Total Synthesis of (–)-Chromodorolide B

Daniel J. Tao, Yuriy Slutskyy, and Larry E. Overman*

Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information – Table of Contents

Materials and Methods	
Model System Study and Synthetic Procedures	
Synthetic Procedures for Total Synthesis of (–)-Chromodorolide B	
Comparison Table for Synthetic and Natural (–)-Chromodorolide B	.831–832
Optimization Tables of ACF Cascade	S33
Proposed Sequence to form ACF Cascade Products	S34
References	S35
Spectral Data	S36—S85

Materials and Methods

Unless stated otherwise, reactions were conducted in oven-dried glassware under an atmosphere of nitrogen or argon. Tetrahydrofuran (THF), diethyl ether, toluene, benzene, dichloromethane, methanol (MeOH), pyridine, DIPEA, and triethylamine were dried by passage through activated alumina. Benzyloxymethyl chloride (BOM-Cl) distilled under Ar from CaH directly before use. 1,1,3,3-Tetramethylguanidine was distilled under Ar from barium oxide directly before use. Thionyl chloride was distilled from quinoline under Ar. Tributylphosphine was distilled under reduced pressure and stored in a Schlenk flask. All other commercial reagents were used as received unless otherwise noted. Hantzsch ester^{1a} (HE) and its 4-dideutero derivative^{1b} were prepared according to literature procedures. Reaction temperatures were controlled using a temperature modulator, and unless stated otherwise, reactions were performed at room temperature (rt, approximately 23 °C). Thin-layer chromatography (TLC) was conducted with silica gel 60 F254 pre-coated plates, (0.25 mm) and visualized by exposure to UV light (254 nm) or by *p*-anisaldehyde, ceric ammonium molybdate, and potassium permanganate staining. Silica gel 60 (particle size 0.040–0.063 mm) was used for flash column chromatography. ¹H NMR spectra were recorded at 500 or 600 MHz and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. For late-stage intermediates, integrations for the upfield protons ($\delta 2.00-0.50$) of the hydrindane fragment were assigned based on 2D NMR techniques and chemical intuition. ¹³C NMR spectra were recorded at 125 or 150 MHz. Data for ¹³C NMR spectra are reported in terms of chemical shift. IR spectra were recorded on a FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). High-resolution mass spectra were obtained with a LCT spectrometer. Blue LEDs (30 cm, 1 watt) were purchased from http://www.creativelightings.com (product code CL-FRS5050-12WP-12V) and powered by 8 AA

batteries. See JOC Standard Abbreviations and Acronyms for abbreviations (available at http://pubs.acs.org/userim-ages/ContentEditor/1218717864819/joceah_abbreviations.pdf).

Model System Study and Synthetic Procedures

(+)-Tert-butyl(((4S,5S)-5-ethynyl-2,2-dimethyl-4-vinyl-1,3-dioxolan-4-

yl)methoxy)dimethylsilane (S6): To a suspension of known alcohol S1² (0.732 g, 2.42 mmol) and

solid NaHCO₃ (1.01 g, 12.1 mmol) in CH_2Cl_2 (4 mL) was added Dess-Martin periodinane (1.23 g, 2.90 mmol). The reaction was vigorously stirred for 2 h, at which point the suspension was filtered through Celite and concentrated *in vacuo*.

The residue was then washed with pentanes (4 x 8 mL), and the combined organic washes were filtered through Celite and concentrated *in vacuo* to afford the crude aldehyde as a yellow oil which was carried forward immediately.

The crude aldehyde and dimethyl (1-azoacetonyl)phosphonate (0.558 g, 2.90 mmol) were dissolved in MeOH (9 mL). Solid K₂CO₃ (0.669 g, 4.84 mmol) was then added, and the suspension was vigorously stirred for 2 h. Celite (~5 g) was added to the reaction vessel, and the reaction was concentrated *in vacuo*. Purification by flash column chromatography (5% EtOAc in hexanes to 7% EtOAc in hexanes) afforded alkyne **S6** (0.550 g, 1.86 mmol, 77% yield) as a clear oil, which solidified upon standing. R_f 0.90 (20% EtOAc in hexanes; visualized with KMnO₄). ¹H NMR (500 MHz, CDCl₃) δ 6.12 (dd, *J* = 17.2, 10.9 Hz, 1H), 5.53 (dd, *J* = 17.5, 1.6 Hz, 1H), 5.30 (dd, *J* = 10.9, 1.6 Hz, 1H), 4.99 (d, *J* = 2.1 Hz, 1H), 3.58 (d, *J* = 10.6 Hz, 1H), 3.55 (d, *J* = 10.7 Hz, 1H),

2.60 (d, J = 2.2 Hz, 1H), 1.54 (s, 3H), 1.43 (s, 3H), 0.89 (s, 9H), 0.07 (s, 6H); ¹³C NMR (500 MHz, CDCl₃) δ 136.46, 116.73, 110.27, 85.75, 79.25, 77.10, 69.70, 65.41, 27.87, 27.01, 26.00, 18.44, – 5.23, –5.49; IR (thin film) 3312, 2988, 2955, 2858, 1741, 1378, 1253 cm⁻¹; $[\alpha]^{25}_{D}$: +0.79 (c = 2.5, CH₂Cl₂); HRMS (ESI) calculated for C₁₆H₂₉O₃Si (M+H) 297.1887, observed 297.1890; mp 39–41 °C.

(-)-(4*S*,5*S*)-4-(((tert-butyldimethylsilyl)oxy)methyl)-5-ethynyl-2,2-dimethyl-1,3-dioxolane-4carboxylic acid (S7): A solution of alkyne S6 (0.553 g, 1.87 mmol) in methanol (8 mL) was

cooled to -78 °C. Ozone from an ozone generator was bubbled through the solution until a pale blue color was observed (~5 min). The solution was then sparged with oxygen until the pale blue color disappeared. Dimethyl sulfide (0.31

mL, 4.3 mmol) was added to the solution, which was maintained at -78 °C for 1 h. The reaction vessel was allowed to warm to 23 °C and concentrated *in vacuo*. The residue was then redissolved in a 3:1 solution of *t*-BuOH/H₂O (8 mL). A solution of 2-methyl-2-butene (2.0 mL, 19 mmol) was added to the mixture, followed by NaH₂PO₄ (1.80 g, 15.0 mmol) and NaClO₂ (0.845 g, 9.35 mmol). The reaction was maintained at 23 °C for 2 h, at which point H₂O (4 mL) was added. This mixture was washed with EtOAc (3 x 10 mL), and the combined organic layers were washed with aq. NaOH (5 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then acidified with aq. HCl (7 mL of 0.5 M soln). The aqueous layer was then washed with EtOAc (3 x 10 mL), and the combined organic layers were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to provide acid **S7** as a colorless oil (0.450 g, 1.43 mmol, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.97 (d, *J* = 2.3 Hz, 1H), 3.94 (d, *J* = 11.0 Hz, 1H), 3.92 (d, *J* = 11.0 Hz, 1H), 2.63 (d, *J* = 2.2 Hz, 1H), 1.67 (s, 3H), 1.47 (s, 3H), 0.90 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C NMR (500 MHz,

CDCl₃) δ 173.25, 113.33, 88.23, 77.69, 69.04, 63.64, 26.99, 26.97, 25.95, 18.48, 14.32, -5.26, -5.48; IR (thin film) 3505, 3277, 2990, 2931, 2858, 1731, 1379 cm⁻¹; $[\alpha]_{D}^{25}$: -30.0 (c = 2.1, CH₂Cl₂); HRMS (ESI) calculated for C₁₅H₂₅O₅Si (M–H) 313.1471, observed 313.1467.

(+) - 1, 3 - dioxoisoindolin - 2 - yl (4S, 5S) - 4 - (((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - ((tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl) - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethylsilyl)oxy)methyl - 5 - ethynyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - 4 - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - (tert - butyldimethyl - 5 - ethyl - 2, 2 - yl (4S, 5S) - (tert - b

dimethyl-1,3-dioxolane-4-carboxylate (S2): Acid S7 (0.453 g, 1.44 mmol) was charged into a

flask with THF (8 mL). *N*-hydroxyphthalimide (0.399 g, 2.45 mmol), *N*,*N*⁻ dicycylohexylcarbodiimide (0.446 g, 2.16 mmol), and 4dimethylaminopyridine (9 mg, 0.07 mmol) were added to the reaction

vessel, which was maintained at 23 °C for 20 h. Hexanes (5 mL) was added to the reaction, and the resulting suspension was filtered through Celite. The yellow filtrate was concentrated *in vacuo* and then purified by flash column chromatography (10% EtOAc in hexanes to 15% EtOAc in hexanes) to provide *N*-acyloxyphthalimide **S2** (0.539 g, 1.18 mmol, 82% yield) as a colorless crystalline solid. R_f 0.25 (20% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (m, 2H), 7.78 (m, 2H), 5.14 (d, *J* = 2.2 Hz, 1H), 4.10 (d, *J* = 11.5 Hz, 1H), 4.07 (d, *J* = 11.3 Hz, 1H), 2.78 (d, *J* = 2.2 Hz, 1H), 1.71 (s, 3H), 1.50 (s, 3H), 0.93 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 166.77, 161.37, 134.87, 129.09, 124.07, 113.53, 88.06, 78.80, 76.25, 68.81, 62.80, 26.7, 26.64, 26.00, 18.54, -5.18, -5.49; IR (thin film) 3283, 2930, 2855, 2360, 2340, 2118, 1789, 1748 cm⁻¹; [α]²⁵_D : +38.3 (c = 2.0, CH₂Cl₂); HRMS (ESI) calculated for C₂₃H₂₉NO₇SiNa(M+Na) 482.1611, observed 482.1612; mp 105–109 °C.

(-)-(3aS,3bS,4R,6aR,7aS)-3a-(((tert-butyldimethylsilyl)oxy)methyl)-4-(((1R,2S,5R)-2-

isopropyl-5-methylcyclohexyl)oxy)-2,2-dimethyl-7-methylenehexahydro-6H-

furo[3',4':3,4]cyclopenta[1,2-d][1,3]dioxol-6-one (S4): To a vial charged with N-

acyloxyphthalimide **S2** (100 mg, 0.218 mmol) was added CH_2Cl_2 (2 mL) that had been separately sparged with argon. Butenolide **S3**³ (78 mg, 0.33 mmol), Hantzsch ester (82 mg, 0.63 mmol), Ru(bpy)₃(PF₆)₂ (2 mg, 0.02 mmol), and Hünig's base (80 μ L, 0.48 mmol) were then added to the

reaction. The vial was then vigorously stirred while being irradiated by a single strip of blue LED lights (450 nm) at 23 °C. After 6 h, the reaction mixture was diluted with hexanes (2 mL) and filtered through Celite. The resulting solution was then concentrated *in vacuo* and separated by flash column chromatography (3% EtOAc in hexanes to 5% EtOAc in hexanes) to provide lactone **S4** (42 mg, 0.083 mmol, 38% yield) as a colorless, crystalline solid and addition product **S5** (7.5 mg, 0.015 mmol, 7% yield) as an oil. A single crystal X-ray structure of lactone **S4** was obtained after recrystallization in MeOH/hexanes to confirm structural assignment.⁴ R_f for **S4**: 0.65 (10% EtOAc in hexanes; visualized with ceric ammonium molybdate). R_f for **S5**: 0.60 (10% EtOAc in hexanes; visualized with ceric ammonium molybdate).

S4 for ¹H NMR (500 MHz, CDCl₃) δ 5.90 (d, J = 2.6 Hz, 1H), 5.62 (dd, J = 2.3, 1.0 Hz, 1H), 5.50 (dd, J = 2.7, 0.8 Hz, 1H), 4.73 (app s, 1H), 3.96–3.92 (m, 1H), 3.86 (d, J = 10.7 Hz, 1H), 3.77 (d, J = 10.8 Hz, 1H), 3.51 (dt, J = 10.6, 4.3 Hz, 1H), 3.07 (dd, J = 10.3, 2.3 Hz, 1H), 2.14–2.03 (m, 2H), 1.69–1.60 (m, 2H), 1.47 (s, 3H), 1.40–1.32 (m, 4H), 1.27–1.16 (m, 2H), 1.04–0.93 (m, 1H), 0.92 (d, J = 6.5 Hz, 3H), 0.90–0.80 (m, 13H), 0.77 (d, J = 6.9 Hz, 3H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 175.05, 143.32, 116.61, 112.69, 99.71, 90.76, 86.88, 77.22, 64.36, 57.42, 48.22, 47.87, 40.01, 34.42, 31.51, 28.37, 27.04, 25.93, 25.51, 23.20, 22.39, 21.03, 18.41,

15.81, -5.45, -5.50; IR (thin film) 2953, 2929, 2858, 1779, 1461 cm⁻¹; $[\alpha]^{25}_{D}$: -133 (c = 1.9, CH₂Cl₂); HRMS (ESI) calculated for C₂₈H₄₈O₆SiNa (M+Na) 531.3118, observed 531.3126; mp 136-142 °C.

(-)-**S5** for ¹H NMR (500 MHz, CDCl₃) δ 5.82 (d, J = 2.2 Hz, 1H), 4.59 (d, J = 2.2 Hz, 1H), 3.98 (d, J = 10.7 Hz, 1H), 3.75 (d, J = 10.7 Hz, 1H), 3.52 (dt, J= 10.9, 4.4 Hz, 1H), 2.82–2.65 (m, 3H), 2.58 (d, J = 2.3 Hz, 1H), 2.17–2.04 (m, 2H), 1.69–1.59 (m, 2H), 1.50 (s, 3H), 1.38 (s, 3H), 1.37–1.32 (m, 1H), 1.27-1.17 (m, 2H), 0.99 (app qd, J = 12.5, 3.3 Hz, 1H), 0.91 (d, J = 6.9 Hz,

3H), 0.90 (s, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.86–0.81 (m, 1H), 0.77 (d, J = 7.0 Hz, 3H), 0.09 (s, 6H); ¹³C NMR (500 MHz, CDCl₃) δ 175.88, 110.04, 100.76, 83.81, 78.81, 77.21, 76.74, 71.62, 64.38, 47.88, 46.89, 39.88, 34.46, 31.50, 29.82, 28.24, 27.07, 26.04, 25.56, 23.22, 22.42, 21.02, 18.36, 15.80, -5.44, -5.46; IR (thin film) 3311, 3262, 2955, 2929, 2858, 1791, 1462, 1374, 1252 cm^{-1} ; $[\alpha]_{D}^{25}$: -93.7 (c = 1.2, CH₂Cl₂); HRMS (ESI) calculated for C₂₈H₄₈O₆SiNa (M+Na) 531.3118, observed 531.3131.

NOE Correlations

Synthetic Procedures for Total Synthesis of (-)-Chromodorolide B

(+)-(*S*)-4,7a-dimethyl-2,3,7,7a-tetrahydro-1*H*-indene-1,5(6*H*)-dione (15): (*S*)-enone was

prepared according to a literature procedure.⁵ A 100 mL round-bottom flask was charged with 2-methyl-2-(3-oxopentyl)cyclopetane-1,3-dione (39.6 g, 202 mmol), followed by the addition of *L*-phenylalanine (10 g, 61 mmol),

PPTS (25.3 g, 101 mmol), and DMSO (14 mL, 200 mmol). The heterogeneous reaction mixture was then sonicated for 36 h at 50 °C. The mixture was transferred into a separatory funnel with EtOAc (500 mL), followed by the addition of H₂O (500 mL). The two layers were separated and the aqueous phase was extracted with EtOAc (3 x 500 mL). The combined organic extracts were washed sequentially with aq. HCl (1 x 500 mL of 1 M soln), sat. aq. NaHCO₃ (1 x 500 mL), and brine (1 x 500 mL). The organic phase was dried over MgSO₄ and concentrated *in vacuo* to yield a viscous red oil. The resulting oil was filtered through a silica gel plug (100 g SiO₂) with 30% EtOAc in hexanes (1 L) to afford 32.7 g of crude (+)-**15** as an orange oil. R_f 0.23 (30% EtOAc in hexanes; visualized with *p*-anisaldehyde). The resulting oil was crystallized from Et₂O (23 mL) at -20 °C utilizing a seed crystal (obtained via crystallization from Et₂O/benzene at -20 °C) to provide (+)-**15** as an off-white crystalline solid (21.3 g, 120 mmol, 59% yield, 99% *ee*). Spectral data were consistent with reported values.⁵ The enantiomeric excess was determined by chiral stationary-phase HPLC analysis (Chiracel OB-H column; flow: 2.0 mL/min, 20% isopropanol:*n*-hexane; $\lambda = 254$ nm; minor enantiomer t_R = 5.86 min, major enantiomer t_R = 7.25 min).

(-)-(S)-4,7a-dimethyl-2,3,7,7a-tetrahydrospiro[indene-1,2-[1,3]dioxolan]-5(6H)-one (S8): A

2 L round-bottom flask was charged with enone (+)-15 (7.7 g, 43 mmol), followed by the addition of benzene (860 mL), ethylene glycol (2.9 mL, 52 mmol), and *p*-TsOH•H₂O (1.6 g, 8.6 mmol). A Dean-Stark apparatus was

fitted to the flask, and the homogenous reaction mixture was maintained at reflux overnight. Upon completion of the reaction, as indicated by TLC analysis (40% EtOAc in hexanes; visualized with *p*-anisaldehyde), the mixture was cooled to 0 °C and sat. aq. NaHCO₃ (300 mL) was added. The resulting biphasic mixture was separated and the aqueous layer was extracted with Et₂O (3 x 200 mL). The combined organic layers were washed with brine (1 x 500 mL), dried over MgSO₄, and concentrated *in vacuo* to yield a yellow oil. The crude residue was purified by flash column chromatography (20% EtOAc in hexanes) to yield **S8** as a yellow oil (9.6 g, 43 mmol, 100% yield). R_f 0.45 (40% EtOAc in hexanes; visualized with *p*-anisaldehyde). ¹H NMR (600 MHz, CDCl₃) δ 4.04–3.91 (m, 4H), 2.58–2.51 (m, 2H), 2.43 (dd, *J* = 5.4, 3.6 Hz, 1H), 2.28 (td, *J* = 13.2, 5.4 Hz, 1H), 2.20–2.16 (m, 1H), 1.95–1.91 (m, 1H), 1.68 (s, 3H), 1.61–1.58 (m, 1H), 1.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.63, 167.10, 128.96, 118.04, 65.94, 65.05, 47.68, 33.23, 31.92, 26.80, 25.99, 20.49, 10.83; IR (thin film) 2953, 2881, 1660, 1451, 1153 cm⁻¹; [α]²¹_D : –7.79 (c = 1.6, CH₂Cl₂); HRMS (ESI) calculated for [C₁₃H₁₈O₃Na]⁺ (M+Na) 245.1154, observed 245.1163.

(-)-(5*S*,7*aS*)-4,7*a*-dimethyl-2,3,5,6,7,7*a*-hexahydrospiro[indene-1,2'-[1,3]dioxolan]-5-ol (89):

A 1 L round-bottom flask was charged with enone **S8** (9.6 g, 43 mmol), followed by the addition of Et_2O (310 mL). The solution was cooled to -78 °C. A solution of LiAlH₄ (65 mL of 1 M in Et_2O , 65 mmol) was added dropwise.

The homogenous solution was warmed to 0 °C and maintained at that temperature until TLC

analysis (40% EtOAc in hexanes; visualized with *p*-anisaldehyde) indicated complete consumption of the starting material, typically 10–20 min. Upon completion of the reaction, sat. aq. Rochelle's salt (150 mL) was slowly added. The biphasic mixture was stirred vigorously for 30 min at 0 °C. The solution was then transferred to a separatory funnel and extracted with Et₂O (3 x 150 mL). Combined organic layers were washed with brine (1 x 500 mL), dried over MgSO₄, and concentrated *in vacuo* to yield a colorless solid. The crude residue was purified by flash column chromatography (30% EtOAc in hexanes) to yield **S9** as a colorless, crystalline solid (9.5 g, 42 mmol, 98% yield). R_f 0.25 (40% EtOAc in hexanes; visualized with *p*-anisaldehyde). ¹H NMR (500 MHz, CDCl₃) δ 4.14–4.12 (m, 1H), 3.96–3.86 (m, 4H), 2.33–2.30 (m, 2H), 2.13–2.06 (m, 2H), 1.87–1.78 (m, 2H), 1.71–1.62 (m, 4H), 1.35–1.31 (m, 2H), 1.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.44, 127.91, 118.50, 71.73, 65.73, 64.94, 46.72, 32.07, 30.05, 26.64, 23.98, 22.51, 14.57; IR (thin film) 3411, 2947, 2873, 1642, 1149 cm⁻¹; [α]²¹_D : –32.0 (c = 1.8, CH₂Cl₂); HRMS (ESI) calculated for [C₁₃H₂₀O₃] (M) 224.1413, observed 224.1406; mp 86–88 °C.

(-)-(5S,7aS)-4,7a-dimethyl-2,3,5,6,7,7a-hexahydrospiro[indene-1,2'-[1,3]dioxolan]-5-yl

methyl carbonate (16): A 1 L round-bottom flask was charged with allylic alcohol **S9** (9.5 g, 42 mmol), followed by the addition of DMAP (15.0 g, 126 mmol), CH₂Cl₂ (420 mL), and methyl chloroformate (13 mL, 170 mmol). The

resulting homogenous solution was maintained at 35 °C until TLC analysis (30% EtOAc in hexanes; visualized with *p*-anisaldehyde) indicated complete consumption of the starting material, typically 30–90 min. Upon completion of the reaction, the mixture was cooled to room temperature, followed by the addition of sat. aq. NH₄Cl (200 mL). Next, the solution was transferred to a separatory funnel and extracted with CH_2Cl_2 (3 x 200 mL). The combined organic

layers were washed with brine (1 x 500 mL), dried over MgSO₄, and concentrated *in vacuo* to yield a colorless solid. The crude residue was purified by flash column chromatography (10% EtOAc in hexanes) to yield **16** as a colorless, crystalline solid (11.4 g, 40.4 mmol, 96% yield). R_f 0.35 (20% EtOAc in hexanes; visualized with *p*-anisaldehyde). ¹H NMR (600 MHz, CDCl₃) δ 5.19 (app t, J = 7.8 Hz, 1H), 3.96–3.87 (m, 4H), 3.79 (s, 3H), 2.34 (t, J = 7.8 Hz, 2H), 2.24–2.20 (m, 1H), 2.12–2.07 (m, 1H), 1.89 (td, J = 14.4, 3.0 Hz, 1H), 1.84–1.77 (m, 2H), 1.57 (s, 3H), 1.36 (dt, J = 12.7, 3.8 Hz, 1H), 1.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.27, 144.24, 123.87, 118.39, 78.66, 65.76, 64.93, 54.80, 46.47, 31.90, 26.34, 25.76, 24.11, 22.15, 14.69; IR (thin film) 2954, 2878, 1742, 1442, 1260 cm⁻¹; $[\alpha]^{22}_{\text{D}}$: -41.32 (c = 1.1, CH₂Cl₂); HRMS (ESI) calculated for $[C_{15}H_{22}O_5Na]^+$ (M+Na) 305.1365, observed 305.1370; mp 56–58 °C.

(-)-(3a*S*,7a*S*)-4,7a-dimethyl-2,3,3a,6,7,7a-hexahydrospiro[indene-1,2'-[1,3]dioxolane] (17):

A 200 mL round-bottom flask was charged with Pd(acac)₂ (490 mg, 1.6 mmol), followed by the addition of benzene (21 mL), PBu₃ (0.4 mL, 1.6 mmol). The homogenous mixture was maintained at room temperature for 5

min. Ammonium formate (4.2 g, 67 mmol) was finely crushed with a mortar and pestle and added to the reaction mixture in one portion. The resulting heterogeneous solution was stirred vigorously for 10 min. Next, a solution of carbonate **16** (3.0 g, 10.6 mmol) in benzene (32 mL) was added dropwise. The heterogeneous mixture was stirred vigorously overnight at room temperature. Upon completion of the reaction, as indicated by TLC analysis (10% EtOAc in hexanes; visualized with *p*-anisaldehyde), the mixture was filtered through a silica gel plug (10%EtOAc in hexanes) to provide a brown oil. The crude residue was purified by flash column chromatography (350 g SiO₂, 1 L 100% hexanes, 1 L 0.5% EtOAc in hexanes, 5 L 1% EtOAc in hexanes) to yield (–)-**17** (1.72 g, 8.26 mmol, 78% yield) as a yellow oil that contained ~1% tributylphosphine oxide as an impurity. R_f 0.2 (2% EtOAc in hexanes, visualized with *p*-anisaldehyde). *Note*: It is helpful to develop the TLC plate 2 times to visualize two more polar impurities with similar R_f values. If desired, the yellow oil can be purified further by Kugelrohr short-pass distillation (135 °C, 0.6 torr) to yield **17** (1.69 g, 8.11 mmol, 77% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.20 (s 1H), 3.94–3.84 (m, 4H), 2.46 (br s, 1H), 2.10–2.05 (m, 3H), 1.91–1.84 (m, 1H), 1.78–1.69 (m, 2H), 1.62 (s, 3H), 1.46–1.40 (m, 2H), 0.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 134.88, 119.96, 119.36, 65.44, 64.73, 46.38, 45.69, 35.21, 28.47, 24.08, 22.04, 20.45, 13.84; IR (thin film) 2944, 2878, 1436, 1376, 1044 cm⁻¹; [α]²¹_D : –62.3 (c = 1.0, CH₂Cl₂); HRMS (ESI) calculated for [C₁₃H₂₀O₂] (M) 208.1463, observed 208.1460.

(+)-(1aS,3aS,6aS,6bR)-3a,6b-dimethyloctahydrocyclopropa[e]inden-4(1H)-one (18): A 500

mL round-bottom was charged with ketal **17** (6.2 g, 30 mmol), followed by the addition of CH_2Cl_2 (150 mL). The solution was cooled to 0 °C, and a solution of Et_2Zn (60 mL of 1 M in hexanes, 60 mmol) was added dropwise.

After 10 min at 0 °C, chloroidomethane (8.7 mL, 120 mmol) was added. After 2 h at 0 °C, the heterogeneous mixture was allowed to warm to room temperature and stirred overnight while shielded from light. Upon cooling the reaction mixture to 0 °C, conc. HCl (7.6 mL) in MeOH (115 mL) was added dropwise. Upon complete deprotection of the ketal (typically 10–30 min), as indicated by TLC analysis (5% EtOAc in hexanes, visualized with *p*-anisaldehyde), the mixture was transferred to a separatory funnel. H₂O (150 mL) was added, and the resulting biphasic mixture was extracted with CH₂Cl₂ (3 x 200 mL). The combined organic layers were washed with brine (1 x 500 mL), dried over MgSO₄, and concentrated *in vacuo* to yield a yellow oil. The crude

residue was purified by flash column chromatography (0% to 2% EtOAc in hexanes) to yield cyclopropane **18** as a colorless oil (4.9 g, 28 mmol, 92% yield). R_f 0.15 (5% EtOAc in hexanes; visualized with *p*-anisaldehyde). Alternatively, cyclopropane **18** can be purified by Kugelrohr short-pass distillation (100 °C, 0.4 torr). ¹H NMR (500 MHz, CDCl₃) δ 2.50–2.45 (m, 1H), 2.10–2.04 (m, 2H), 2.01–1.97 (m, 1H), 1.91–1.85 (m, 1H), 1.81 (dd, *J* = 14.4, 6.9 Hz, 1H), 1.66 (dd, *J* = 13.4, 7.8 Hz, 1H), 1.37 (dd, *J* = 13.3, 6.0 Hz, 1H), 1.10 (s, 3H), 0.90–0.85 (m, 4H), 0.67–0.64 (m, 1H), 0.56 (dd, *J* = 9.5, 4.3 Hz, 1H), 0.01 (app t, *J* = 5.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 221.17, 50.66, 47.34, 36.62, 27.99, 23.29, 22.96, 22.21, 19.73, 17.84, 16.30, 13.33; IR (thin film) 3051, 2945, 2864, 1737, 1445, 1024 cm⁻¹; [α]²²_D : +118 (c = 1.0, CH₂Cl₂); HRMS (ESI) calculated for [C₁₂H₁₈O] (M) 178.1358, observed 178.1358.

(+)-(1S,3aS,7aS)-4,4,7a-trimethyloctahydro-1H-inden-1-ol (S10): A 20 mL vial was charged

with ketone **18** (1.1 g, 6.0 mmol), followed by the addition of AcOH (6.0 mL), $PtO_2 \cdot H_2O$ (270 mg, 1.2 mmol). The flask was then placed in a Parr high pressure vessel that was subsequently filled with H_2 (10 atm). The vessel was

placed on top of an IKA magnetic plate and stirred overnight. The reaction mixture was filtered through Celite into a separatory funnel, followed by the addition of EtOAc (50 mL). The resulting solution was washed with H₂O (3 x 50 mL), sat. aq. NaHCO₃ (1 x 50 mL), and brine (1 x 50 mL). The organic layer was then dried over MgSO₄ and concentrated *in vacuo* to yield a colorless solid. The crude residue was purified by flash column chromatography (2% to 6% EtOAc in hexanes) to yield **S10** as a colorless solid (1.02 g, 5.59 mmol, 93% yield) that contained ~5% of an impurity. R_f 0.20 (10% EtOAc in hexanes; visualized with *p*-anisaldehyde). Recrystallization from hot *n*-

hexanes (50 mL) yielded **S10** as colorless needles (820 mg, 4.5 mmol, 81% recovery). Spectral data were consistent with reported values.⁶

(+)-(3aS,7aS)-4,4,7a-trimethyloctahydro-1H-inden-1-one (13): A 100 mL round-bottom flask

was charged with alcohol **S10** (0.80 g, 4.4 mmol), followed by the addition of PCC (2.0 g, 9.4 mmol), Celite (2.0 g), and CH_2Cl_2 (22 mL). The resulting

heterogenous solution was stirred vigorously at room temperature, until

TLC analysis (10% EtOAc in hexanes, visualized with p-anisaldehyde) indicated complete consumption of the starting material (typically 60-90 min). Hexanes (22 mL) was added to the reaction mixture, which was subsequently gravity filtered. The reaction vessel and filtrate were washed with 10% EtOAc in hexanes (4 x 25 mL). The combined organic washes were concentrated in vacuo to yield an orange oil. The crude residue was purified by flash column chromatography (0% to 2% EtOAc in hexanes) to provide **13** (0.75 g, 4.2 mmol, 95% yield, 98.5% ee) as a colorless oil, which solidified upon standing. Rf 0.29 (5% EtOAc in hexanes, visualized with panisaldehyde). Alternatively, ketone 13 can be purified by Kugelrohr short-pass distillation (130 °C, 0.8 torr). Spectral data were consistent with reported values.⁶ The enantiomeric excess of the corresponding trisyl hydrazone⁷ was determined by chiral stationary-phase HPLC analysis (Chiracel OD-H column; flow: 1.0 mL/min, 1% isopropanol:*n*-hexane; $\lambda = 254$ nm; minor enantiomer $t_R = 13.65$ min, major enantiomer $t_R = 21.34$ min). Note: The reaction is readily scalable. In a separate experiment, crude alcohol S10 (4.46 g, 24.5 mmol) was oxidized according to the above procedure to yield ketone 13 (4.33 g, 24.0 mmol, 96% yield) as a colorless oil. The material contained ~5% impurity that was carried through from the previous step. Therefore, it is important to recrystallize alcohol S10 prior to oxidation to obtain pure ketone 13.

(-)-(3aS,7aS)-3-iodo-3a,7,7-trimethyl-3a,4,5,6,7,7a-hexahydro-1H-indene (19): Hydrazine

hydrate (20 mL) and NEt₃ (16.3 mL, 118 mmol) were added to a solution of ketone **13** (1.06 g, 5.88 mmol) in EtOH (45 mL). The reaction was heated to reflux for 20 h; upon cooling to 23 °C, CH₂Cl₂ (100 mL) and H₂O (150 mL)

were added. The aqueous layer was washed with CH_2Cl_2 (3 x 100 mL), and the combined organic layers were dried over Mg_2SO_4 , filtered, and concentrated *in vacuo*. The remaining white solid (excess hydrazine) was removed by filtration using hexanes. Concentration *in vacuo* provided the crude hydrazone as a yellow oil, which was carried forward without further purification.

A solution of 1,1,3,3-Tetramethylguanidine (5.15 mL, 41.2 mmol) in THF (30 mL) was added dropwise over 10 min to a solution of I₂ (3.28 g, 12.9 mmol) in THF (30 mL). The hydrazone (5.88 mmol) in THF (6 mL) was then added dropwise over 10 min, and the reaction was maintained for 30 min. The dark red solution was then concentrated *in vacuo*, and the resulting red oil was heated neat at 90 °C for 5 h with a reflux condenser attached. The reaction was then cooled to 23 °C, diluted with Et₂O (60 mL), and concentrated *in vacuo* over silica gel (~10 g). Purification by flash column chromatography (100% hexanes) provided light-sensitive vinyl iodide **19** (1.33 g, 4.58 mmol, 78%) as a colorless, crystalline solid. Spectral data were consistent with reported values.^{6,7}

(-)-Dimethyl (4R,5R)-4-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate

(S11): The procedure for the preparation of diester S11 was a slight modification from the literature procedure.⁸ Dimethyl 2,3,-O-isopropylidene-*L*-tartrate (3.83 g, 17.6 mmol) was dissolved in THF (67 mL) and cooled to –

78 °C. HMPA (13 mL) was added, followed by BOM-Cl (5.6 mL, 40 mmol). Freshly prepared

LDA (17.7 mmol) in THF (50 mL) was then added to the reaction flask via cannula over ~30 min. The reaction was maintained for 5 h at -78 °C, before warming to 0 °C. After 3 h, the reaction was quenched with sat. aq. NH₄Cl solution (50 mL). The organic layer was washed with H₂O (3 x 40 mL) and brine (1 x 40 mL), dried over MgSO₄, and concentrated in vacuo. Unreacted dimethyl 2,3,-O-isopropylidene-L-tartrate was distilled from the crude product (120 °C, 0.3 torr). The remaining oil was purified by flash column chromatography (8% EtOAc in hexanes to 15% EtOAc in hexanes) to provide diester S11 (2.75 g, 8.14 mmol, 46%) as a light yellow oil. This reaction could be run on larger scale (\sim 5x) with similar yields (41–43%). R_f 0.80 (40% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.23 (m, 5H), 5.12 (s, 1H), 4.52 (d, J = 12.2 Hz, 1H), 4.47 (d, J = 12.2 Hz, 1H), 3.82 (s, 3H), 3.73 (d, J = 9.8 Hz, 1H), 3.70 (d, J = 9.8 Hz, 1H), 3.63 (s, 3H), 1.59 (s, 3H), 1.42 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 170.80, 168.80, 137.60, 128.43, 127.77, 127.53, 112.71, 85.27, 77.56, 73.71, 70.11, 53.17, 52.40, 27.44, 25.95; IR (thin film) 2989, 2950, 1743, 1442, 1436, 1391, 1382, 1256, 1211 cm⁻¹; $[\alpha]^{25}_{D}$: -33.8 (c = 1.7, CH₂Cl₂); HRMS (ESI) calculated for C₁₇H₂₂O₇Na (M+Na) 361.1263, observed 361.1271.

(-)-Methyl (4*R*,5*S*)-4-((benzyloxy)methyl)-5-(hydroxymethyl)-2,2dimethyl-1,3-dioxolane-4-carboxylate (S12): The procedure for the preparation of alcohol S12 was a slight modification from the literature

procedure.⁸ Diester **S11** (17.7 g, 52.3 mmol) was dissolved in THF (450 mL) and cooled to –78 °C. DIBAL-H (14 mL, 79 mmol) was added dropwise to the reaction. After 5 min, the reaction was warmed to 0 °C. After 1 h, a saturated solution of Rochelle's salt (250 mL) and EtOAc (100 mL) were added. The reaction was allowed to warm to 23 °C, and the heterogeneous mixture was

extracted with EtOAc (4 x 150 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was then purified by flash column chromatography (20% EtOAc in hexanes to 50% EtOAc in hexanes) to provide recovered diester **17** (6.34 g, 18.6 mmol, 36%) as a light yellow oil and alcohol **S12** (7.44 g, 23.9 mmol, 46%) as a clear oil. R_f 0.35 (40% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.25 (m, 5H), 4.56–4.51 (m 3H), 3.91 (dd, *J* = 12.1, 5.3 Hz, 1H), 3.85 (dd, *J* = 12.2, 5.5 Hz, 1H), 3.80 (s, 3H), 3.72 (d, *J* = 9.4 Hz, 1H), 3.65 (d, *J* = 9.4 Hz, 1H), 2.37 (bs, 1H), 1.47 (s, 3H), 1.40 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 171.80, 137.24, 128.70, 128.07, 127.89, 110.16, 83.83, 73.94, 70.51, 60.65, 52.91, 27.75, 25.34; IR (thin film) 3500, 2989, 2937, 2871, 1743, 1454, 1380 cm⁻¹; [α]²⁵_D : -2.17 (c = 1.2); HRMS (ESI) calculated for C₁₆H₂₂O₆NH₄ (M+NH₄) 328.1760, observed 328.1754.

(4R,5R)-4-((benzyloxy)methyl)-5-formyl-2,2-dimethyl-1,3-dioxolane-4-

(-)-Methyl

carboxylate (20): To a stirring suspension of alcohol **S12** (4.80 g, 15.5 mmol) and NaHCO₃ (6.50 g, 77.4 mmol) in CH₂Cl₂ (40 mL) was added Dess-Martin periodinane (7.87 g, 18.6 mmol) in two portions over 5 min. After 2 h, the

reaction mixture was diluted with Et₂O (40 mL) and filtered through a cotton plug to remove solid NaHCO₃. The filtrate was concentrated *in vacuo*, resulting in a white solid. The solid was then washed with hexanes (6 x 30 mL), and the combined hexane washes were filtered through Celite. Upon concentration, aldehyde **20** (4.33 g, 14.0 mmol, 91%) was obtained as a colorless oil. Notes: 1) Aldehyde **20** was found to decompose within 14 h upon its formation (at room temperature or in the freezer), possibly due to self-aldol polymerization. Therefore, it was always carried forward *immediately* into the next reaction. 2) Aldehyde **20** did not appear unstable to column

chromatography, but it could not be purified in that manner. 3) Aqueous washes diminished the yields, possibly from hydrate formation. ¹H NMR (500 MHz, CDCl₃) δ 9.69 (s, 1H); 7.36–7.24 (m, 5H), 4.89 (s, 1H), 4.47 (d, *J* = 12.1 Hz, 1H), 4.44 (d, *J* = 12.1 Hz, 1H), 3.82 (s, 3H), 3.66 (d, *J* = 10.0 Hz, 1H), 3.63 (d, *J* = 10.0 Hz, 1H), 1.59 (s, 3H), 1.42 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 197.23, 170.67, 137.15, 128.54, 127.84, 127.68, 112.75, 86.30, 82.95, 73.47, 69.28, 53.27, 27.30, 25.77; IR (thin film) 2991, 2937, 2868, 1740, 1454, 1374 cm⁻¹; [α]²⁵_D : –2.37 (c = 2.5, CH₂Cl₂); HRMS (ESI) calculated for [C₁₆H₂₀O₆NH₄]⁺ (M+NH₄) 326.1604, observed 326.1612.

(-)-Methyl (4*R*,5*S*)-4-((benzyloxy)methyl)-5-((*R*)-hydroxy((3a*S*,7a*S*)-3a,7,7-trimethyl-3a,4,5,6,7,7a-hexahydro-1H-inden-3-yl)methyl)-2,2dimethyl-1,3-dioxolane-4-carboxylate (22): *L*-Oxazoline 21⁹ (2.86 g, 9.65

mmol) and $CrCl_2$ (1.19 g, 9.65 mmol) were dissolved in THF (20 mL) in the

glove box, and NEt₃ (1.34 mL, 9.65 mmol) was then added. The suspension was vigorously stirred for 6 h, and then NiCl₂ (36 mg, 0.28 mmol) was added, followed by a solution of vinyl iodide **19** (0.80 g, 2.8 mmol) and aldehyde **20** (1.30 g, 4.21 mmol) in THF (10 mL). Vigorous stirring was maintained for 20 h before removing the flask from the glovebox and cooling the solution to 0 °C. Ethylene diamine (2 mL) was added to quench the reaction. After stirring for 30 min, H₂O (40 mL) and Et₂O (40 mL) were added. The aqueous layer was extracted with EtOAc (4 x 20 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ solution (40 mL) and brine (1 x 40 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (5% EtOAc in hexanes to 11% EtOAc in hexanes) provided a single diastereomer, alcohol **22** (0.860 g, 1.82 mmol, 66%) as a clear oil. *L*-Oxazoline **21** was recovered during flash column chromatography (60–80% recovery) and recrystallized from Et₂O/hexanes for reuse. R_f 0.50 for **22** (20% EtOAc in hexanes; visualized with ceric ammonium molybdate). Diagnostic peaks for ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.24 (m, 5H), 5.78–5.74 (m, 1H), 4.61 (d, *J* = 12.6 Hz, 1H), 4.55 (d, *J* = 12.6 Hz, 1H), 4.44 (d, *J* = 9.0 Hz, 1H), 4.37 (s, 1H), 3.97 (d, *J* = 9.8 Hz, 1H), 3.80 (d, *J* = 9.8 Hz, 1H), 3.77 (s, 3H), 2.58 (d, *J* = 9.0 Hz, 1H), 2.12–1.99 (m, 2H), 1.74–1.70 (m, 2H), 1.58–1.56 (m, 1H), 1.54 (s, 3H), 1.5–1.43 (m, 2H), 1.42 (s, 3H), 1.25–1.19 (m, 1H), 1.11–1.01 (m, 1H), 0.98 (s, 3H), 0.95 (s, 3H), 0.88 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 172.59, 155.05, 137.89, 128.42, 127.76, 127.72, 126.03, 110.24, 80.41, 73.71, 71.94, 65.50, 59.97, 52.69, 41.51, 35.53, 33.29, 32.93, 28.76, 27.61, 25.46, 21.45, 20.15, 18.15; IR (thin film) 3527, 2989, 2926, 2848, 1741, 1454, 1380 cm⁻¹; [α]²⁵_D : –4.85 (c = 1.5, CH₂Cl₂); HRMS (ESI) calculated for C₂₈H₄₀O₆NH₄ (M+NH₄) 490.3169, observed 490.3165.

(-)-1,3-Dioxoisoindolin-2-yl (4*S*,5*R*)-4-((benzyloxy)methyl)-5-((*R*)-hydroxy((3aS,7aS)-3a,7,7-trimethyl-3a,4,5,6,7,7a-hexahydro-1H-inden-3-yl)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (23): Alcohol 22 (0.850 g, 1.80 mmol) was dissolved in a mixture of MeOH (10 mL) and H₂O (10 mL). Potassium hydroxide pellets (0.807 g, 14.4 mmol) were then added,

and the reaction was warmed to 50 °C. After 3 h, TLC analysis confirmed starting material was consumed; and the reaction was cooled to 23 °C. Aqueous HCl (18 mL of 1 M soln) was added to the flask, and the heterogeneous mixture was extracted with EtOAc (5 x 15 mL). The combined organic layers were washed with brine (1 x 20 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to provide the crude acid as a clear oil which was carried forward without further purification.

The crude acid was dissolved in THF (20 mL) to which *N*-hydroxyphthalimide (0.881 g, 5.40 mmol), DCC (0.483 g, 2.34 mmol), and DMAP (11 mg, 0.090 mmol) were added. The

reaction was maintained for 3 h at 23 °C, at which point Celite (~2 g) was added. The reaction mixture was concentrated in vacuo, and the resulting residue was purified by flash column chromatography using pH 7 silica gel (10% EtOAc in hexanes to 20% EtOAc in hexanes) to provide N-acyloxyphthalimide 23 as a colorless solid. Recrystallization from acetone/hexanes afforded N-acyloxyphthalimide 23 (0.750 g, 1.24 mmol, 69%) as colorless needles. Rf 0.25 (20% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (600 MHz, CDCl₃) δ 7.91-7.88 (2H, m), 7.81-7.78 (2H, m), 7.42-7.26 (m, 5H), 5.80 (s, 1H), 4.75 (d, J = 12.4 Hz, 1H), 4.71 (d, J = 12.4 Hz, 1H), 4.69 (s, 1H), 4.49 (d, J = 9.7 Hz, 1H), 4.14 (d, J = 9.9 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 4.14 (d, J = 0.14 Hz, 1H), 3.97 (d, J = 0.14 Hz, 1H), 4.14 (dJ = 10.1 Hz, 1H), 2.47 (d, J = 9.6 Hz, 1H), 2.11–2.00 (m, 2H), 1.74–1.64 (m, 2H), 1.59 (s, 3H), 1.56-1.51 (m, 2H), 1.54 (s, 3H), 1.43 (app d, J = 13.3 Hz, 1H), 1.27 (app td, J = 12.5, 3.7 Hz, 1H), 1.13 (app td, J = 13.5, 4.3 Hz, 1H), 0.98 (s, 3H), 0.95 (s, 3H), 0.88 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) & 169.29, 161.58, 154.82, 137.69, 134.94, 129.11, 128.46, 128.03, 127.75, 126.32, 124.17, 111.30, 85.13, 80.61, 74.20, 71.82, 65.56, 59.87, 47.34, 41.49, 35.42, 33.28, 32.93, 28.79, 27.39, 25.05, 21.48, 20.13, 18.18; IR (thin film) 3524, 2989, 2928, 2862, 1813, 1788, 1747, 1454, 1373 cm^{-1} ; $[\alpha]_{D}^{25}$: -7.60 (c = 1.6, CH₂Cl₂); HRMS (ESI) calculated for C₃₅H₄₁NO₈Na (M+Na) 626.2730, observed 626.2712; mp 139-141 °C.

(+)-1,3-dioxoisoindolin-2-yl (4*R*,5*S*)-4-((benzyloxy)methyl)-5-(((2*S*,3a*S*,7a*S*,*Z*)-2-chloro-

1,3-dioxolane-4-carboxylate (24): *N*-acyloxyphthalimide **23** (0.223 g, 0.369 mmol) was dissolved in a 10:1 mixture of Et₂O/pyridine (3.5 mL) and cooled to -45 °C. A solution of SOCl₂ (54 µL, 0.74 mmol) in a 10:1 mixture of Et₂O/pyridine (0.5 mL) was then added dropwise to the reaction over 5

4,4,7a-trimethyloctahydro-1H-inden-1-ylidene)methyl)-2,2-dimethyl-

min. The reaction was maintained at -45 °C until full conversion of starting material was observed by TLC analysis (~45 min). Saturated aq. NaHCO₃ solution (2 mL) was added, and the reaction was allowed to warm to 23 °C. The mixture was then diluted with H₂O (2 mL) and washed with EtOAc (3 x 3 mL). The combined organic layers were washed with brine (1 x 2 mL), dried over MgSO₄, filtered, and concentrated in vacuo onto Celite (~1 g). Purification by flash column chromatography using pH 7 silica gel (5% EtOAc in hexanes to 11% EtOAc in hexanes) provided allylic chloride 24 as a colorless solid. Recrystallization from acetone/hexanes afforded allylic chloride 24 (0.143 g, 0.229 mmol, 62%) as colorless needles. R_f 0.40 (20% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) & 7.95-7.88 (m, 2H), 7.83-7.78 (m, 2H), 7.40–7.26 (m, 5H), 5.59 (d, J = 9.6 Hz, 1H), 5.18 (d, J = 9.6 Hz, 1H), 4.96 (app t, J = 7.6 Hz, 1H), 4.70 (d, J = 12.3 Hz, 1H), 4.64 (d, J = 12.3 Hz, 1H), 3.78 (d, J = 10.0 Hz, 1H), 3.71 (d, J = 10.0 Hz, 1H), 2.32 (app quint, J = 6.4 Hz, 1H), 1.84 (td, J = 13.7 Hz, 7.5 Hz, 1H), 1.74(app d, J = 12.6 H, 1H), 1.67-1.59 (m, 1H), 1.59 (s, 6H), 1.55-1.48 (m, 1H), 1.41 (app d, J = 13.6 H)Hz, 1H), 1.13 (s, 3H), 0.99–0.84 (m, 3H), 0.87 (s, 3H), 0.77 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 169.07, 161.68, 161.30, 137.64, 134.99, 129.09, 128.45, 127.95, 127.80, 124.25, 114.32, 111.61, 84.96, 76.44, 74.04, 71.07, 54.60, 54.10, 45.10, 41.19, 37.03, 34.08, 32.24, 32.81, 27.55, 24.78, 21.25, 21.11, 19.49; IR (thin film) 2986, 2928, 2866, 2350, 2336, 1813, 1787, 1747, 1459 cm⁻¹; $[\alpha]_{D}^{25}$: +83.2 (c = 1.8, CH₂Cl₂); HRMS (ESI) calculated for C₃₅H₄₀ClNO₇Na (M+Na) 644.2391, observed 644.2383; mp 154-158 °C.

(-)-(*R*)-5-acetoxyfuran-2(5H)-one (S13): The procedure for preparation of acetoxy butenolide S13 was a slight modification from the literature procedure.¹⁰ 5-Hydroxyfuran-2(5H)-one³ (2.90 g, 28.9 mmol) was dissolved in vinyl acetate (30

mL). Amano lipase AK (2.00 g) was then added, and the suspension was stirred for 8 days at 23 °C. The suspension was then filtered through Celite, and the filtrate was concentrated *in vacuo*. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided (*R*)-5-acetoxyfuran-2(5H)-one **S13** (3.58 g, 25.3 mmol, 87% yield) as a yellow oil. $R_f 0.35$ (40% EtOAc in hexanes; visualized with KMnO₄). Spectral data were consistent with reported values.¹⁰ The enantiomeric excess was determined to be 92% *ee* by known methods.¹⁰

(–)-(*R*)-5-methoxyfuran-2(5H)-one (11): Acetoxy butenolide S13 (1.23 g, 8.65 mmol) was dissolved in MeOH (35 mL), and Pd(PPh₃)₄ (0.500 g, 0.433 mmol) was added to the solution. The solution, which turned a deep red, was maintained at 23

^oC for 50 min. Upon TLC analysis confirming consumption of starting material (TLC, 10% acetone in hexanes and running the TLC plate 3x), the reaction solution was directly filtered through a silica gel plug (250 mL of 40% acetone in hexanes). The eluent was concentrated *in vacuo*, and the residue was distilled (0.8 torr, 110 °C) to provide methoxy butenolide **11** and a trace amount of AcOH. Removal of AcOH upon further concentration *in vacuo* afforded methoxy butenolide **11** (0.705 g, 6.18 mmol, 71% yield) as a clear oil. Spectral data were consistent with reported values.¹¹ HLPC analysis was used to determine the enantiomeric ratio to be 92:8 (Chiracel AS column; flow: 2.0 mL/min, 10% isopropanol:*n*-hexane; $\lambda = 210$ nm; major enantiomer t_R = 8.70 min, minor enantiomer t_R = 11.60 min); $[\alpha]^{25}_{\text{D}}$: -124 (c = 1.2, CH₂Cl₂).

(-)-(3aS,3bS,4R,6aS,7aS)-3a-((benzyloxy)methyl)-4-methoxy-2,2-dimethyl-7-((3aS,7aS)-

3a,7,7-trimethyl-3a,4,5,6,7,7a-hexahydro-1H-inden-3-yl)hexahydro-6Hfuro[3',4':3,4]cyclopenta[1,2-d][1,3]dioxol-6-one (25): Allylic chloride 24

(70 mg, 0.11 mmol), methoxy butenolide **11** (51 mg, 0.45 mmol), D_2 -Hantzsch ester (43 mg, 0.17 mmol), and [Ru(bpy)₃](PF₆)₂ (1 mg, 0.001 mmol)

were charged into a vial. Acetonitrile (1.1 mL) was added, and the solution was sparged with Ar. The vial was then vigorously stirred while being irradiated by a single strip of blue LED lights (450 nm) at 23 °C. After 6 h, the reaction mixture was concentrated *in vacuo*, and the residue was dissolved in EtOAc (1 mL) and washed with aq. HCl (4 x 2 mL of 4 M soln) followed by H₂O (2 x 2 mL). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. ¹H NMR analysis of the crude residue using an internal standard (dimethoxybenzene) showed 28% yield of **25**, 37% yield of **26**, 8% yield of **27**, and 13% yield of **28**. Purification of the crude residue by flash column chromatography (0% acetone in hexanes to 5% acetone in hexanes) provided **25** (15 mg, 0.030 mmol, 27%) as a clear oil. R_f for **25**: 0.55 (20% acetone in hexanes; visualized with ceric ammonium molybdate). Flash column chromatography under separate conditions of the remaining mixed fractions from the first purification (4% EtOAc in hexanes to 10% EtOAc in hexanes) provided epimeric product **26** (20 mg, 0.039 mmol, 35%) as a clear oil. R_f for **26**: 0.45 (20% acetone in hexanes; visualized with ceric ammonium molybdate).

Desired ACF product **25** for ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.28 (m, 5H), 5.48 (app s, 1H), 5.38 (app s, 1H), 4.62 (d, *J* = 12.0 Hz, 1H), 4.59 (d, *J* = 12.1 Hz, 1H), 4.41 (d, *J* = 7.5 Hz, 1H), 3.64 (d, *J* = 10.5 Hz, 1H), 3.50 (d, *J* = 10.3 Hz, 1H), 3.43 (app t, *J* = 8.7 Hz, 1H), 3.38 (s, 3H), 3.07 (app d, *J* = 8.7 Hz, 1H), 3.00 (app t, *J* = 8.2 Hz, 1H), 2.10 (ddd, *J* = 14.9, 6.3, 3.0 Hz, 1H), 2.02 (app t, *J* = 13.3 Hz, 1H), 1.76 (dd, *J* = 11.7, 6.3 Hz, 1H), 1.60–1.50 (m, 2H), 1.58 (s,

3H), 1.50 (s, 3H), 1.45–1.39 (m, 1H), 1.19 (td, J = 13.2, 3.4 Hz, 1H), 0.95 (s, 3H), 0.92–0.82 (m, 2H), 0.89 (s, 3H), 0.87 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 174.65, 150.69, 137.18, 128.71, 128.38, 128.30, 124.70, 113.17, 103.64, 89.95, 86.77, 73.97, 70.81, 58.24, 56.76, 55.12, 47.84, 45.94, 43.72, 41.46, 34.73, 33.05, 32.90, 20.22, 29.38, 29.16, 21.45, 20.18, 17.70; [α]²⁵_D : -84.9 (c = 1.0, CH₂Cl₂); IR (thin film) 2993, 2934, 2862, 1785, 1636, 1455, 1371, 1234, 1215 cm⁻¹; HRMS (ESI) calculated for C₃₁H₄₂O₆NH₄ (M+NH₄) 528.3325, observed 528.3331.

Epimer (-)-26 for ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.29 (m, 5H), 5.75 (app s, 1H), 5.53 (d, J = 4.8 Hz, 1H), 4.57 (d, J = 12.3 Hz, 1H), 4.55 (d, J = 12.3 Hz, 1H), 4.47 (d, J = 3.7 Hz, 1H), 3.82 (d, J = 9.6 Hz, 1H), 3.61 (d, J = 9.7 Hz, 1H), 3.50 (app t, J = 10.8 Hz, 1H), 3.41 (s, 3H), 2.88 (dd, J = 9.7, 4.8 Hz, 1H),

2.72 (app d, J = 11.3 Hz, 1H), 2.13–2.06 (m, 2H), 1.76–1.65 (m, 1H), 1.61–1.52 (m, 2H), 1.43 (s, 3H), 1.36–1.27 (m, 1H), 1.28 (s, 3H), 1.15 (td, J = 13.6, 4.1 Hz, 1H), 0.96 (s, 3H), 0.92–0.81 (m, 2H), 0.89 (s, 3H), 0.83 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 175.80, 148.52, 137.12, 128.69, 128.26, 128.05, 127.25, 111.58, 105.02, 89.60, 87.36, 73.83, 72.05, 59.28, 58.09, 57.57, 47.71, 47.54, 45.77, 41.61, 35.68, 33.09, 32.97, 29.17, 27.80, 26.00, 21.47, 20.22, 17.36; $[\alpha]^{25}_{\text{D}}$: –88.2 (c = 2.0, CH₂Cl₂); IR (thin film) 2988, 2929, 2861, 1775, 1454, 1373, 1246 cm⁻¹; HRMS (ESI) calculated for C₃₁H₄₂O₆Na (M+Na) 533.2879, observed 533.2897.

An analytical sample of clean product (+)-27 was obtained from flash column chromatography (0% acetone in hexanes to 4% acetone in hexanes). R_{f} : 0.60 (20% acetone in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.27 (m, 5H), 5.61 (s, 1H),

5.18 (d, *J* = 9.6, 1H), 5.09 (dd, *J* = 9.6, 1.6 Hz, 1H), 4.57 (td, *J* = 8.0 Hz, 1.6 Hz, 1H), 4.46 (d, *J* = 10.4 Hz, 1H), 4.41 (d. *J* = 10.4 Hz, 1H), 3.63 (d, *J* = 9.6 Hz, 1H), 3.53 (d, *J* = 9.6 Hz, 1H), 3.51 (s, 3H), 2.68 (d, *J* = 2.1 Hz, 1H), 2.50 (d, *J* = 2.1 Hz, 1H), 1.93–1.86 (m, 1H), 1.76–1.51 (m, 4H), 1.48 (s, 3H), 1.42 (s, 3H), 1.09 (s, 3H), 1.04–0.95 (m, 2H), 0.91–0.83 (m, 1H), 0.85 (s, 3H), 0.74 (s, 3H), 0.60 (dd, *J* = 14.4, 6.0 Hz, 1H); ¹³C NMR (500 MHz, CDCl₃) δ 176.81, 159.67, 137.02, 128.73, 128.34, 128.26, 115.56, 109.03, 106.81, 82.60, 78.24, 74.46, 74.39, 56.90, 54.57, 54.53, 45.17, 44.93, 41.17, 36.72, 33.93, 33.15, 32.96, 29.85, 27.58, 26.19, 21.49, 21.15, 19.49; $[\alpha]^{25}_{D}$: +109.1 (c = 0.57, CH₂Cl₂); IR (thin film) 2986, 2931, 2864, 2359, 2342, 1787, 1455, 1370, 1252 cm⁻¹; HRMS (ESI) calculated for C₃₁H₄₂DClO₆Na (M+Na) 570.2709, observed 570.2702.

Diagnostic peaks of addition product **28** for ¹H NMR (500 MHz, CDCl₃) δ 5.43 (d, J = 2.9 Hz, 1H), 5.21 (d, J = 9.6, 1.7 Hz, 1H), 4.75 (d, J = 9.6 Hz, 1H), 4.59 (app t, J = 7.0 Hz, 1H).

desired product (25)

epimeric product (26)

product (27)

(-)-(3aS,3bS,4R,6R,6aS,7S,7aS)-3a-((benzyloxy)methyl)-4-methoxy-2,2-dimethyl-7-

((3aS,7aS)-3a,7,7-trimethyl-3a,4,5,6,7,7a-hexahydro-1H-inden-3-yl)hexahydro-4H-

furo[3',4':3,4]cyclopenta[1,2-d][1,3]dioxol-6-yl acetate (S14): Product 25 (40 mg, 0.078 mmol)

was charged into a flask with toluene (1.4 mL) and then cooled to -78 °C. A solution of DIBAL-H (18 μ L, 0.10 mmol) in toluene (0.2 mL) was added dropwise to the reaction vessel, keeping the temperature near -78 °C. After 45 min, TLC analysis showed some remaining starting material, and an additional

solution of DIBAL-H (5 µL, 0.03 mmol) in toluene (0.05 mL) was added. After 45 min, a solution of DMAP (19 mg, 0.16 mmol), pyridine (20 µL, 0.23 mmol), and CH₂Cl₂ (0.2 mL) was added, followed by Ac₂O (44 μ L, 0.47 mmol). The reaction was maintained at -78 °C for 12 h, at which point it was allowed to warm to 23 °C. An aqueous solution saturated with Rochelle's salt (3 mL) was added, and the aqueous layer was extracted with EtOAc (3 x 2 mL). The combined organic layers were washed with brine (1 x 5 mL), dried over MgSO₄, filtered, and concentrated in vacuo. Purification of the residue by flash column chromatography (6% EtOAc in hexanes to 10% EtOAc in hexanes) provided a single diastereomer, diacetal S14 (36 mg, 0.065 mmol, 83%), as a colorless oil. Rf 0.35 (20% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.27 (m, 5H), 5.92 (d, J = 4.1 Hz, 1H), 5.60 (app s, 1H), 5.17 (s, 1H), 4.61 (d, J = 12.3 Hz, 1H), 4.58 (d, J = 12.3 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 3.60 (d, J = 10.4 Hz, 1H),3.54 (d, J = 10.5 Hz, 1H), 3.27 (s, 3H), 3.20 (app td, J = 7.8, 4.0 Hz, 1H), 3.03 (d, J = 8.0 Hz, 1H),2.92 (app t, J = 8.1 Hz, 1H), 2.05 (s, 3H), 2.06–2.00 (m, 2H), 1.72–1.51 (m, 2H), 1.51 (s, 3H), 1.46 (app d, J = 13.6 Hz, 1H), 1.35 (s, 3H), 1.28-1.24 (m, 1H), 1.20 (td, J = 12.7, 3.9 Hz, 1H), 0.98 (td, J = 12.7, 3.9 Hz, 1H), 0.98J = 13.7, 4.4 Hz, 1H), 0.93 (s, 3H), 0.90–0.85 (m, 1H), 0.84 (s, 6H); ¹³C NMR (500 MHz, CDCl₃) δ 170.46, 151.77, 137.54, 128.61, 128.36, 128.13, 125.03, 113.25, 107.80, 99.65, 90.22, 85.91, 73.84, 70.54, 50.88, 47.64, 43.33, 42.11, 36.75, 35.58, 33.29, 32.95, 31.72, 30.64, 29.72, 29.01, 24.81, 22.79, 21.25, 21.17, 20.09, 17.24, 14.27; $[\alpha]^{25}_{D}$: -46.3 (c = 2.1, CH₂Cl₂); IR (thin film) 2991, 2930, 2861, 1748, 1455, 1367 cm⁻¹; HRMS (ESI) calculated for C₃₃H₄₆O₇Na (M+Na) 577.3141, observed 577.3127.

(-)-(3aS,3bS,4R,6R,6aS,7R,7aS)-3a-(hydroxymethyl)-4-methoxy-2,2-dimethyl-7-

((1R,3aS,7aR)-4,4,7a-trimethyloctahydro-1H-inden-1-yl)hexahydro-4H-

furo[3',4':3,4]cyclopenta[1,2-d][1,3]dioxol-6-yl acetate (29): Diacetal S14 (28 mg, 0.050 mmol) and 10% Pd/C (28 mg) were charged into a flask with MeOH (1.0 mL). The reaction vessel was then evacuated and refilled with Ar (3x). Formic acid (50 μ L) was then added dropwise to the vigorously stirring

suspension. After 2 h, TLC analysis showed full consumption of starting material. The reaction mixture was diluted with MeOH (1 mL), filtered through Celite, and concentrated *in vacuo* to provide the crude alcohol, which was carried forward to the subsequent step.

To a flask containing the crude alcohol (0.050 mmol) was added PtO₂ (12 mg, 0.050 mmol) and EtOAc (1.0 mL). The reaction vessel was then evacuated and refilled with H₂ (3**x**, 1 atm H₂). The reaction was maintained under 1 atm of H₂ for 12 h at 23 °C, at which point the reaction vessel was refilled first with Ar and then air. Filtration of the suspension through Celite, concentration of the filtrate *in vacuo*, and purification of the residue by flash column chromatography (30% EtOAc in hexanes) provided alcohol **29** (20 mg, 0.043 mmol, 86%) as a colorless oil. R_f 0.25 (30% EtOAc in hexanes; visualized with ceric ammonium molybdate). ¹H NMR (500 MHz, CDCl₃) δ 6.13 (d, J = 3.5 Hz, 1H), 5.31 (s, 1H), 3.86 (d, J = 9.6 Hz, 1H), 3.65 (bs, 2H), 3.31 (s, 3H), 3.19 (app td, J = 7.4, 3.6 Hz, 1H), 2.87 (app d, J = 7.6 Hz, 1H), 2.30 (app dt, J = 10.1, 7.3 Hz, 1H), 2.16 (bs, 1H),

2.05 (s, 3H), 1.80–1.66 (m, 2H), 1.63–1.56 (m, 2H), 1.53 (s, 3H), 1.43 (s, 6H), 1.36–1.28 (m, 1H), 1.11–0.93 (m, 2H), 0.90–0.86 (m, 1H), 0.85 (s, 3H), 0.83 (s, 3H), 0.76 (s, 3H), 0.76–0.69 (m, 1H); ¹³C NMR (500 MHz, CDCl₃) δ 170.84, 112.73, 106.84, 97.67, 90.98, 88.07, 63.62, 57.74, 56.04, 54.85, 52.29, 50.68, 44.98, 42.90, 41.39, 40.00, 33.60, 33.26, 30.71, 30.49, 29.84, 25.75, 21.20, 20.99, 20.94, 20.22, 13.86; [α]²⁵_D : –17.6 (c = 1.7, CH₂Cl₂); IR (thin film) 3490, 2951, 2931, 2873, 1745, 1459, 1368 cm⁻¹; HRMS (ESI) calculated for C₂₆H₄₂O₇Na (M+Na) 489.2828, observed 489.2813.

(-)-Chromodorolide B (1): Alcohol 29 (9.0 mg, 0.019 mmol) and Dess-Martin periodinane (12 mg, 0.029 mmol) were charged into a flask with CH₂Cl₂ (0.3 mL). The reaction mixture was maintained at 23 °C for 5 h, at which point it was diluted with hexanes (0.5 mL), filtered

through Celite, and concentrated *in vacuo*. The residue was dissolved in hexanes (1 mL) and filtered through Celite. The filtrate was then concentrated *in vacuo* to afford the crude aldehyde which was carried forward into the next step.

To a solution of crude aldehyde in THF (0.1 mL) was added *t*-BuOH (0.1 mL), H₂O (0.1 mL), 2-methyl-2-butene (50 μ L), NaH₂PO₄ (25 mg, 0.21 mmol), and NaClO₂ (14 mg, 0.15 mmol). The reaction was maintained at 23°C for 12 h and then diluted with H₂O (1 mL). The solution was washed with EtOAc (3 x 1 mL); and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to provide crude carboxylic acid **30**.

This crude acid **30** was then dissolved in a solution of THF (0.3 mL) and aq. HCl (0.3 mL of 4 M soln), which was maintained at 23 °C for 72 h. The reaction was then diluted with H₂O (1 mL), and the solution was washed with EtOAc (3 x 1 mL). The combined organic layers were

washed with brine (1 x 1 mL), dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to afford crude lactol **31**.

Crude lactol **31** was then dissolved in CH₂Cl₂ (0.3 mL). Next, DMAP (2 mg, 0.019 mmol) and pyridine (31 μ L, 0.38 mmol) were added, followed by Ac₂O (28 μ L, 0.29 mmol). The reaction was maintained at 23 °C for 24 h, at which point it was diluted with H₂O (2 mL), and the heterogeneous solution was washed with EtOAc (3 x 2 mL). The combined organic layers were washed with brine (1 x 3 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (20% EtOAc in hexanes to 30% EtOAc in hexanes) provided **1** (4.7 mg, 0.010 mmol, 49% over 4 steps) as a colorless solid. Recrystallization of the solid from acetone/hexanes afforded colorless needles. The NMR data matched that of the isolation data.¹² $[\alpha]^{25}_{D}$: -66.8 (c = 0.12, CH₂Cl₂) compared to isolation sample $[\alpha]^{25}_{D}$: -95 (c = 0.10, CH₂Cl₂)¹²; IR (thin film) 2948, 2876, 1813, 1752, 1370, 1214, 1093, 1000, 964 cm⁻¹; HRMS (ESI) calculated for C₂₆H₃₆O₉Na (M+Na) 515.2257, observed 515.2260; mp 236–238 °C (decomp).

Table S1. Synthetic and natural (-)-Chromodorolide B (1) in CDCl₃.

Literature (400 MHz,CDCI ₃)			Synthetic (500 MHz, CDCl ₃)		
Pos.	δH (multiplicity, J / Hz)	δC	δH (multiplicity, J / Hz)	δC	
1	1.03 (dt, <i>J</i> = 12.3, 3.6)	40.9	1.03 (dt, <i>J</i> = 12.3, 3.6)	41.06	
1a	1.38 (m)		1.39 (m)		
2	1.55 (m, 2H)	21.1	1.56 (m, 2H)	21.27	
3	0.95 (m)	39.1	0.95 (dt, <i>J</i> = 12.6, 3.6)	39.26	
3a	1.51 (m)		1.52 (m)		
4		33.1		33.31	
5	1.09 (dd, <i>J</i> = 13.1, 6.6)	57.0	1.10 (dd, <i>J</i> = 13.7, 3.7)	57.10	
6	1.40 (m)	19.9	1.42 (m)	20.08	
6a	1.56 (m)		1.57 (m)		
7	1.48 (m)	25.2	1.50 (m)	25.36	
7a	1.58 (m)		1.61 (m)		
8	2.57 (ddd, <i>J</i> = 12.1, 11.6, 7.9)	48.0	2.58 (ddd, <i>J</i> = 12.2, 11.1, 7.6)	48.13	
9	1.69 (bdd, <i>J</i> = 12.0, 9.9)	50.3	1.71 (q, <i>J</i> = 10.0)	50.43	
10		43.9		44.00	
11		169.1		169.24	
12		81.4		81.48	
13	3.79 (dd, <i>J</i> = 8.9, 6.1)	50.4	3.80 (dd, <i>J</i> = 9.0, 6.0)	50.56	
14	2.93 (bt, <i>J</i> = 8.2)	45.6	2.94 (bt, <i>J</i> = 8.2)	45.74	
15	6.50 (bs)	97.8	6.51 (bs)	97.88	
16	6.08 (d, <i>J</i> = 6.1)	103.4	6.09 (d, <i>J</i> = 6.0)	103.51	
17	5.30 (d, <i>J</i> = 11.6)	73.9	5.31 (d, <i>J</i> = 12.4)	74.06	
18	0.79 (s, 3H)	33.4	0.79 (s, 3H)	33.55	
19	0.83 (s, 3H)	21.0	0.84 (s, 3H)	21.11	
20	0.84 (s, 3H)	13.7	0.85 (s, 3H)	13.82	
OAc	2.04 (s, 3H)	20.8	2.05 (s, 3H)	20.96	
		169.2		169.32	
OAc	2.11 (s, 3H)	20.8	2.12 (s, 3H)	20.98	
		170.0		170.13	
OAc	2.19 (s, 3H)	20.9	2.21 (s, 3H)	21.05	
		170.2		170.38	

References:

1. (a) Eey, S. T. C; Lear, M. J. *Org. Lett.* **2010**, *12*, 5510–5513. (b) Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, G.-P.; Lacote, E.; Malacria, M.; Ollivier, C. *Angew. Chem., Int. Ed.* **2001**, *50*, 4463–4466.

2. Kim, H.-J.; Ricardo, A.; Illangkoon, H. I.; Kim, M. J.; Carrigan, M. A.; Frye, F.; Benner, S. A. *J. Am. Chem. Soc.* **2011**, *133*, 9457–9468.

3. Moradei, O. M.; Paquette, L. A. Org. Synth. 2003, 80, 66.

4. X-ray coordinates were deposited with the Cambridge Crystallographic Data Centre: 1447146.

5. Shigehisa, H.; Mizutani, T.; Tosaki, S.-Y.; Ohshima, T.; Shibasaki, M. *Tetrahedron*, **2005**, *61*, 5057–5065.

6. Brady, T. P.; Kim, S. H.; Wen, K.; Kim, C.; Theodorakis, E. A. *Chem. Eur. J.* **2005**, *11*, 7175–7190.

7. Granger, K.; Snapper, M. L. Eur. J. Org. Chem. 2012, 2308-2311.

8. Crich, D.; Hao, X. J. Org. Chem. 1999, 64, 4016-4024.

9. (a) Wan, Z.-K.; Choi, H. W.; Kang, F.-A.; Nakajima, K.; Demeke, D.; Kishi, Y. *Org. Lett.* **2002**, *4*, 4431–4434. (b) Choi, H. W.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. *Org. Lett.* **2002**, *4*, 4435–4438.

10. Morita, Y.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2005, 7, 4337–4340.

11. Feringa, B. L.; De Lange, B. Tetrahedron 1988, 44, 7213-7222.

12. MorGris, S. A.; Dilip de Silva, E.; Andersen, R. J. Can. J. Chem. 1991, 69, 768-771.

S36

¹³ C NMR (CDCI ₃ , 126 MH $\downarrow 0$ $\downarrow 0$	Η z)	8. 232 8. 77. 496 77. 496 77. 496	69.043	18.480	The second sec
					SP1 3.20 dB SP1 3.20 dB SPNAM[1] Crp60.0.5,20.1 SPNAM[2] Crp60.cmp.4 SPOFF1 0 Hz SPOFF2 0 Hz CPDPRG[2 waltz16 NUC2 1H PCPD2 100.00 usec FL2 1.60 dB FL12 24.60 dB
					SP02 500.2225011 MHz GRADIENT CHANNEL GPNAM[1] SINE.100 GPX1 0 % GPX2 0 % GPY1 0 % GPY2 0 % GP21 30.00 % GP22 50.00 % p15 500.00 usec p16 1000.00 usec
					F2 - Processing parameters SI 65536 SF 125.7084085 MHz WDW EM SSE 0 LB 1.00 Hz GE 0 FC 2.00
190 180 170 160 150 1-	40 130 120 110 100	90 80 7	0 60 50 40	30 20 10 0	ppm

et es s

YS-IV-18

		3.523 	Current Data Parameters NAME YS-IV-24 EXCNO 6 PROCNO 1 F2 - Acquisition Parameters Date_ 20151216 Time 15.50
¹³ C NMR (CDCI ₃ , 126 MHz) \underbrace{Me}_{H}^{OH} (+)- S10 : C ₁₂ H ₂₂ O			INSTRUM cross PROBED 5 mm CPTOI 1H- PULEROG SpinEchopg30gp.prd TD 65536 SOLVENT CCC13 NS 248 DS 248 SWH 3030.031 Hz FIDRES 0.462388 Hz AQ 1.0813440 sec RG 7298.2 DW 16.500 usec DE 6.00 usec DE 6.00 usec DI 0.25000000 sec d11 0.03000000 sec d11 0.0000000 sec d11 0.0000000 sec MCREST 0 sec MCREST 0 sec MCREST 0 sec
			NUC1 13C P1 16.55 usec P1 500.00 usec P12 2000.00 usec P10 120.00 dB PL1 501.00 dB PL1 120.00 dB SF01 125.7942548 Miz SP1 2.70 dB SPNAM[2] Crp60,0.5,20.1 SPOFF1 0 Hz SPOFF2 0 Hz CPDPSG[2 waltz16
			UIC2 UIC2 <thuic2< th=""> UIC2 UIC2 <thu< td=""></thu<></thuic2<>
s an far a bu fun su su du an su du an su	ng ming a lang second di kalangan di second a second da second di second da second da second da second da secon		F2 - Processing parameters SI 65536 SF 125.7803692 MIZ WDW EM SSB 0 LB 1.00 Hz GB 0 PC 2.00 2.00 PC 2.00
210 200 190 180 170 160 150 140 130 120 110 100	90 80 70 60	50 40 30 20 10 0	рря

YS-IV-24

1H spectrum

1H spectrum

Z-restored spin-echo 13C spectrum with 1H decoupling

1H spectrum

Z-restored spin-echo 13C spectrum with 1H decoupling

S75

S76

Z-restored spin-echo 13C spectrum with 1H decoupling

