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Supporting Information (SI) S1 Text:
A Molecular Clock Infers Heterogeneous Tissue Age Among Patients with
Barrett’s Esophagus

Mathematical Methods

Distributions in Markov Chain Monte Carlo

As described in Materials and Methods in the Main Text, the methylation data for the 67 BE
clock CpG set from a single patient i, for i = 1, . . . , N , observed at time ti, is of the form

yi = {yBEi,j , j = 1, . . . , 67}. (1)

Here we define the following variables: the onset of BE at time TBE = si, the slope (bSQj ) and
intercept (αSQj ) of the SQ population regression lines (obtained from individuals with matched
samples in data set D2 and thus fixed), the patient-specific, CpG-specific BE drift rates bi,j ,
and the standard deviation σBEi around data measurement values. For each data set of size
N patients, we observe 67 independent measurements for each independent individual. In the
Bayesian BE clock model framework, the likelihood contribution from a single patient observed
at time ti is given by

67∏
j=1

f(yBEi,j)

=
67∏
j=1

fN (yBEi,j ;µBEi,j = αSQj + bSQjsi + bi,j(ti − si), σBEi), (2)

where fN is the normal density function. For those Bayesian model parameters to be inferred,
we assume prior distributions ps(si), pb(bi,j), pσ(σBEi) to be used in Markov Chain Monte Carlo
(MCMC). First, we assume uniform priors ps(si) for the BE onset times si (due to the fact that
the distribution of BE onset times in the general population is essentially unknown),

ps(si) =
1

ti
, (3)

where individual i was age ti at time of biopsy and thus developed BE at some previous age si.
Second, we assume normal prior distributions p

b
(bi,j) for the drift rates bi,j , j = 1, . . . , 67,

p
b
(bi,j) =

1

σ
b

√
2π

exp

(
−(bi,j − µb)2

2σ2
b

)
, (4)

where the empirical mean µ
b

and standard deviation σ
b

were derived from the longitudinal
data sets D1 and DV. For discovery set D1 used during CpG marker selection, we computed
from regression slopes that the drift rates for the 67 CpG set have mean rate µ

b
= 0.0650 with

standard deviation σ
b

= 0.0296. For validation set DV that was not used during selection,
the drift rates computed for the same 67 CpG set have mean rate µ

b
= 0.0444 with standard

deviation σ
b

= 0.0439. As expected, we see selection bias manifested by a slightly increased mean
slope and decreased variance in data set D1 because that data was used for marker selection of
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significant CpG drift across individuals via regression (see Fig 5 in Main Text). The use of either
prior derived from the two drift rate distributions had little effect on our posterior estimates for
the parameters, of most interest the BE onset age si (si medians differed by only 3.5 years on
average). Thus, we provide model results throughout the Results section of the Main Text using
the unbiased DV set empirical values to construct prior p

b
(bi,j) for the drift rates.

Third, we assume a conjugate gamma prior pσ(σBEi) for the standard deviation σBEi of
methylation measurement values,

pσ(σBEi) =
γ
γ1
2

Γ(γ1)
exp(−γ2σBEi), (5)

letting shape γ1 = 0.608 and rate γ2 = 0.117, values that were fitted to the distribution of ‘flat’,
or non-drifting, CpG measurements in the cross-sectional data set D2 (see 4 examples of such
CpGs in Fig 2A-D in Main Text).

Finally, in order to simulate patient-specific posterior distributions via MCMC, let us de-
fine the vector Ψi = (si, bi,1, . . . , bi,67, σBEi) for patient i. Samples of Ψi under its posterior
distribution for patient i will be obtained using an MCMC algorithm publicly made available
online (https://github.com/yosoykit/BE_Clock_Model). Note that the posterior distribu-
tion of Ψi given the observation yi comprised of patient-specific data of the form in Eq. (1), for
i = 1, . . . , N , is given by

π(Ψi|yi) ∝ likelihood · prior (6)

=
67∏
j=1

fN (yBEi,j ;µBEi,j , σBEi) · ps(si) · pb(bi,j) · pσ(σBEi). (7)

Thus we simulate posterior distribution samples for model parameters of this Bayesian BE clock
model using MCMC. With the expressions above, the full conditionals for our Gibbs sampler
can be routinely worked out [1].

Robustness of Estimates using Imputed SQ Drift

To analyze the robustness of imputing SQ trends for BE onset age estimation, we consider a
slightly modified model to that which is currently given in Eqns. (1-5) in the Main Text. Rather
than considering the random variable of interest to be the M-value measurement YBEi,j(ti) for
each BE patient, the reformulated model considers the difference, ∆i,j , in M-values between BE
and SQ samples in patient i, CpG j, given by the following,

E[∆i,j ] = µ∆i,j
= (bi,j − bSQj )(ti − si). (8)

Thus, the observation from a single D2 patient i, for i = 1, . . . , N , observed at time ti, in the
unmasked version is of the form

yi = {yBEi,j − ySQi,j , j = 1, . . . , 67}. (9)

In contrast, the method to infer onset ages we use in the Main Text does not explicitly use
the matched SQ sample in an individual’s MCMC. Specifically, we currently ‘mask’ the patient-
specific SQ M-values by using fixed intercept αSQj and slope bSQj for each CpG j attained from

https://github.com/yosoykit/BE_Clock_Model
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linear regression across all D2 patients. We then apply this approach to other data sets such
as D3 who do not have SQ-matched samples. Analogously written in the difference (∆) model
formulation, this masked version would use observations of the form

yi = {yBEi,j − (αSQj + bSQj ti), j = 1, . . . , 67}. (10)

Thus, the analog to Eq. (5) in the Main Text would be the following equation for the posterior
distribution of parameter vector Ψi given the observation yi for patient i,

67∏
j=1

fN (yi,j;µ∆i,j
, σ∆i

) · ps(si) · pb(bi,j − bSQj ) · pσ(σ∆i
), (11)

where the normal prior p
b

is adjusted to estimate parameter bi,j − bSQj with appropriate mean
and standard deviation, and gamma prior pσ now applies to standard deviation of the sum of
two normal random variables, YBEi,j , YSQi,j , which is σ∆i

=
√

2σBEi .

We ran the Bayesian BE clock model for all patients in D2 using the unmasked (Eq. (9))
and masked (Eq. (10)) versions of the ∆ model above to determine if the lack of paired SQ
matched data leads to any information loss in individual BE onset age estimation among the
D2 patients. We found that using an imputation of the intercept and drift rates rather than
exact matched SQ values is a robust approach to estimating BE onset ages (see S5 Fig for
comparison). Specifically, the correlation of median estimates between the two methods was
.98, and the root-mean-square error between onset ages was 0.08 years. Thus, there is minimal
information loss resulting from a lack of matched SQ tissue samples for the D2 patients. This
is an advantageous aspect of our approach for BE dwell time estimation, particularly for future
validation opportunities that may be limited to strictly BE tissue samples as was the case for
data set D3.

Lifetime EAC Risk Derivation

In the Main Text, we compute the risk of developing EAC by age 88 in a cancer-free individual at
time of biopsy/diagnosis a, given estimated BE onset time, with the multistage clonal expansion
for EAC (MSCE-EAC) model (S1 Fig) that was previously calibrated to Surveillance, Epidemi-
ology, and End Results (SEER) incidence data [2–4]. This risk is defined as the probability of
developing EAC at random time TEAC by age 88 conditional on the onset age of BE, TBE . For
each BE patient who has not been diagnosed with EAC at age at biopsy a, with BE onset time
estimated to be age s from his/her methylation profile, we computed the following risk

Pr[TEAC < 88|TBE = s, TEAC > a] =
SMSCE (a− s)− SMSCE (88− s)

SMSCE (a− s)
, (12)

where SMSCE is the EAC survival probability for the MSCE-EAC model given BE onset (thus
simply an MSCE model). This function has been derived previously (see S1 Text of [4]) but for
completeness we will provide a derivation here as well. We first introduce the notation for the
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following random variables of the multi-type branching process

BE(t) = Bernoulli random variable for BE conversion by time t

X(t) = number of BE stem cells in a tissue at time t

P ∗(t) = number of pre-initiated cells at time t

P (t) = number of premalignant (initiated) cells at time t

M(t) = number of malignant (preclinical) cells (prior to detection) at time t

C(t) = number of cancer cells (after detection) at time t

D(t) = Bernoulli random variable for clinical detection by time t

Let us consider the probability generating function (pgf) Ψ for the entire process starting at
τ = 0, ie. when an individual is born

Ψ(yBE ,y1,y2,y3,z;t)=
∑

i,j,k,l,n

yi
BE

yj1y
k
2y
l
3z
nP (i,j,k,l,n;t),

P (i,j,k,l,n;t)=Pr[BE(t)=i,P ∗(t)=j,P (t)=k,M(t)=l,D(t)=n|BE(0)=0,P ∗(0)=0,P (0)=0,M(0)=0,D(0)=0]

where, explicitly, i, n = {0, 1} and BE(t), D(t) are the following indicator functions correspond-
ing to BE conversion and EAC clinical detection, respectively

BE(t) =

{
0 if BE has not developed by time t

1 if BE conversion has taken place by time t

D(t) =

{
0 if no cancer detected clinically by time t

1 if a malignant cell is detected by time t. ie C(τ) > 0 for some τ ≤ t

The Chapman-Kolmogorov equations governing the transition probabilities for this multistage
process include contributions from the initial Armitage-Doll type transition to BE, the two
Poisson transitions to initiation, and the two birth-death-migration processes, all of which have
been derived previously [5–7]. We begin with a method for solving for these generating functions
using the Kolmogorov backward equations.
Backward Kolmogorov equations and the MSCE hazard, SMSCE

Beginning with an active BE segment (BE), a single pre-initiated (P∗), premalignant (P ),
or malignant (M) cell at time τ only, we define the following generating functions ΦBE ,Φ

P∗ , ΦP ,
or ΦM , respectively,

ΦM (y3,z;τ,t)=E[y
M(t)
3 zD(t)|M(τ)=1,D(τ)=0] (13)

=
∑
k,l

yk3 z
lPr[M(t)=k,D(t)=l|M(τ)=1,D(τ)=0]

ΦP (y2,y3,z;τ,t)=E[y
P (t)
2 y

M(t)
3 zD(t)|P (τ)=1,M(τ)=0,D(τ)=0] (14)

=
∑
j,k,l

yj2y
k
3 z
lPr[P (t)=j,M(t)=k,D(t)=l|P (τ)=1,M(τ)=0,D(τ)=0]

Φ
P∗ (y1,y2,y3,z;τ,t)=E[y

P∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ)=1,P (τ)=0,M(τ)=0,D(τ)=0] (15)

=
∑
i,j,k,l

yi1y
j
2y
k
3 z
lPr[P ∗(t)=i,P (t)=j,M(t)=k,D(t)=l|P ∗(τ)=1,P (τ)=0,M(τ)=0,D(τ)=0]

ΦBE (yBE ,y1,y2,y3,z;τ,t)=E[y
BE(t)

BE
y
P∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|BE(τ)=1,P ∗(τ)=0,P (τ)=0,M(τ)=0,D(τ)=0] (16)



5

=
∑

i,j,k,l,n

yi
BE

yj1y
j
2y
l
3z
nPr[BE(t)=i,P ∗(t)=j,P (t)=k,M(t)=l,D(t)=n|BE(τ)=1,P ∗(τ)=0,P (τ)=0,M(τ)=0,D(τ)=0]

The generating functions satisfy the following Kolmogorov backward equations

∂ΦM (y3, z; τ, t)

∂τ
= −αMΦ2

M
(y3, z; τ, t)− βM (17)

− zρΦM (y3, z; τ, t) + [αM + βM + ρ]ΦM (y3, z; τ, t)

∂ΦP (y2, y3, z; τ, t)

∂τ
= −αPΦ2

P
(y2, y3, z; τ, t)− βP (18)

+ [αP + βP + µ2]ΦP (y2, y3, z; τ, t)− µ2ΦP (y2, y3, z; τ, t)ΦM (y3, z; τ, t)

∂Φ
P∗ (y1, y2, y3, z; τ, t)

∂τ
= −µ1Φ

P∗ (y1, y2, y3, z; τ, t)[ΦP (y2, y3, z; τ, t)− 1] (19)

∂ΦBE (yBE , y1, y2, y3, z; τ, t)

∂τ
= −µ0XΦBE (yBE , y1, y2, y3, z; τ, t)[ΦP∗ (y1, y2, y3, z; τ, t)− 1] (20)

∂Ψ(yBE , y1, y2, y3, z; τ, t)

∂τ
= ν(τ)[Ψ(yBE , y1, y2, y3, z; τ, t)− ΦBE (yBE , y1, y2, y3, z; τ, t)] (21)

To connect the cellular level description to the population level, we first solve for the overall
survival function (for EAC cancer detection), starting at time 0, which in our notation is

SEAC (t) = 1− PEAC (t) = Pr[D(t) = 0|BE(0) = 0, P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

= Ψ(1, 1, 1, 1, 0; 0, t)

where PEAC (t) is the probability of a cancer detection at time t,

PEAC (t) = Pr[D(t) = 1|BE(0) = 0, P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

We will here denote ΦM (1, 0; τ, t) ≡ ΦM (τ, t), ΦP (1, 1, 0; τ, t) ≡ ΦP (τ, t), Φ
P∗ (1, 1, 1, 0; τ, t) ≡

Φ
P∗ (τ, t), ΦBE (1, 1, 1, 1, 0; τ, t) ≡ ΦBE (τ, t), and Ψ(1, 1, 1, 1, 0; τ, t) ≡ Ψ(τ, t). A dot designates a

first derivative with respect to t. The hazard function, i.e., the rate at which cancer is detected
in individuals who have not been diagnosed before, is given by

hEAC (t) = − ṠEAC (t)

SEAC (t)
= −Ψ̇(0, t)

Ψ(0, t)
= − d

dt
ln[Ψ(0, t)] (22)

For fixed t, this boundary value system of coupled PDEs can be converted into an initial value
problem (IVP) with the change of variables u = t−τ , where u is the “running” time. This redef-
inition and equations hereafter follow the method used by Crump et al. [8]. Define the following
variables for the new IVP: Y1(u, t) = ΦM (τ, t), Y2(u, t) = Φ̇M (τ, t), Y3(u, t) = ΦP (τ, t), Y4(u, t) =
Φ̇P (τ, t), Y5(u, t) = Φ

P∗ (τ, t), Y6(u, t) = Φ̇
P∗ (τ, t), Y7(u, t) = ΦBE (τ, t), Y8(u, t) = Φ̇BE (τ, t), Y9(u, t) =

Ψ(τ, t), Y10(u, t) = Ψ̇(τ, t) with corresponding initial conditions Y1(0, t) = Y3(0, t) = Y5(0, t) =
Y7(0, t) = Y9(0, t) = 1, Y4(0, t) = Y6(0, t) = Y8(0, t) = Y10(0, t) = 0, and Y2(0, t) = −ρ. Then the
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equations to solve for our IVP are the following

dY1(u, t)

du
= βM − (αM + βM + ρ)Y1(u, t) + αMY

2
1 (u, t) (23)

dY2(u, t)

du
= 2αMY1(u, t)Y2(u, t)− (αM + βM + ρ)Y2(u, t) (24)

dY3(u, t)

du
= βP + µ2Y1(u, t)Y3(u, t)− (αP + βP + µ2)Y3(u, t) + αP Y

2
3 (u, t) (25)

dY4(u, t)

du
= 2αP Y3(u, t)Y4(u, t) + µ2(Y4(u, t)Y1(u, t) + Y3(u, t)Y2(u, t))− (αP + βP + µ2)Y4(u, t)

(26)

dY5(u, t)

du
= µ1Y5(u, t)(Y3(u, t)− 1) (27)

dY6(u, t)

du
= µ1(Y6(u, t)Y3(u, t)− Y6(u, t) + Y5(u, t)Y4(u, t)) (28)

dY7(u, t)

du
= µ0XY7(u, t)(Y5(u, t)− 1) (29)

dY8(u, t)

du
= µ0X(Y8(u, t)Y5(u, t)− Y8(u, t) + Y7(u, t)Y6(u, t)) (30)

dY9(u, t)

du
= ν(u)(Y7(u, t)− Y9(u, t)) (31)

dY10(u, t)

du
= ν(u)(Y10(u, t)− Y8(u, t)). (32)

These 10 coupled ODEs can be solved numerically to obtain the desired survival function con-
ditional on time of BE onset from Eq. (12),

SMSCE (t) = Y7(t, t). (33)
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