
I. SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Device fabrication. Partial view of the design of the shadow mask

made with e-beam lithography using a PMMA/MMA bilayer on a SiO2/Si substrate. Only the left

half of the device is shown, the right half is a mirror image of the left half. The metal deposition

sequence is shown by the steps 1 to 3. The inner Ti/Pd electrodes are deposited first at ±45◦,

then the outer Co electrodes are deposited under normal incidence. The final layout after lift-off

is shown in step 4.
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Supplementary Figure 2. Transport characteristics of the graphene device. a, Square

resistance Rsq of the graphene channel as a function of gate voltage Vg at room temperature.

The charge neutrality point is positioned at VCNP = −22.5 V. b, Extracted τs∥ vs Ds from spin

relaxation parameters of the main text, the line is a linear fit.

1



0 1 2 3 4
0

1

2

3

4

5

0.0 0.2 0.4

1.00
1.02
1.04
1.06

 B  (T)

R
sq

(W
)

 

 

R
sq

/R
sq

(B
=0

)

 B  (T)

V  - V    = 2.5 Vg CNP

V  - V    = 22.5 Vg CNP

V  - V    = 32.5 Vg CNP

V  - V    = 42.5 Vg CNP

Supplementary Figure 3. Graphene magnetoresistance. Graphene square resistance Rsq

versus magnetic field B⊥ up to 4 T and up to 0.5 T (inset). In the latter, Rsq is normalized.

The dashed vertical line in the inset shows the maximum field range in which the oblique spin

precession measurements are performed.
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Supplementary Figure 4. Spin precession and determination of the tilting angle of

the electrodes magnetization. Conventional spin precession measurements Rnl vs B⊥ for down

(solid circles) and up (open circles) field sweeps. The line is a least square fit using the Hanle ex-

pression for β = 90◦, which is extended to include the tilting of the magnetization of the electrodes

using Supplementary Equation 3. From the fit, the saturation field Bs is obtained1,2. The inset

shows the orientations of the magnetization of the electrodes and the applied magnetic field in the

yz plane.
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Supplementary Figure 5. Anisotropic magnetoresistance in a Co electrode. a,

RCo − RCo(B = 0) versus B for β = 0◦, 60◦, 70◦, 90◦ (top to bottom). b, RCo − RCo(B = 0)

versus B2 at β = 90◦ demonstrating the parabolic dependence predicted by Supplementary Equa-

tion 8. c, RCo−RCo(B = 0) versus {sin(β)/[BsB
−1+cos(β)]}2 at β, demonstrating the dependence

predicted by Supplementary Equation 7.
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Supplementary Figure 6. Non-local resistance Rnl as a function of applied magnetic

field B⊥. a, Rnl shows typical spin precession (Hanle) measurements at low fields; Rnl appears

to saturate at high fields (∼ 1.5 T) when the magnetization of the electrodes point out-of-plane.

Further increase of B⊥ demonstrates that Rnl has not saturated as it decreases monotonously

after reaching a maximum. The dashed lines show rough extrapolations of the nonlocal resistance

from the magnetization saturation region down to B = 0, which demonstrate that isotropic spin

relaxation cannot be excluded. b, Rnl at the indicated magnetic fields versus Vg. The non-local

resistance depends significantly on the carrier density (tuned by Vg) and on the applied B for all

Vg.
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Supplementary Figure 7. Cartesian axis used for the calculation of the spatial evolu-

tion of the spin density. The unit vector êx is along the spin-propagation channel, while êB∥

and êB⊥ fix the parallel and perpendicular directions to the magnetic field B, respectively.
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II. SUPPLEMENTARY NOTES

Supplementary Note 1. Electrical characterization

Supplementary Figure 2a shows the square resistance Rsq of the graphene channel at T =

300 K as a function of the gate voltage Vg. Here Vg is applied to the p++Si substrate, which

acts as a backgate. We observe a pronounced electric-field effect from which we estimate

an average electron/hole mobility µ = 1.7 × 104 cm2V−1s−1 and a residual carrier density

n0 = 1.5× 1011cm−2, demonstrating high sample quality3. The magnitude of n0 defines the

region where electron-hole puddles are present in graphene, resulting in an inhomogeneous

carrier density that prevents a reliable extraction of transport parameters. Therefore, all of

the extracted parameters reported in our work are well outside this region.

The spin transport characteristics of the device are presented in Fig. 2 of the main

manuscript. Supplementary Figure 2b shows τs∥ versus Ds with a linear relation between

Ds and τs∥. According to the common interpretation, this linear relationship would suggest

that the EY mechanism of spin relaxation is dominant (with a spin-orbit strength of 0.6

meV, as typically found in the literature4–6). However, such phenomenological analysis is

not sufficient to unambiguously identify the microscopic origin of the spin relaxation7,8. As

discussed in the main text, changing the carrier density by means of an external gate can

modify spin transport in an unintended way.

We note that nominally identical devices could differ from one laboratory to another

due to variability in the concentration of adatoms, which might be present due to the

implemented processing steps. For example, the contradictory results on spin dynamics

in hydrogenated graphene can be rooted in the different procedures used to achieve the

hydrogenation, or perhaps in intrinsic variations in the as-fabricated devices5,9–11. The

same conclusion could be drawn regarding the experiments that study the spin transport

properties after physical deposition of metals, such as gold, onto graphene12–14. It might

be difficult to establish the effect of adding any specific adatom if the pre-existing spin

relaxation mechanisms are not well known.
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Supplementary Note 2. Graphene magnetoresistance

The application of a magnetic field can result in changes in the resistance of the graphene

layer. The magnetoresistance is expected to become more important closer to the charge

neutrality point (CNP) and in samples that have long mean free paths and large mobilities.

In such samples, the orbital motion of the carriers could be strongly altered even when the

applied magnetic field is of modest strength. It is therefore crucial to carefully study how the

spin transport is modified by the magnetic field in order to eliminate possible measurement

artifacts. In our model, the magnetoresistance effect is taken into account by the pre-factor

α(B), which is a function of the square resistance Rsq and the effective polarization of the

electrodes (see Methods).

Supplementary Figure 3 shows Rsq of graphene for different Vg as a function of the applied

magnetic field perpendicular to the plane, B⊥, up to 4 T. As expected, the magnetoresis-

tance is more pronounced close to the CNP, Vg ∼ VCNP. There, variations can be beyond

35% at B⊥ ∼ 1 T, in agreement with recent reports15,16. When the magnetic field drops

below ∼ 0.2 T, the variations are within 3%, independently of Vg (inset Supplementary

Figure 3). Only then we find that the magnetic field does not introduce a significant change

in our measurements. We thus require that all of the measurements are performed below

0.2 T, which then implies that the dephasing magnetic field Bd must be about 0.1 T or

lower. This issue is further discussed in the Supplementary Note 6 in connection with the

determination of τs⊥ with the technique introduced in refs. 15 and 17.

Supplementary Note 3. Device design: dephasing of the spin component per-

pendicular to the field and contact induced spin relaxation

The distance L between injector and detector has to be large enough so that complete

dephasing of the component perpendicular to the magnetic field is induced at a low enough

magnetic field strength Bd. As a rule of thumb1,18, for complete dephasing, the spread of

precession angles ∆ϕ for the characteristic diffusion time τdiff(L) from the injector to the

detector has to exceed 2π . When τdiff(L) ∼ τs (i.e. L ∼
√
2λs), this threshold condition can

be written as ∆ϕ = ωL(Bd)τs = 2π, where ωL(Bd) is the Larmor precession frequency at Bd.

For typical graphene spin lifetimes τs ∼ 0.5 ns, we obtain Bd ∼ 70 mT, which lies within the

low B range necessary to keep marginal magnetoresistance effects (see Supplementary Note

2). If in our devices we choose L ≥
√
2λs, τdiff(L) would exceed τs, therefore this criterion
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indicates that Bd ∼ 70 mT is an estimation of the upper bound of the dephasing field.

In addition, the device design must be optimized to suppress the influence of the electrodes

on the spin precession measurements and reduce the number of unknown parameters. Spin

sinking at the contacts19 can affect the determination of the spin relaxation time and has

been a topic of recent debate (see, for example, refs. 20–24). In this works, it has been

demonstrated (both theoretically and experimentally) that the influence of the electrodes

can be minimized by having i) large contact resistances Rc and ii) a separation between

injector and detector L that is substantially larger than λ. The argument is simple: the

contact resistance reduces the flow of spins between the metallic electrodes and graphene,

whereas for large L most of the spin relaxation and diffusion happens in the graphene

without interference of the electrodes. As described in the preceding paragraph, a large

L is already a critical requirement for the spin anisotropy measurements. Large contact

resistances must also be introduced to achieve an efficient spin injection. Indeed, using

available models and the device characteristics, L = 11 µm, Rc & 10 kΩ, λ = 2 − 5.8 µm

(Fig. 3c, main text), and Rsq (Supplementary Figure 2a), we estimate20–24 that the presence

of the contacts will reduce the spin lifetime in no more than 10%. Such estimations are

supported by recent experimental results using samples of similar characteristics, where no

influence of the contacts was observed15,25.

Considering an effective contact-induced spin relaxation rate Γc, then the measured in-

plane and out-of-plane spin lifetimes would be given by (Γ∥ + Γc)
−1 and (Γ⊥ + Γc)

−1, re-

spectively, where Γ∥ and Γ⊥ are the graphene in-plane and out-of-plane spin relaxation rates

and, as discussed above, Γc/Γ∥ . 0.1. When considering the influence of the contacts, the

fitted anisotropy ratio ζ is then,

ζ =
Γ∥ + Γc

Γ⊥ + Γc

= ζG
1 + κ

1 + ζGκ
≈ ζG[1 + κ(1− ζG)], (1)

where ζG = Γ∥/Γ⊥ is the actual anisotropy ratio of graphene, and κ = Γc/Γ∥.

Using the above expression we observe that ζ is rather insensitive to the presence of

moderate Γc. For the upper limit of κ = 0.1 when ζG = 0.9, we obtain ζ ≈ 0.908, which

underestimates ζG by less than 1%. For larger anisotropies, ζ further deviates from ζG.
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However, even when ζG = 0.5, ζ ≈ 0.52 and the difference between them is still below 5%.

Supplementary Note 4. Magnetization orientation of the injector and detector

electrodes from spin precession measurements

In order to determine the anisotropy accurately, it is necessary to have into account the

tilting of the magnetization of the Co electrodes when subjected to the applied magnetic

field B. To describe the magnetization rotation, we use the Stoner-Wohlfarth model, which

provides a very good approximation for coherent magnetization rotation at low B, as demon-

strated below. Within this model, the total energy density of the system, U , is given by the

sum of the magnetostatic and anisotropy energies26

U = κeff sin
2(γ)− µ0HMs cos(β − γ), (2)

where Ms is the saturation magnetization and κeff is an effective anisotropy constant; β is

the angle between the external magnetic field and the easy (long) axis of the ferromagnet,

while γ denotes the angle between the magnetization direction and the easy axis (see inset

of Supplementary Figure 4). For a given β, the value of γ is obtained by minimizing U in

Supplementary Equation 2.

For the specific case, β = 90◦, the minimization results in,

γ = arcsin(B/Bs), (3)

with µ0H = B and Bs = 2κeff/Ms, the saturation field. This relationship is known to closely

follow experimental results2,27, even for magnetic fields approaching Bs. When considering

the tilting in the conventional spin precession measurements (β = 90◦), the agreement with

the experimental data is excellent (see Supplementary Figure 4); from the fitting we obtain

Bs = 1.12 T and a small magnetization rotation out of the graphene plane of γ < 5◦ for

B < Bd.

For arbitrary β, the minimization of U leads to,
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γ = arcsin
[ sin(β)
Bs

B
+ cos(β)

]
, (4)

where we assumed that γ is small, and thus cos(γ) ≈ 1. Here, Bs = 1.12 T, as obtained

from the β = 90◦ case. Note that for small B ≪ Bs, Supplementary Equation 4 reduces to

Supplementary Equation 3, with the component of the magnetic field perpendicular to the

substrate, B sin(β), replacing B.

Supplementary Note 5. Magnetization orientation of the injector and detector

electrodes from anisotropic magnetoresistance measurements

Besides the spin precession measurements, we have additionally checked the functional

dependence of γ on B and β by performing anisotropic magnetoresistance (AMR) mea-

surements on a Co bar. The resistivity ρ of a Co film is larger by a few percent when the

magnetization and the current directions are parallel than when they are perpendicular, that

is, ρ∥ > ρ⊥. For an arbitrary angle ψ between the current and the magnetization directions,

ρ follows,

ρ(ψ) = ρ⊥ +∆ρ cos2(ψ), (5)

where ∆ρ = ρ∥ − ρ⊥.

At B = 0, the magnetization of Co is along its long axis and the applied current is parallel

to it (ψ = 0), therefore, ρ(B = 0) = ρ⊥ + ∆ρ. When B ̸= 0 is applied at an angle β, the

magnetization tilts by γ, therefore, the angle ψ between the current and the magnetization

is ψ = γ(β,B). By noting that sin2(γ) + cos2(γ) = 1 and using ρ(B = 0) = ρ⊥ + ∆ρ,

Supplementary Equation 5 can be rewritten as,

ρ(β,B)− ρ(B = 0) = −∆ρ sin2[γ(β,B)] (6)

By replacing sin2[γ(β,B)] in Supplementary Equation 6 using Supplementary Equation 4,

we find,
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ρ(β,B)− ρ(B = 0) = −∆ρ
[ sin(β)

Bs

B
+ cos(β)

]2
. (7)

For β = 90◦, the above expression reduces to a simple quadratic relationship,

ρ(β,B)− ρ(B = 0) = −∆ρ

B2
s

B2 (8)

Supplementary Figure 5a shows AMR measurements RCo −RCo(B = 0) vs B for various

values of β. Supplementary Figure 5b presents the measurements for β = 90◦ vs B2 showing

that the quadratic relationship Supplementary Equation 8 holds up to at least 800 mT.

Finally, Supplementary Figure 5c presents the data in Supplementary Figure 5a plotted

versus {sin(β)/[BsB
−1 + cos(β)]}2. As expected from Supplementary Equation 7, it is

clearly observed that all of the data fall in a universal line with negative slope. This further

confirms that γ(β,B) can be determined quantitatively using Supplementary Equation 4.

Supplementary Note 6. Determination of τs⊥ with perpendicularly magnetized

electrodes

In refs. 15 and 17, the anisotropy is calculated by performing non-local measurements

with β = 90◦. First τs∥ is determined by conventional spin precession measurements as in

Fig. 1a (main manuscript). Subsequently, τs⊥ is determined by increasing B⊥ to above 1

T, forcing the magnetization direction of the electrodes to align to the field and, therefore,

enabling the injection of spins perpendicular to the graphene plane. In this case Equation

7 (Methods) reduces to,

Rnl(B)

Rnl(B = 0)
=

α(B)

α(B = 0)

√
ζe

−
√

L2

τs∥Ds
(
√

1
ζ
−1)
. (9)

Because τs∥ can be determined by fitting the spin precession response at low magnetic fields,
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Supplementary Equation 9 provides a method to extract the spin relaxation anisotropy if

α is known. However, because the magnetoresistance in single-layer graphene can be very

large, one cannot assume that the square resistance, Rsq, and associated diffusion constants

are field independent over the whole carrier density range15,16,28. This constrains the range

of applicability of Supplementary Equation 9 for the determination of the spin relaxation

anisotropy, as pointed out in ref. 15.

Supplementary Figure 6a shows our measurements of Rnl vs B⊥. We use the device of the

main text in order to compare our anisotropy results with those obtained with the method

in refs. 15 and 17. We observe that Rnl appears to start saturating at a large magnetic

field, B⊥ ∼ 1 T, indicating complete rotation of the magnetization of the electrodes2,15,17.

However, further increase of B⊥ demonstrates that Rnl does not really saturate, presenting

a monotonous decrease after reaching a maximum value at B⊥ ∼ 1.5 T; the exact position

of the maximum depends on Vg, and the decrease does not slow down as the magnetic

field increases. This behaviour is observed even at large n = 2.7 × 1012 cm−2 and suggests

that the pre-factor α in Supplementary Equation 9 and/or the diffusion constant might be

field-dependent even at lower magnetic fields.

For our sample, it is therefore not possible to directly neglect magnetoresistive effects

to determine the spin-lifetime anisotropy with Supplementary Equation 9. For instance,

due to the magnetoresistance, if we use Supplementary Equation 9 the calculated value

of ζ at Vg − VCNP = 22.5 V would be 0.67 at B⊥ ∼ 1.75 T and 0.55 at B⊥ ∼ 3.5 T.

By extrapolating the field dependence observed in Supplementary Figure 6a to B = 0,

it becomes apparent that the anisotropy would in fact be overestimated if Supplementary

Equation 9 was used. Moreover, an anisotropy ratio ζ = 1 is not incompatible with these

measurements, as schematically shown with the dashed lines in Supplementary Figure 6a.

Knowing the graphene magnetoresistance, we propose a quick check to determine the

suitability of the perpendicular spin-injection method to determine ζ. The magnetoresis-

tance shows a parabolic dependence for low magnetic field magnitude (. 0.5 T), but departs

from this dependence at sufficiently large magnetic fields, most notably close to the CNP.

The dependence becomes approximately linear, or even sub-linear at the CNP but, in gen-

eral, the change in Rsq between B⊥ = 0 and B⊥ = Bsat
⊥ (with Bsat

⊥ > 1 T) is of the same

order of magnitude that the change between B⊥ = Bsat
⊥ and B⊥ = 2×Bsat

⊥ , for all values of

Vg. Therefore, assuming that the effect of the magnetoresistance is small, and considering
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first order changes in Rnl as a consequence of it, then the change in Rnl between B⊥ = 0 and

B⊥ = Bsat
⊥ should be of the same order of magnitude as the change between B⊥ = Bsat

⊥ and

B⊥ = 2×Bsat
⊥ (note that we are ignoring quantum transport effects that could be significant

in high mobility samples at B ∼ 1 T or even lower).

With this in mind, a necessary condition that has to be fulfilled for the perpendicular spin-

injection method to be reliable is that the measurements of τs⊥ at the saturation magnetic

field, Bsat
⊥ , and at 2 × Bsat

⊥ must yield the same results, which is equivalent to saying that

Rnl stays constant between Bsat
⊥ and 2 × Bsat

⊥ . This criterion is obviously not met by our

data (or the data in ref. 17) despite the fact that the overall change in Rsq is below 20% at

Bsat
⊥ (compare Supplementary Figures 3 (inset) and 6). The data presented in ref. 15 does

not extend to large enough magnetic fields to test this criterion.

The same criterion can be applied to our technique. The situation is significantly more

favorable in this case because of the parabolic dependence of Rsq vs B⊥, which results in

a magnetoresistance that is below 2% at 0.2 T, except within a narrow range of n about

the CNP (note that even at the CNP, the effect is below 3%, see Supplementary Figure 3

inset). As shown in Figs. 3b and 4a of the main text, Rnl stays nearly constant over a broad

magnetic field range. When Rnl is carefully analyzed, a small increase with magnetic field

is observed. However, this change can be quantitatively accounted for by the small tilting γ

of the ferromagnetic electrodes induced by B, as discussed in Supplementary Notes 4 and 5.
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J.- H., Ferreira, A., Castro Neto, A. H. & Özyilmaz, B. Giant spin Hall effect in graphene grown

by chemical vapour deposition. Nat. Commun. 5, 4748 (2014).

14 Wang, Y., Cai, X., Reutt-Robey, J. & Fuhrer, M. S. Neutral-current Hall effects in disordered

graphene. Phys. Rev. B 92, 161411(R) (2015).
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