integrity of the PIKKs under these condi-
tions. We also measured telomere length by flow cytome-
try and fluorescence in situ hybridization in primary
lymphocytes and granulocytes from the affected individ-
uals and their parents in family 1 and family 2 and found
them to be normal (Figure S6). This result is consistent
with what has been thought to be a yeast-specific role
of TELOZ in telomere maintenance that is not retained
in mammalian cells.”

| s
o %
-
0 : . . . . .

TELO2 TTI1 TTI2 ATM PRKDC ATR mTOR

p = 0.06), ATM (77%, p > 0.1), PRKDC
(78%, p > 0.1), ATR (76%, p > 0.1), and
mTOR (77%, p > 0.1). In medium with
17AAG, the level of protein expression (right)
expressed as percent of the mean of control
levels are: TELO2 (12%, p < 0.05), TTI1
(32%, p = 0.056), TTI2 (19.6%, p < 0.05),
ATM (34%, p < 0.05), PRKDC (56%, p <
0.05), ATR (87%, p > 0.1), and mTOR
(111.8%, p > 0.1). The error bar indicates
1 SD in three independent experiments
(Student’s t test).

Hcontrols (n=3)
B C367F/D720V (n=3)

Hsp90 interacts with the TTT and R2TP complexes to
facilitate maturation of the PIKKs.”*” Accordingly, we asked
whether inhibition of Hsp90 would accentuate the reduc-
tion in the TTT complex components. We cultured fibro-
blasts from three normal control subjects and the three
affected individuals in family 1 in medium containing
1 uM of the Hsp90 inhibitor, 17-allylamino-17-desmethox-
ygeldanamycin (17AAG), for 48 hr.*’ The reduction of
TELO2 levels we observed in the affected individuals’ cells
cultured in standard medium was accentuated by culture
in the presence of 17AAG (Figure 3A): levels of TELO2 fell
from 33% of control in the absence of 17AAG to 12% of con-
trol in the presence of 17AAG (mean values in cultured skin
fibroblasts from 3 affected individuals as compared to con-
trols, p < 0.05, Student’s t test). Similarly, the levels of TTI2
fell from 51% of control levels in the absence of 17AAG to
20% of control levels in the presence of 17AAG. TTI1 levels
as compared to controls were variable, but the mean actu-
ally increased from 14.6% to 31.6% (Figure 3B). This reduc-
tion in TELO2 and TTI2 in cells cultured in the presence of
17AAG was associated with significant decreases in protein
levels of ATM and PRKDC (means of 34% and 56%, respec-
tively, of levels in control fibroblasts cultured in 17AAG; p <
0.05, Student’s t test; Figure 3B). The levels of ATR and
mTOR were not reduced under these conditions. This result
suggests that with the additional stress conferred by inhibi-
tion of Hsp90, there is further reduction of the TTT complex
in the TELO2 mutant cells with corresponding negative
effects on the abundance of certain PIKKs.

Discussion

We report six individuals from four unrelated families
with overlapping clinical features including global
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developmental delay, intellectual disability, dysmorphic
facial features, microcephaly, abnormal movements, and
abnormal auditory and visual function. In addition, the
three affected individuals in family 1 have striking develop-
mental abnormalities of the great vessels, a feature not
detected in routine evaluations of the affected individuals
in families 2-4. Of these, only the affected individual in
family 4 was specifically studied for this phenotype, so it
is possible that the others might also have some unrecog-
nized abnormality of great vessel anatomy. Focused pheno-
typic studies of these and additional individuals will be
required to determine whether the incidence of these ab-
normalities is increased by deficiency of TELO2 function.
All affected individuals in our series are compound
heterozygous for rare variants (five missense affecting
conserved residues and one complex null allele) in
TELOZ2. The missense variants in families 1 and 2 result
in a reduction of the steady-state level of TELO2 protein
in cultured skin fibroblasts and LBLs (Figure 2C). In the
available affected individuals’ cells from families 1 and 2,
the levels of the TELO2 interacting proteins, TTI1 and
TTI2, are also decreased (Figures 2C and 2D). Interestingly,
under standard cell culture conditions, we did not observe
alterations in the PIKK proteins (ATM, ATR, PRKDC,
mTOR, SMG1, and TRRAP), whose maturation depends
on the TTT complex function,®” suggesting that the
TELO2 mutations are not sufficient to disrupt their matu-
ration under these conditions. However, with the stress
of exposure of the cells to 17AAG, an inhibitor of HSP90,
the levels of at least two of the PIKKs (ATM, PRKDC)
were reduced in affected individuals’ cells as compared to
controls (Figure 3). This result suggests that the further
reduction in the TTT complex provoked by 17AAG leads
to secondary alterations in the levels of certain PIKKSs.
We hypothesize that such stresses might occur in certain
cells at critical times in development and lead to the
phenotypic features in these individuals. Alternatively,
disruption of the TTT complex might have heretofore
unidentified functions beyond stabilization of PIKK.
Current understanding of TELOZ2 structure is based on a
partial analysis of yeast Tel2 structure*’ that shows Tel2 to
be a multi-helical protein in which pairs of a helices align
with each other to form suprahelical assemblies or « sole-
noids, characteristic of helical repeat proteins. Yeast Tel2
has 21 NTD « helices and 11 CTD « helices that assemble
into NTD and CTD a solenoids, respectively. NTD o helices
15-21 are the most highly conserved structural motifs.*’
Pull-down experiments with yeast and mouse TELO2 ho-
mologs indicate that the NTD o solenoid interacts with
TTI1 and TTI2.*’ The 688-residue yeast Tel2 has 81 amino
acid identities (11.8%) with the 837-residue human TELO2
(9.9% in the 354-residue NTD and 15.8% in the 261-resi-
due CTD). Although the five missense variants identified
in the affected individuals described here all involve highly
conserved residues, the consequences of these alterations
on the overall structure and function of TELO2 remain
to be determined. The p.Cys367Phe variant identified in

families 1 and 2 falls in the middle of NTD « helix 18,
the region of the NTD « solenoid thought to be involved
with binding of TTI1. The p.Pro260Leu variant falls in
the middle of the NTD « helix 13. The remaining
three missense variants (p.Arg609His, p.Asp720Val, and
p-Val766Met) are all located in the CTD a solenoid with
only p.Arg609His directly involving an « helix (helix
number 29).

The TTT Complex and Its Role in PIKK Maintenance
The TTT complex, R2TP and Hsp90 supercomplex is
conserved in budding yeast, worms, and mammals.*”->~5?
Assembly of the TTT complex in yeast involves binding
of the Tel2 N-terminal domain (NTD) to Ttil and Tti2.*
Consistent with our observations, sShRNA directed against
each component of TTT complex results in reduced levels
of the other two components, indicating that the three com-
ponents depend on each other for stability.” In mouse, the
interaction the TTT complex with Hsp90 and the R2TP com-
plex involves a covalent linkage of phosphorylated residue
Ser492 in Tel2 to the Pih1 scaffold component of the R2TP
complex and binding of the Tah1l component of R2TP to
the homodimeric Hsp90.”*” The interaction of this super-
complex with the PIKKs is mediated by non-covalent bind-
ing of TTI1 in the TTT complex to the individual PIKKs.”
Once the PIKKs have reached their active conformation,
binding to the TTT complex does not appear to be required
for their function.*” The consequence of sShRNA-mediated
reduction in the levels of the individual components of
the TTT complex is variable; reduction of TTI1 results in
the most dramatic reduction in the PIKKs whereas a similar
reduction in TELOZ2 has the least consequence on the abun-
dance of the PIKKs.® Moreover, loss of TTT complex function
appears to have variable consequences on the abundance
of each of the PIKKs, with ATM being most dramatically
reduced.” Whether this property reflects differences in
PIKK maturation and/or stability is not known. In general,
the cellular consequences of disturbances in PIKK function
have the potential to be broad, with abnormalities in DNA
damage response, nutritional response, cell cycle progres-
sion, and gene expression. For example, in human osteosar-
coma cells (U20S cells), shRNA-induced reduction of the
TTT complex to levels <25% of normal is associated with a
corresponding reduction in PIKK abundance and check-
point signaling. The importance of these functions is
shown by the early embryonic lethality of mouse embryos
homozygous for Telo2 knockout alleles and rapid senescence
of MEFs made homozygous for Telo2 deficiency.” This might
be related to deficiency of one or more PIKKs alone or com-
bined with other, yet to be determined, functions of TELO2
or the TTT complex.

This model predicts that pathogenic variants in the
genes encoding the other members of the TTT complex
would have features similar to those with TELO2 defi-
ciency. In this regard, Najmabadi et al.>® described two
siblings with non-syndromic ID who were homozygous
for a predicted damaging missense variant (p.Arg236His)
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in TTI2 (MIM: 614426), and Langouet et al.>* reported
three affected siblings with ID, short stature, dysmorphic
features, and mild lymphocytopenia (MIM: 615541) who
were homozygous for a variant in TTI2 c.1307T>A
(p-lle436Asn). The latter variant was associated with
decreased steady-state amounts of TTI2 and, secondarily,
TELO2 and TTI1 to levels that were about 5% of normal
in three affected individuals. The levels of ATM, PRKDC,
and mTOR were also decreased in skin fibroblasts from
these individuals. Finally, the supplementary material of
Najmabadi et al.>*® also lists, as a candidate causative
variant, a mutation in TTI1 (MIM: 614425) that produces
the missense change (p.Pro1020Thr) in a proband with
non-syndromic ID.>?

In summary, our results in affected individuals in four
unrelated families indicate that loss-of-function variants in
TELOZ2 are responsible for a complex human phenotype
that includes ID and various other features. The mechanism
by which this occurs remains to be determined but could be
due to reduced function of one or more of the PIKKs under
developmental or to physiological circumstances not repli-
cated in our cultured cell systems or through perturbation
of some, as yet undescribed, function of the TTT complex.
The former is supported by some overlap in the phenotypic
features (ID, growth retardation, abnormal brain growth,
movement disorders) of the individuals we describe here
with those of individuals with Mendelian phenotypes of
the PIKK genes: ataxia telangiectasia, Seckel syndrome 1,
and immunodeficiency 26 with or without neurological
abnormalities. Moreover, mTOR, another of the PIKKs, has
been implicated in regulation of the local translation of
dendritic mRNAs, a key aspect of dendrite and spine
morphogenesis and synaptic plasticity,”> and mutations in
MTOR have recently been associated with ID and macroce-
phaly.”!** We speculate reduction of TTT complex function
secondary to TELOZ2 variants in certain cells and/or develop-
mental stages resulting in a more global but less individually
severe dysfunction of the PIKKs as compared to their isolated
monogenic deficiency. Alternatively, there might be addi-
tional as yet unknown function(s) of TELO2 and the TTT
complex that are perturbed in these individuals and account
for their phenotype.

Supplemental Data

Supplemental Data include seven figures and supplemental case
reports and can be found with this article online at http://dx.
doi.org/10.1016/j.ajhg.2016.03.014.
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Supplemental Materials
Case Reports

Family 1: Individuals II-2 and 1I-3 (17 year old, male and female, respectively) are
fraternal twins (see Figure 1) born to a 21 year old mother by vaginal delivery following
a 35 week pregnancy complicated by preeclampsia. Against normative birth parameters
for twin gestation, birth weights were 1.9 kg (10-25%) and 1.7 kg (5-10%), respectively,
and birth lengths were 43.8 cm (25%) and 38.7 cm (<3%). Individual 1I-2 had ‘low’ Apgar
scores and remained hospitalized for 2-1/2 weeks due to poor feeding and apnea.
Individual 11-3 had poor respiratory effort at birth and required resuscitation for 15
minutes with ‘low’ Apgar scores. A cleft palate and shrill cry were noted after her
resuscitation and she remained hospitalized for 1.5 months with nasogastric tube
feeding. Individual lI-4 was born at term with birth weight of 2.8 kg (10-25%) and birth
length 47.0 cm (25%) and discharged at 1 week with difficulty feeding and hypotonia.

He had 1° hypospadias and failed his newborn hearing screen.

From infancy, individual 11-2 had symmetrical poor growth and delayed development. He
sat independently at 2 years, crawled at 3 years and stood at 4 years, but was
wheelchair-dependent by mid-childhood due to impaired balance that has become
more pronounced with age. At 17 years, he can hold a pencil or utensil but is unable to
write or feed himself independently. He occasionally uses single words, rarely makes
eye contact, and is described as ‘distant and withdrawn’ except in the evenings, when

his behavior changes dramatically to uncontrollable laughing and hugging. While awake,



his body is constantly moving without purpose but without overt tremor or chorea.
There has been slow acquisition but no regression of skills. He was born with a patent
ductus arteriosus (PDA) and a ventricular septal defect (VSD). Both closed
spontaneously, but he also was found to have a double aortic arch with vascular ring
and cleft mitral valve with mitral regurgitation. Thus far, no cardiac surgery has been
required. He has bilateral hearing loss and cortical visual impairment (CVI). A
comprehensive, dilated ophthalmologic exam at 17 years of age revealed grossly normal
eye structure, but visual acuity could not be assessed due to poor tracking/jerky pursuits
and no compliance. He was diagnosed with autism in late childhood, based on no
language or communication and repetitive, self-stimulatory movements.
Hypothyroidism was diagnosed at 15 years. Upon examination at age 17 years, weight
was 28.7 kg (-7.6 SD), height 130.4 cm (-5.6 SD) and OFC 48.0 cm (<<3%; 50% for 1.5
years). He has brittle hair, blue sclera, dark circles under his eyes, an intact palate,
pectus carinatum, decreased elbow extension but otherwise joint laxity, broad great
toes with 4/5 toe syndactyly, eczema, and generalized hypotonia with spasticity. He has
sparse facial and pubic hair. Prior to enrollment for research WES, he had several
normal tests and studies including: brain MRI (2 years of age), comparative genomic
hybridization (10 years), EEG (12 years), serum uric acid, and molecular testing for

fragile X.

Individual 11-3 also experienced symmetric poor overall growth after birth associated

with delayed development without regression. She sat independently at 5 years of age



and has never walked, but can stand with support. She has no words but makes sounds
to communicate. She is the most attentive to her environment of the three affected
children in Family 1. She often exhibits hand flapping when she is frustrated, throws
herself back into her wheelchair when she is angry, and has an affinity for water. Her
cleft palate was repaired at 14 months and she required a frenulectomy for
ankyloglossia at 3 years of age. She required multiple sets of typanostomy tubes for
otitis media. In early childhood, she was found to have a double aortic arch with an
atretic left arch creating an incomplete vascular ring impinging on the upper esophagus
but not the trachea. Her medical course was complicated by severe gastrointestinal
reflux disease and recurrent episodes of aspiration pneumonia that diminished
following G-tube placement at age 12 years. She has bilateral hearing loss and CVI. On
exam at 12 and 1/3 years, her height was 108.5 cm (-6.1 SD), weight 18.1 kg (-6.6 SD),
and OFC 47.0 cm (<<3%, 50% for 1.5 years). She had synophrys, blue sclera, up-slanting
palpebral fissures, downturned mouth, large tongue with tethered sublingual frenulum,
torticollis, pectus excavatum, anteriorly placed rectum, brachydactyly (middle digit <<
3%ile), 4/5 toe syndactyly, joint laxity, and generalized hypotonia. She, too, is in
constant motion while awake with spasticity in her lower extremities. She has rotatory
nystagmus. Prior to enrollment in this research, she had multiple normal clinical studies
including: karyotype, subtelomere and 22q11 FISH, 7 dehydrocholesterol levels, and

BAC array (4,000 probes).



Following birth, individual 1I-4 remained in hospital for difficulty feeding and hypotonia
until age 1 week. His exam was notable for hypospadias. He sat at 15 months but has
never ambulated. He failed his newborn hearing screen and all subsequent hearing
tests, and has no speech. Based on his behavior, it is thought that he also has CVI. He
was noted to have an accessory oral frenuli and coarctation of the aorta. On exam at
age 9 years, he was symmetrically small with height 100.4 cm (-5.9 SD), weight 15.1 kg (-
6.3 SD) and OFC 46.5 cm (<<3% for 1 year). He had blue sclera, a large mouth with thin
upper lip, loose joints, hypotonia, brachydactyly and 5t finger clinodactyly. He exhibited
self-injurious behavior during the exam with constant motor movement and no words.

He had 3+ patellar reflexes but no spasticity.

Family 2:

Individual 1I-2 is a 5 year old white female who was born at term after an uncomplicated
pregnancy. She was delivered vaginally to a 30 year old, gravida 2, para 1 woman. Her
birth weight was 3.71 kg (50%); length 50.8 cm (60%); and OFC 35 cm (60%). Concerns
regarding delayed development began at 2 months. She rolled over at 5 months, sat
alone at 8 months, and walked at 14 months. At 20 months she knew about 20 words,
but her parents felt her verbal skills regressed. A hearing test at 2 years of age was
normal. At age 30 months, she had formal testing using the Developmental Assessment
of Young Children (DAYC-2) test with a developmental quotient (DQ) of 55 in expressive
and language skills, 40 in fine and gross motor skills, 40 in social skills and 37 in

cognition. She was re-tested at age 60 months and scored <50 in all domains.



She had a normal cranial MRI at age 2 and strabismus surgery at age 3.5 years for
intermittent esotropia. She has had a chronic sleep disturbance with difficulty falling
asleep and often stayed awake screaming during the night. An EEG at age 3 and 10/12
showed slightly slow background activity with 2 brief bursts of bifrontal epileptiform

activity. There have been no clinically detectable seizures.

Physical exam at age 4 and 9/12 revealed a height of 106 cm (50%), a weight of 16.8 kg
(45%), and a head circumference of 47.5 cm (<3%, 50% for 18 months). She was non-
dysmorphic and ambulatory with intermittent abnormal truncal movements.
Examination of her chest, spine, heart and abdomen was normal as were her deep

tendon reflexes.

Pertinent laboratory testing included normal chemistries; normal 15g methylation
testing for Prader Willi syndrome and Angelman syndrome; normal MECP2 sequencing
and deletion/duplication testing; normal transferrin isoelectric focusing for
carbohydrate deficient transferrin; normal creatine disorders panel; and normal urine

purines and pyrimidines.

Family 3:
Individual 1l-1 is a 17 year old female who was born at 37.5 weeks of gestation after an

uncomplicated pregnancy. She was delivered with vacuum and forceps assistance due



to unspecified dystocia. Birth weight is unknown and Apgar scores were reported as
“low”. She had poor respiratory effort and was observed in the NICU for several hours
but discharged at 2 days of age. Her parents noted slow acquisition of milestones. She
sat independently at 2 years, never developed words to communicate, can assist with
transfers from chair to floor but cannot stand or walk independently. She has not had
formal psychometrics but currently (age 17) she is non-ambulatory, non-verbal, and
incontinent and performs no activities of daily living. Formal audiology assessment in
early childhood was normal. She is in special school 4 hours a day and has an irregular
sleep pattern. On occasions, she does not sleep at night for several days. She has

nighttime outbursts of laughing if she is awake for prolonged periods.

Seizures began in early childhood and, currently, she experiences absence, partial
complex and generalized tonic clonic seizures. At times the frequency has been as high
as 20 or 30 per day, but currently she has ~6 per month on Trileptal and clonazepam.
She has kyphoscoliosis with progressive vertebral deformation, which began in mid-
childhood. Her kyphoscoliosis worsened in puberty in association with a linear growth

spurt.

At age 15, she had a routine echocardiogram and lab work in preparation for possible
spine surgery. Her parents were told her cardiac function was sufficient to tolerate the
surgery but are unaware if any structural anomalies were noted. There were no specific

pre-operative laboratory abnormalities other than low vitamin D and anemia. The



former has been treated with supplemental oral vitamin D (50,000 IU weekly) and the

latter with oral iron, though the anemia was reported to be minimally responsive.

On exam at age 17 years of age, her head circumstance is 51cm (<3%, 50% for 7 years
old). Her face is expressionless with slightly elongated palpebral fissures and she holds
her tongue outside her mouth. Her neck and thorax are grossly normal with normal
breast development. She has small hands with wasting of her peripheral muscles. Her
hearing is grossly normal. She tracks people moving around her and can ‘spot’ small toys

or objects. She avoids eye contact and has difficulty reaching objects with a shaky, poor

grasp.

Family 4:

Individual 1l-1 is an 8 year old white male who was the 45.7 cm (<3%) and 3.09 kg (25%)
product of a 38 week, uncomplicated pregnancy and delivery. Apgar scores were 9 at 1
and 5 minutes. He required phototherapy for hyperbilirubinemia but was discharged at
age 5 days. Development was slow: he sat at 12 months, crawled at 3 years, and walked
at 4 years. There has been no regression. He has dysphagia with difficulty swallowing
thin liquids and chronic respiratory congestion. He required a frenulectomy, multiple
typanostomy tubes for chronic otitis media and unilateral nasolacrimal duct probing for
an obstructed tear duct. He developed kyphoscoliosis in childhood and is non-verbal.
He has CVI and a movement disorder diagnosed as ataxia by consulting neurologists.

Multiple cranial MRIs have been read as normal except for small brain size. He has not



had seizures and an EEG at age 7.5 was negative. His physical exam at age 7 years 9
months was remarkable for short stature (height 113.5cm, 1 %), small size (weight
20.6kg, 8%) and OFC 47cm (<<3%, 50% of 1 year). HEENT exam was remarkable for
downslanting palpebral fissures; a scar on his right upper eyelid from surgical repair of
trauma; short, smooth philtrum; broad nasal bridge; and a chronically open mouth.
Chest, cardiovascular and abdominal exams were normal. He had a small penis with
mild chordee. His tone was mildly increased in his lower extremities with normal deep
tendon reflexes and abnormal coordination with ataxia. An echocardiogram at 8 years

of age was normal with no abnormalities of the great vessels.

Pertinent laboratory testing included normal chemistries and plasma amino acids;
normal 15q methylation testing for Prader Willi syndrome and UBE3A sequencing for
Angelman syndrome; normal NIPBL sequencing for Cornelia de Lange syndrome 1;
normal MECP2 sequencing; normal 7-dehydrocholesterol and uric acid levels; normal
transferrin isoelectric focusing for carbohydrate deficient transferrin; and normal Fragile
X testing. His karyotype was 46, XY and a chromosomal microarray revealed a
heterozygous 40kb deletion at 22q12.3 that removed segments of C220rf42 and RFLP2.

His asymptomatic mother has the same copy number variant.
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Figure S1.
Sequence of TELOZ2 variants in Family 1 (11-3, 1I-4 and 11-5), Family 2 (lI-2)

and Family 3 (11-1).
Family.1: TELOZ2, p.Cys367Phe (c.1100G>T) in exon 8 and p.Asp720Val (c.

2159A>T) in exon 18.
Family.2: TELOZ2, p.Cys367Phe (c.1100G>T) in exon 8 and p.Val766Met (c.

2296G>A) in exon 20.
Family.3: TELOZ2, p.Pro260Leu (c.779C>T) in exon 5 and p.Arg609His (c.

1826G>A) in exon 15.



Figure S2
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Figure S2. Comparison of TELO2 mRNA expression in affected individuals
from Family 1 and controls

Levels of TELO2 mRNA are within normal range in RNA extracted from primary
affected individual-derived fibroblast cell lines in Family 1 (lI-2, 1I-3 and [I-4) (n=3
experiments, performed in triplicate; error bars indicate 1 SEM, Student’s t-test)



Figure S3
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Figure S3. Repeated western blot of steady state expression of TTT complex
in fibroblasts extracts in the affected individuals of Family 1 (lI-2, 1I-3 and lI-4)

and three normal controls (C.1, C.2 and C.3).



Figure S4
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Figure S4. Steady state expression of PIKKs in LCL extracts in the affected
individuals of Family 1 (lI-2, 1I-3 and lI-4), their heterozygous parents (I-1 and
I-2) and three normal controls (C.1, C.2 and C.3).

There was no significant difference between control, affected individuals and
heterozygous parents (Student’s t-test).
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Figure S5. Colony survival assay following exposure to ionizing irradiation.
LCLs from affected individuals in Family 1 (1I-2, II-3 and II-4) are labeled in red and the
mean of three controls is labeled in green. LCLs from an affected individual with
molecularly confirmed ataxia-telangiectasia (ATM nonsense variant) was used as a
positive control.



Figure S6
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Figure S6. Mitomycin C (MMC) survival assay
Cultured skin fibroblasts from affected individuals in Family 1 (1I-2, 11-3 and 1I-4) and
controls were used to measure the survival fraction following MMC treatment. The
assay was performed in triplicate, and the plot shows the means of the 3 affected
individuals and the 3 controls. There was no significant difference between controls
and affected individuals in survival fraction to MMC treatment (Student’s t-test).
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Figure S7. Telomere length measurement in affected individuals’ primary

lymphocytes and granulocytes.

The percentile lines are derived from 200 normal controls. Affected individuals and

heterozygous parents from Families 1 and 2 were measured.
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