
Supplementary Note for Roth et al., PyClone: Statistical in-
ference of clonal population structure in cancer

1 The PyClone model description

PyClone is a software package which provides tools for performing Dirichlet Process (DP) cluster-
ing of mutations. It implements several standard clustering algorithms such as the infinite Binomial
mixture model (IBMM) as well as several models which account for the genotype of a mutation.
In the following description we will use PyClone to refer to the collection of genotype aware
clustering models.

PyClone is a hierarchical Bayes statistical model (Supplementary Fig. 3). Input data con-
sists of allelic counts from a set of N deeply sequenced mutations for a given sample. Prior infor-
mation is elicited from copy number estimates obtained from either genotyping arrays or whole
genome sequencing. For most available tools, these estimates will represent the average copy
number of a locus if the copy number of the population is heterogeneous at the locus. An optional
estimate of tumour content, derived from computational methods or pathologists estimates, may
also be used. The model outputs a posterior density for each mutation’s cellular prevalence and a
matrix containing the probability any two mutations occur in the same cluster. The model assigns
two mutations to the same cluster if they occur at the same cellular prevalence in the sample(s).
This is a necessary but not a sufficient condition for mutations to be present in the same clonal
population. To obtain a flat clustering of the mutations from the matrix of pairwise probabilities
we construct a dendrogram and find the cut point that optimises the MPEAR criterion1 which is
discussed in the Online Methods. Supplementary Fig. 4 shows a typical experimental workflow
used to produce the allelic count data and tumour content estimates which are inputs for a PyClone
analysis. The same workflow also shows how copy number information is generated which is
then used to elicit priors for possible mutational genotypes which are also required as input for a
PyClone analysis. For more details on how copy number information is used to elicit priors see
section 4.

The model divides the sample into three sub-populations with respect to mutation n ∈
{1, . . . ,N}: the normal (non-malignant) population, the reference and the variant cancer cell pop-
ulations (Supplementary Fig. 2). The reference population consists of all cancer cells which
are wildtype for the nth mutation. The variant population consists of all cancer cells with at
least one variant allele of the nth mutation. To simplify inference of the model parameters we
assume that within each sub-population, the mutational genotype at site n is the same for all cells
in that sub-population. But importantly, we allow the mutational genotypes to vary across popu-
lations. We introduce a collection of categorical random variables gn

N, g
n
R, g

n
V, each taking values

in G = {−, A, B, AA, AB, BB, AAA, AAB, . . .}, denoting the genotype of the normal, reference and
variant populations with respect to mutation n. For example, the genotype AAB refers to the geno-
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type with two reference alleles and one variant allele. The symbol − denotes the genotype with
no alleles, in other words a homozygous deletion of the locus. The vector ψn = (gn

N, g
n
R, g

n
V) ∈ G3

represents the state for the nth mutation, while πn is a vector of prior probabilities over all possible
states, ψn, of the nth mutation.

The fraction of cancer cells (tumour content) is t, with fraction of normal cells 1 − t. We
fix t prior to inference, assuming estimates from orthogonal assays such as WGSS, micro-arrays
or histopathology. We define the fraction of cancer cells from the variant population φn, and cor-
respondingly 1 − φn as the fraction of cancer cells from the reference population. With this for-
mulation the cellular prevalence, the fraction of cancer cells harbouring a mutation, is given by
φn. The cellular prevalence is a fundamental quantity for examining population dynamics across
multiple samples as it is not affected by the tumour content of a sample. As a result the cellular
prevalence allows us to track changes in the population structure across samples (with regards to
SNVs) without the confounding effect of contaminating normal cells.

For a genotype g ∈ G, c(g) : G 7→ N returns the copy number of the genotype, for example
c(AAB) = 3. We define b(g) : G 7→ N, which returns the number of variant alleles in the genotype,
for example b(AAB) = 1. If b(g) , 0 and b(g) , c(g) we assume that the probability of sampling
a variant allele from a cell with genotype g is given by µ(g) =

b(g)
c(g) . In the case where b(g) = 0 we

assume µ(g) = ε, where ε is the probability of erroneously observing a B allele when the true allele
sequenced was A. We make this modification to allow for the effect of sequencing error. Similarly
we define µ(g) = 1 − ε when b(g) = c(g). The definition of µ(g) assumes the probability of a
sequencing error is independent of the sequenced allele. Because of this assumption we do not
account for sequencing errors for other genotypes since these errors should cancel on average and
the expected fraction of B alleles should stay the same as the error free case.

We assume that the sequenced reads are independently sampled from an infinite pool of DNA
fragments. Thus the probability of sampling a read covering a given locus from a sub-population
is proportional to the prevalence of the sub-population and the copy number of the locus in cells
in from that population. Therefore, the probability of sampling a read containing the variant allele
covering a mutation with state ψ = (gN, gR, gV) and cellular prevalence φ is given by:

ξ(ψ, φ, t) =
(1 − t)c(gN)

Z
µ(gN) +

t(1 − φ)c(gR)
Z

µ(gR) +

tφc(gV)
Z

µ(gV)

Z = (1 − t)c(gN) + t(1 − φ)c(gR) + tφc(gV)

We let bn denote the number of reads observed with the B allele, with dn total reads covering
the locus, where the nth mutation has occurred. It is straightforward to show that bn follows a
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Binomial distribution with parameters dn and ξ(ψn, φn, t). This assertion follows from the fact that
the sum of n Bernoulli random variables with parameter p follows a Binomial distribution with
parameters n, p 2.

The posterior distribution of the prevalences φ = (φ1, . . . , φN) is then given by

p(φ|bn, dn,πn, t)

∝ p(φ)
N∏

n=1

p(bn|φn, dn,πn, t)

= p(φ)
N∏

n=1

∑
ψn∈G3

p(bn|φn, dn,ψn, t)p(ψn|πn)

= p(φ)
N∏

n=1

∑
ψn∈G3

Binomial(bn|dn, ξ(ψn, φn, t))πn
ψn.

In principle, the sum over ψn ∈ G3 could be infinite. In practice we cannot enumerate an
infinite set of states. Thus we must specify a finite set of states which will have non-zero prior
probability which in turn truncates the sum.

Mutations from the same clonal population should appear at the same cellular prevalence.
To account for this we specify a DP prior with base measure H0 ∼ Uniform(0, 1) for p(φ) which
allows mutations to share the same cellular prevalence 3. If we were to directly use a continuous
distribution such as Uniform(0, 1) as a prior for p(φ), the cellular prevalence of all mutations would
be different with probability one. The DP prior converts this continuous distribution into a discrete
distribution with an infinite number of point masses. Since the DP distribution is discrete, it gives
a non-zero prior probability to mutations sharing the same cellular prevalence. Though each muta-
tion samples its own value of φn from the DP, the fact that φn can be identical induces a clustering
of the data.

Due to the presence of the DP prior, computing the exact posterior distribution is not tractable.
We use an auxiliary variable sampling method 4 to perform Markov Chain Monte Carlo (MCMC)
sampling from the posterior distribution. First, the sampler iterates over each mutation choosing a
new value of φn from p(φ). The mutations may either choose a value of φn used by other mutations,
effectively joining a cluster, or choose an unused value of φn, starting a new cluster. After this step
the values of each cluster are resampled using a Metropolis-Hastings step with the base measure
H0 as the proposal distribution. The concentration parameter, α, in the DP is sampled using the
method described in West et al.5. This method places a Gamma distribution on α which leads to
simple a Gibbs resampling step. The Gamma distribution prior is parametrised in terms of the
shape a and rate b parameters. The density for this prior is given by
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p(α|a, b) =
baαa−1 exp (−bα)

Γ(a)

where Γ(x) is the gamma function. The mean and variance of this distribution are given by

E(α) =
a
b

Var(α) =
a
b2

We typically use values of a = 1.0 and b = 10−3 so that the variance of the prior distribution
on α is 106, which is extremely vague.

To initialise the sampler we assign all mutations to separate clusters. As a result the compu-
tational complexity of the first pass of the sampler is O(N2), where N is the number of mutations.
Subsequent iterations have computational complexity O(NK) where K is the number of active
clusters.

2 Multiple samples modeling

Increasingly, common experimental designs acquire deep digital sequencing across spatial or tem-
poral axes, examining shifts in prevalence as a marker of selection. As these measurements are
not independent (derivative clones are related phylogenetically), we assume M samplings from the
same cancer can share statistical strength to improve clustering performance. We substitute the
univariate base measure in H0 with a multivariate base measure; for concreteness we use the uni-
form distribution over [0, 1]M. The Dirichlet process then samples a discrete multivariate measure
H over the clusters and each data point draws a vector of, φn = (φn

1 . . . φ
n
M) from this measure. The

likelihood under this model is given by

p(φ|bn, dn,πn, t) ∝

p(φ)
M∏

m=1

N∏
n=1

∑
ψn

m∈G
3

p(bn
m|d

n
m, φ

n
m,ψ

n
m, tm)p(ψn

m|π
n
m)
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For each mutation n we assign different priors, πn
m, for each sample, allowing for the geno-

types of the reference and variant populations to change between samples; for example if the
samples came from a regional samples in a tumour mass, primary tumour and distant metastasis,
or pre- and post- chemotherapy. We also introduce the vector t = (t1, . . . , tM) which contains the
tumour content of each sample. Using this approach the clustering of mutations is shared across all
samples but the cellular prevalence of each mutation is still free to vary in the M samples. Thus the
final output of the model will be a single posterior similarity matrix for all mutations and N × M
posterior densities (one per mutation per sample) for the cellular prevalences of each mutation.

3 Addressing overdispersion

Next generation sequencing data are often overdispersed 6. We implemented a version of the
PyClone framework which replaces the Binomial distribution with a Beta-Binomial distribution,
parametrised in terms of the mean and precision. The density is given by

p(b|d,m, s) =

(
d
b

)
B(b + sm, d − b + s(1 − m))

B(sm, s(1 − m))

where B is the Beta function. We set m = ξ(ψn, φn, t) and to reduce the number of parameters
which need to be estimated we share the same value s across all data points, and when applicable
all samples.

4 Methods for eliciting PyClone priors over mutational genotypes

The genotype aware models implemented in the PyClone package requires that we specify prior
πn
ψ for the state of the sample at the nth mutation. The state is defined by the normal, reference and

variant genotypes and is denoted by the state vector ψn = (gn
N, g

n
R, g

n
V). A number of methods are

available to profile parental (allele specific) and total copy number from high density genotyping
arrays 7–9, or from whole genome sequencing data 10, 11. As segmental aneuploidies and loss of
heterozygosity are accepted to be an essential part of the tumour genome landscape 12, 13, it has be-
come routine to assay the genome architecture in conjunction with mutational analysis. To explore
the impact different prior assumptions have on performance, we consider a range of strategies for
setting the prior probabilities over states. We denote the total copy number by c, and the copy
number of each homologous chromosome by c1, c2. In what follows we assume that correct copy
number information is available for c, c1, and c2.

We consider five strategies for eliciting prior distributions. For all priors discussed we assume
that gN = AA (in other words we assign prior probability zero to all vectors ψi with gN , AA). We
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assign uniform probability over the support. In other words, priors only differ in which states are
assigned non-zero probability. All states with non-zero probability receive equal weight.

• AB prior: We assume that gR = AA and gV = AB. Intuitively this means each mutation is
assumed to be diploid and heterozygous.

• BB prior: We assume that gR = AA and gV = BB. Intuitively this means each mutation is
assumed to be diploid and homozygous.

• No Zygosity prior (NZ): We assume that gR = AA, c(gV) = c and b(gV) = 1. In other
words the genotype of the variant population has the predicted copy number with exactly
one mutant allele. This is similar to the approach used in 14.

• Total Copy Number prior (TCN): We assume that c(gV) = c and b(gV) ∈ {1, . . . , c}. In
other words the genotype of the variant population has the predicted copy number and at least
one variant allele. We assume, with equal probability, that gR is either AA or the genotype
with c(gR) = c and b(gR) = 0. Intuitively this means the genotype of the variant population
at the locus has the predicted total copy number and we consider the possibility that any
number of copies (> 0) of the locus contains the mutant allele. We consider states where the
reference population has the AA genotype or the genotype with the predicted copy number
and all A’s.

• Parental Copy Number prior (PCN): We assume that c(gV) = c and b(gV) ∈ {1, c1, c2}.
In other words the genotype of the variant population has the genotype with the predicted
copy number and one variant allele, or as many variant alleles as one of the parental copy
numbers. When b(gV) ∈ {c1, c2} we assume gR = gN, in other words the mutation occurs
before copy number events. When b(gV) = 1 we assume gR is the genotype with c(gR) = c
and b(gR) = 0, in other words the mutation occurs after the copy number event. Intuitively
this means each mutant locus has the predicted total copy number. We then consider if the
mutation occurred before the copy number event, in which case the number of copies with
the mutant allele should match one of the predicted parental copy numbers. Alternatively if
the mutation occurs after the copy number event we assume only a single copy of the locus
contains the mutant allele. This scheme assumes that a point mutation only occurs once. If
more then one copy of the mutant allele is present in the variant population genotype, this
occurred because the mutation preceded any copy number changes and was subsequently
amplified.

5 Generation of synthetic data

To generate synthetic data for Supplementary Figs. 12 and 13, we sampled from the PyClone
model with a Binomial emission letting di ∼ Poisson(10, 000), t = 0.75, and using 8 clusters
with cellular frequencies drawn from a Uniform(0, 1) distribution. To assign genotypes to each
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mutation, we randomly sampled a total copy number, c ∈ {1, . . . , 5}. We sampled another value
c∗ uniformly from the set {0, 1, ..., c} and set the major copy number, c1, to max{c∗, c − c∗} and the
minor copy number, c2, to c − c1. We randomly sample gR from the set {gN, g∗} where c(g∗) = c
and b(g∗) = 0. If gR = gN then we assumed the mutation occurred early so that gV had either c1 or
c2 B alleles and total copy number c. If gR , gN we set gV to the genotype with one variant allele
and total copy number c. For Supplementary Fig. 12 we generated 100 simulated datasets by
sampling 100 mutations for each dataset. For Supplementary Fig. 13 we generated 400 datasets,
100 datasets with 50, 100, 500 and 1,000 mutations.

6 Implementation and availability

The code implementing all methods plus plotting and clustering is included in the PyClone soft-
ware package. PyClone is implemented in the Python programming language. All analyses
were performed using PyClone 0.12.4 and PyDP 0.2.1. PyDP is freely available under open
source licensing. PyClone is freely available for academic use at http://compbio.bccrc.ca/
software/pyclone/ .
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