Supplemental Materials Molecular Biology of the Cell

Senoo et al.

С

Scaled Read Counts

1000

750

500

250

0

0 4 8

gflB

gflD

gefD

12 16 20 24

Developmental Time (hr)

В

GflB

1601 aa

GfID

1765 aa

GefD

668 aa

RasGEF_N (851-983) RasGEF (1021-1255)

27

224 237

649 836 851

663

1255

1471

RhoGAP

RasGEF

RasGEF_N

1734

Figure S1. Amino acid sequence, domain structure, and expression profile of GflB. (A) Amino acid sequence of GflB. (B) Domain structures of GflB, GflD, and GefD. (C) Expression profiles of GflB, GflD, and GefD during development. The values

1096

are obtained from dictyExpress in the Dictyostelium database

(www.dictyexpress.org) as described elsewhere (Parikh et al., 2010).

900

Figure S2. Whole-cell lysates analyzed using immunoblotting with anti-GFP antibodies to detect the indicated PTEN-GFP fusions.

Figure S3. GFP-GflB was examined in WT cells, *racE*⁻ cells, and WT cells expressing constitutively active $RacE_{G20V}$ using fluorescence microscopy. Bar, 10 µm.

Figure S4. Whole-cell lysates analyzed using immunoblotting with anti-FLAG antibodies.

Figure S5. After 8 hours starvation, WT and *gflB*⁻ cells were placed in a chemoattractant gradient generated by a micropipette that released cAMP and observed for 20 min using phase contrast microscopy.

Figure S6. Roundness was determined by calculating the ratio between the short axis (As) and long axis (Al) of cells (As/Al) in WT cells in the presence or absence of GFP-GflB expression. Values represent mean \pm SEM. At least 30 cells were analyzed for each group.

Figure S7. CRIB-RFP was examined in WT cells, *racE*⁻ cells, and WT cells expressing constitutively active $RacE_{G20V}$ using fluorescence microscopy. Bar, 10 µm.

Figure S8. The PS biosensor GFP-LactC2 was observed in WT and *gflB*⁻ cells during growth (vegetative) and after differentiation (chemotaxis).

Table S1. Plasmids used in this study

Plasmids	Primers used	Drug for selection	References
Dictyostelium expression			
pJK1-GFP: pIS1		G418 (20 µg/ml)	Zhang et.al. (2011)
pJK1-GFP-racIA	10 11	G418 (20 µg/ml)	This Study
pJK1-GFP-racB	12 13	G418 (20 µg/ml)	This Study
pJK1-GFP-racE		G418 (20 µg/ml)	Wang et.al. (2013)
pJK1-GFP-racE (G20V)		G418 (20 µg/ml)	Wang et.al. (2013)
pJK1-GFP-racE (T25N)		G418 (20 µg/ml)	Wang et.al. (2013)
pDRH-FLAG-RasC		Hygromysin (50 µg/ml)	Gift from Dr. Devreotes (JHMI)
pDRH-FLAG-RasG		Hygromysin (50 µg/ml)	Gift from Dr. Devreotes (JHMI)
pDRH-LimE∆coli-mRFP		Hygromysin (50 µg/ml)	Gift from Dr. Devreotes (JHMI)
pDM323-RBD(Raf)-GFP		G418 (20 µg/ml)	Xiong et.al. (2010)
pDRH-PHcrac-RFP		Hygromysin (50 µg/ml)	Gift from Dr. Devreotes (JHMI)
pTX-GFP		G418 (20 µg/ml)	Levi et.al. (2000)
pTX-GFP-GflB	14 15	G418 (20 µg/ml)	This Study
pTX-GFP-GfIB 1-644	14 16	G418 (20 µg/ml)	This Study
pTX-GFP-GfIB 361-644	16 17	G418 (20 µg/ml)	This Study
pTX-GFP-GfIB 645-1601	15 18	G418 (20 µg/ml)	This Study
pTX-FLAG		G418 (20 µg/ml)	Levi et.al. (2000)
pTX-FLAG-GflB	14 15	G418 (20 µg/ml)	This Study
pTX-FLAG-GfIB 361-644	16 17	G418 (20 µg/ml)	This Study
pTX-FLAG-GflB 645-1601	15 18	G418 (20 µg/ml)	This Study
pDRH-CRIB-RFP	19 20	Hygromysin (50 µg/ml)	This Study

Bacterial expression

pGEX 4T-1

pGEX-Byr2-RBD

Amersham Kae et.al. (2004)

Table S2. Primers used in this study

Primers for gene disruption in Dictyostelium cells

1	A15P	CCAACCCAAGTTTTTTTTTAAACC
2	gflB-2	GACTCGAGTTATTCGGCATTTGTTGAAGGAAC
3	gflB-3	GTGTACCAAATTTCTCTATACTTCG
4	gflB-4	CACCACCACTACCTCAACTACAACC
5	gflB-5	GAGCGGCCGCGTTGTAGTACTACTAGTTAC
6	gflB sall 1-19	GAGTCGACATGACAGATTTAAATTCAG
7	gfIB smal 800-781	GACCCGGGAATTGATTAGCCTGTAAAAC
8	gflB smal 4116-4134	GACCCGGGAATCATCAGAATTGGAGAC
9	gfIB notl 4875-4856	GAGCGGCCGCGTTGTAGTACTACTAGTTAC

Primers for expression plasmids in Dictyostelium cells

10	rac1A-1	GGAAGATCTTCCATGCAAGCAATTAAATG
11	rac1A-2	GGAAGATCTTCCTTATAAAATGTTGC
12	racB-1	GGAAGATCTTCCATGCAATCAATTAAATTGG
13	racB-2	GGAAGATCTTCCTTATAAAATTGAACATTTTG
14	gflB-Start	CCCGAGCTCATGACAGATTTAAATTC
15	gfIB-Stop	CCCCTCGAGTTATTCGGCATTTGTTGAAGGAAC
16	gfIB 1932-1909	GACTCGAGTTAATATGGTGAATCTAAAATTTGTTG
17	gflB 1081-1101	GAGAGCTCTTACAAGTAGTTTCCAATGCC
18	gfIB 2042-2066	GAGAGCTCGGAATTTATGGTGTTAGATTAACAC
19	CRIB 943	CCCGAGCTCACTACATCACCACCATCC
20	CRIB 1233	CCCCTCGAGTTAATGGAAATCTAAAACATC