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I. SEQUENCE SPACE: SAMPLING AND DESIGNABILITY

A. Monte Carlo sampling of the sequence space

Here we describe the Monte Carlo sampling procedure to build the MSA associated with the native structure. As
explained in the Method section of the main paper, we want to draw sequences according to the equilibrium measure
equal to Pnat(S|A)β (up to an irrelevant normalisation factor) [1]. To optimize the sampling of the sequence space we
perform multiple mutations at each time step, which greatly reduces the equilibration time and allows us to overcome
energy barriers occurring at low temperatures (for inverse temperature β > 104). To this end we draw an integer k
from a Poisson distribution of mean 1, and pick out uniformly at random k sites i1 < i2 < ... < ik of the protein. We
then mutate uniformly at random each one of the k amino acids into another amino acid.

In Fig. A, we show the average folding probability Pnat as a function of the inverse temperature. For β = 103 the
average folding probability is about 0.995 for structure SB and the equilibration time is smaller than 103 mutation
steps.
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FIG. A: Average probability of misfolding, 1 − Pnat, as a function of the inverse temperature β, for structure SB . The error
bars show two standard deviations from the average value, computed over M = 5 · 104 sequences.

B. Designability and entropy

An important characteristic of the protein families is their volumes in sequence space, which is captured by the
concept of designability. This concept was first introduced by Wingreen and colleagues as the number of sequences
that can fold into a given structure [2]. Using two-letter protein alphabet, comprised of hydrophobic and hydrophilic
amino acids and the 27-mer lattice model introduced in [3] these authors showed that designabilities of model protein
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structures varied broadly from ”orphans”, i.e. structures that can be encoded by only one sequence, to highly
designable structures that can be encoded by multiple sequences. Wingreen and coworkers used a simplified criterion
for a sequence to fold into a given (target) conformation – that the target structure is the lowest energy conformation
(out of total 103,346 fully compact conformations for the 27-mer model protein). However detailed studies of protein
folding using simple lattice and analytical models showed that this condition, albeit necessary, is not sufficient for
sequences to encode stable and fast folding proteins [4, 5]. Rather, a large energy gap between the lowest energy
(native) conformation and the lowest energy in the set of structurally dissimilar misfolds is necessary and sufficient
for a sequence to be protein-like, i.e. to be stable and to fold rapidly into its native conformation. Mean-field theory
of protein folding predicts that one of the lowest energy in the ensemble of misfolded conformations depends on amino
acid composition only [6, 7], while the energy of the native state crucially depends on sequence. Thus large extensive
(in number of amino acid residues) energy gap would guarantee thermodynamic stability and fast cooperative folding
for a sequence into its native (lowest energy) conformation. Accordingly, the definition of designability of a structure
was generalized in [8, 9] as the number of sequences that can fold into that structure with large energy gaps. The
cumulative sequence entropy curve (SEC), defined as the logarithm of the number of sequences that can fold into
a given conformation with energy equal or lower than E, was derived for several target protein structures in [8].
The important question of structural determinant of protein designability, i.e. which features of the target structure
determine the SEC for this structure, was addressed in [9]. The authors of [9] argued that the maximal eigenvalue of
the contact matrix can serve as a good predictor of SEC, i.e. of the designability of a structure. Shakhnovich et al
presented an intuitive explanation for this result in [10] by relating the maximal eigenvalue of contact matrix to the
number of closed loops passing through the system of intramolecular inter-amino acid contacts and analyzing their
contributions to the energy of a sequence in the native structure. It was also shown that the structures of proteins
from thermophilic organisms are more designable [11] than the ones from their mesophilic counterparts. Furthermore
structures of proteins believed to belong to last universal common ancestor (LUCA) appear to be highly designable,
perhaps reflecting the thermophilic nature of earlier life.

The largest eigenvalue of the contact maps cij are listed in Table 1 of the main text for the four structures
SA, SB , SC , SD. We stress that, in light of the results for the pressures λij obtained in the present paper, estimates
of designability should depend on c− c̄ and not c alone due to the effects of competitor folds onto the designability.
Inverse statistical modeling taking into account the covariation between amino acids offer more accurate estimates of
the designability. In particular, the ACE algorithm provides an approximation of the entropy of the inferred Potts
model [12], in addition to the values of the inferred couplings. In Table 1 of the main text we list the values of
the entropies of the Potts models inferred for the four structures considered here. The Potts entropy is bounded
from above by 27 × log 20 ' 80.9; the difference between this upper bound (corresponding to a set of L = 27 fully
unconstrained amino acids) and the Potts entropy is a measure of the structural constraints acting on the sequences.
A recent, detailed study of the notion of entropy of protein families, with application to real and lattice data can be
found in [12].

II. IMPLEMENTATION OF THE INFERENCE PROCEDURE AND VALIDATION

Let L = 27 be the length of the proteins, and q = 20 the number of amino acids. One- and two-point frequencies
measured from the data provide Lq + L(L − 1)/2q2 data points to be fitted within the Potts model (see Eq.(6) and
Eq.(7) in Methods Section) with the same number of field and coupling parameters. Since

∑q
a=1 fi(a) = 1 ∀i, L, free

parameters are removed. In addition,
∑q
a=1 fij(a, b) = fj(b) for all j, b and

∑q
b=1 fij(a, b) = fi(a) for all i, a. Those

equalities remove another set of 1
2L(L− 1)× (2q− 1) free parameters. The inference is thus done by considering fields

and couplings that depend on q − 1 symbols (amino-acid values) only. We are free to choose, for each site, which
symbol is removed. In the main paper, we show results corresponding to the consensus gauge, where the amino acid
with maximum frequency is removed, or the least-probable gauge, where the amino acid with minimum frequency is
removed. Couplings may also be expressed in the zero-sum gauge, where the sums over each row or column of the
coupling matrix (attached to any pair of sites i, j) are equal to zero.

A. Independent-site Model (IM)

In the Independent-site Model (IM) framework we infer a Potts model that reproduces the amino-acid frequencies
on all sites, without caring about correlations. The Independent-site Potts Model is fully determined by its fields,

hIM
i (a) = log

(
fi(a)

fi(ai)

)
, (1)
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where ai is the index of the consensus amino acid at site i. We therefore work in the consensus gauge: on each site i
we remove the symbol ai from the list of amino acids. Amino acids a that have not been observed in the MSA at a
given site i are also discarded; the numbers of amino acids retained therefore vary from site to site.

B. Mean-Field and Gaussian Models (DCA)

The coupling matrix inferred according to the Mean-Field DCA approach [13] is simply the opposite of the inverse of
the pairwise covariance matrix between residues. In our MSA data (as in the case of real proteins), some amino-acids
may never be observed on some sites of the protein. In that case the two-point frequency matrix acquire zero modes,
which makes the inversion procedure ill-defined. This problem can be cured by resorting to pseudo-counts, and we use
this standard method when applying DCA; the introduction of large pseudo- counts is also useful to cure the errors
introduced by the mean-field approximation [14].

More precisely, we compute the pairwise correlations fij(a, b) and frequencies fi(a) from the MSA. Note that, to
remove sampling biases producing correlations between the different sequences in real MSA, a reweighting of the
sequences is usually performed in the computation of those statistical quantities, according to their distances with the
other sequences in the MSA (Methods, main text). In practice, we have not considered any reweighing here, except
in the case of biased sampling with a penalty term discussing sequences with low identity with respect to a reference
sequence (Methods, man text).

We then introduce a pseudo-count α by transforming the 1- and 2-site statistics in the following way:

fi(a)→ fPC
i (a) = (1− α)fi(a) +

α

q

fij(a, b)→ fPC
ij (a, b) = (1− α)fij(a, b) +

α

q2

(2)

Here we use the value α = 0.5 that is used when considering protein data, but we note that this value could be in
principle optimized for the case of lattice proteins. Once the pseudocounts have been taken into account, the DCA
couplings are given by the inverse of the connected correlation matrix c defined by

cij(a, b) = fPC
ij (a, b)− fPC

i (a)fPC
j (b) (3)

However, the identities
∑
b f

PC
ij (a, b) = fPC

i (a) give a trivial zero-mode to the c matrix, that is removed by using the
‘consensus gauge’ as discussed above for the IM case. Removing the row ai and column aj of the matrix c for every
pair i, j, we obtain the correlation matrix ccons in the consensus gauge. The couplings are given by

JDCA
ij (a, b) = − (ccons)

−1
ij (a, b) (4)

and the couplings for the consensus amino acids are set to zero by definition.
The coupling matrix inferred in the DCA approach above defines a Gaussian model for the sequences A =

(a1, a2, . . . , aL), with probability distribution

PG(A) ∝ exp

1

2

∑
i,j

∑
a,b

JGij (a, b)
(
σi,a(A)− fi(a)

) (
σj,b(A)− fj(b)

) , (5)

up to a multiplicative normalization constant. In the formula above, the couplings are equal to their DCA values:
JGij (a, b) = JDCAij (a, b). Variable σi,a(A) is equal to 1 if a = ai, and to 0 otherwise. Note that the discrete nature of

the σi,a–variables make PG approximate. Within this Gaussian approximation the fields read

hGi (a) = −
∑
i 6=j,b

JGij (a, b) fj(b)−
∑
b6=a

JGii (a, b) fi(b) +
1

2
JGii (a, a) (1− 2 fi(a)) . (6)

Given those field and couplings values, one can sample the Gaussian distribution to generate new sequences, based
on Eq. [9] in the main text, with the results shown in Fig. 3A in the main text.

C. Pseudo-likelihood Method (PLM)

To infer the Potts couplings and fields with the Pseudo-Likelihood Method we have used the asymmetric Pseudo-
likelihood code of [15], with regularization strength γ = 0.01. The inferred couplings are then transformed in the
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zero-sum gauge, i.e. the sums over all rows and columns of Jij(a, b) vanish. This gauge is empirically known to give
the best performance for contact predictions based on PLM couplings. We have indeed verified that contact prediction
based on PLM-couplings in the consensus gauge is less accurate.

FIG. B: Same as Fig. 3A of the main text, but for the weakly regularised Potts-PLM model (γ = 0.0001) instead of the strongly
regularized Potts-PLM model (γ = 0.01) usually considered for structural predictions. Gaussian and IM data are not shown.

While PLM with large regularization strength is known to provide optimal contact prediction [15], we have also
inferred the PLM couplings with weaker regularisation strength γ = 0.0001. As shown in Fig. B, sequences generated
through MC sampling of the corresponding Potts-PLM model have higher probabilities of folding in the native
structure than sequences sampled from the strongly regularised Potts-PLM model, compare to Fig. 3A in the main
text.

D. Adaptive Cluster Expansion (ACE)

For the ACE-based inference of [16, 17] adapted to Potts variables [18], no pseudo-count is required but only
amino acids with non-zero frequencies are retained as Potts symbols in the inferred model. The number of Potts
symbols present on each site is therefore a variable parameter along the protein sequence. The inference is done in the
least-probable gauge, in which the fields parameters of the least frequent amino acid in each site and each coupling
parameter with him are set to zero. A L2-regularization, with small strength γ = 0.0001 = 5/M , where M = 5 104 is
the number of sequences in the MSA, is used in the inference.

In the ACE method, clusters of interacting sites are gradually incorporated if their contributions to the cross-
entropy exceed some threshold t. The cross-entropy converges to a plateau value, as t is lowered and clusters with
smaller and smaller contributions are taken into account, see Fig. C. The inference procedure requires to compute
the partition function of the Potts model restricted to those clusters. Such a computation becomes prohibitively slow
when cluster include more than, say, Kmax = 7 sites each carrying q ' 20 Potts states. We have at this point stopped
the ACE-inference, as shown by the threshold indicated in Fig. C. We have then refined the inferred couplings and
field parameters with a Boltzmann machine learning (BML) procedure, to reproduce the 1- and 2-site statistics within
the expected fluctuations due to the finite sampling. The output of the ACE algorithm provides a good guess of the
couplings and fields, and BML is fast. As shown in Fig. C, structures SC and SD give rise to smaller thresholds
and to faster convergence of the inference procedure, with respect to SA and SB . The latter structures are indeed
less designable (Section III.B). In Fig. D we show the histograms of the inferred couplings (with ACE) for the four
structures. The couplings inferred for structures SA and SB are slightly larger than their counterparts for the other
two structures, in particular, SC .
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FIG. C: Evolution of the estimated entropy of the Potts model inferred from the MSAs attached to the four structures under
study along the evolution of the ACE inference procedure. The entropy has stabilized when the cut-off over the contribution
to the entropy coming from clusters (threshold) becomes small, indicating that the inference is successful. Note that the final
values of the entropy shown in the figure exceed by about 0.5 the values reported in Table 1 of the main paper, due to the
contribution of the regularization terms, see [12] for a detailed discussion.
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FIG. D: Histograms of the inferred Potts-ACE couplings for the four structures SA, SB , SC and SD.

To explicitly check that the inference was successful, we compare in Fig. E the one- and two-point statistics
computed from a large number of sequences generated from the inferred Potts model with a Monte Carlo procedure
to their values in the MSA of structure SB . We see that the single-site frequencies fi(a) and the two-point connected
correlations cij(a, b) (Methods in main paper) are perfectly reproduced.

We can also perform more detailed comparisons to show that the model is indeed predictive, beyond one- and
two-point functions. For example the connected three-point correlations

cijk(a, b, c) =
〈
δai,aδaj ,bδak,c

〉
− fi(a)fjk(b, c)− fj(b)fik(a, c)− fk(c)fij(a, b) + 2fi(a)fj(b)fk(c) (7)
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computed from the data are in very good agreement with their counterparts computed from the inferred Potts model
(with Monte Carlo sampling), see right panel of Fig. E.
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FIG. E: Comparison of amino-acid statistics in the MSA of structure SB (x–axis) and in the corresponding inferred Potts-ACE
model (y–axis). The one-point frequencies fi(a) and the two-point connected correlations cij(a, b) = fij(a, b) − fi(a)fj(b) are
shown, respectively, in the left and middle panels. The straight line x = y corresponds to perfect matching. The inference
problem is accurately solved. The MSA was made of sequences were sampled at temperature β = 103, in the presence of a
reduced pool of 104 randomly chosen structures. The three-point connected correlation functions, defined in Eq. (7), are shown
in the right panel; the coefficient of determination is equal to R2 ' 0.98.

FIG. F: Scatter plot of the ‘energy’ HPotts−ACE [A;h,J], Eq. [9] in the main text, with the inferred Potts-ACE (x-axis) vs.
effective Hamiltonian βHLP[A|S] = −β logPnat(S|A), Eq. [7] in the main text (y-axis), for 10,000 sequences in the ‘natural’
MSA generated for structure SB (at inverse sampling temperature β = 1000). Colors identify intervals of values for Pnat, see
legend in panel. The energy of the sequences computed with the Potts-ACE model have been subtracted the energy of the best
folder, such that the minimal energy is zero.

We report in Fig. F the scatter plot of the ‘energies’ of the sequences in the ‘natural’ MSA, computed with the
inferred Potts-ACE model and with the exact LP Hamiltonian, −β logPnat, see Methods in the main text. We observe
that the energies are strongly correlated: the lower the Potts-ACE energy, the higher the value of the probability of
folding, Pnat. The scatter plot for natural sequences is quantitatively similar to the low-energy part of the scatter
plot corresponding to the Potts-ACE generated sequences, see Fig. 3B in the main text.
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III. CALCULATION OF THE PRESSURE λTH

The effective Hamiltonian of a sequence A folding in structure Snat in the Monte Carlo simulations (see Methods
section on the sampling of the sequence space in the main paper) reads

H(A) ≡ −β lnPnat(A) = β ln

1 +
∑

S(6=Snat)

exp

∑
i<j

[
c
(Snat)
ij − c(S)

ij

]
E(ai, aj)

 . (8)

Note that the form of H implies effective multi-body terms that originate from the need to avoid competing folds. We
now derive the effective pairwise Potts Hamiltonian which approximates H in the case of large inverse temperatures
β. For the sake of simplicity, we first consider the limiting case of two structures only in Section III A. The general
case of multiple structures in competition is then studied in Section III B.

A. Case of two structures

Let us assume first that we have only the native structure, Snat, with contact matrix c
(Snat)
ij , and another ‘competing’

fold, Scomp, with contact map c
(Scomp)
ij . Let us define the difference between the two contact maps

∆cij = c
(Snat)
ij − c(Scomp)

ij . (9)

For each pair of residues i, j, ∆cij is equal to +1 if i, j are in contact on the native fold but not on its competitor,
0 if they are in contact or not in contact on both folds, and −1 if they are in contact on the competitor but on the

native fold. The effective Hamiltonian (8) is H(A) = βln
(

1 + e−G(A)
)

where the ‘gap’ function is

G(A) ≡ −
∑
i<j

∆cij E(ai, aj) . (10)

The sequences A with very high probabilities of folding into Snat are the sequences with very large and positive gaps
G(A). Let us call AGS the ground state of H, i.e. the sequence maximizing the gap G. The sequences A belonging
to the MSA after generation by the Monte Carlo procedure correspond to slightly larger value for the Hamiltonian
H, with H(A)−H(AGS) typically less than or equal to unity. Therefore:

H(A)−H(AGS) = β ln

(
1 + e−G(A)

1 + e−G(AGS)

)
≤ 1 , (11)

Using the fact that both gaps G(A) and G(AGS) are large, we obtain after expansion of the logarithm to the first
order,

H(A)−H(AGS) ≈ β
(
e−G(A) − e−G(AGS)

)
= β e−G(AGS)

(
eG(AGS)−G(A) − 1

)
≤ 1 , (12)

or, equivalently, that the gap associated to sequence A is below its maximal value AGS by at most

δGmax ≡ ln

(
1

β e−G(AGS)
+ 1

)
. (13)

In physical terms, we interpret the result above as if sequences A, whose true associated energy is H and whose true
temperature is equal to unity, were distributed according to the Gibbs distribution associated to the energy −G(A)
at the (very low) effective temperature δGmax. For sequences in the MSA with large folding probabilities we can
therefore approximate the Hamiltonian (in units of the effective temperature) as

−G(A)

δGmax
=

1

δGmax

∑
i<j

∆cij E(ai, aj) . (14)

Hence, the Hamiltonian H(A) can be approximated with a Potts model with pairwise interactions given by

Jij(a, b) = − ∆cij
δGmax

E(a, b) . (15)

We obtain the value of the pressure λTHij announced in Eq. [3] of the main text, in the special case NS = 1, ∆ =

G(AGS), and c̄ij = c
(Scomp)
ij .
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B. Case of multiple structures

We now turn to the generic case of multiple structures S competing with the native fold Snat. As explained in the
Methods section of the main paper, we define the gap ∆(S|Snat) between the competing structure S and the native
fold Snat as the average value of the ratio of the Boltzmann weights of the sequences A in the MSA of Snat to fold,
respectively, in structures S and Snat. The weight of the structure S is then defined through

µ(S) = e−∆(S|Snat) . (16)

The 100 top weights of the structures competing with Snat = SA, SB , SC , SD are shown in decreasing order in Fig. G.
We observe that only a small number NS of structures S have large weights µ; this number M is variable from one
native structure to another. The number M of competitor structures and their typical gap ∆ with the native structure
are approximated from the sum of the weights µ(S) over all the structures S different from Snat, see Methods in the
main paper. Furthermore, we define the average contact map c̄ij of those competitors as the average value of the

contact maps c
(S)
ij over all the structures S different from Snat, weighted by µ(S), see Methods in the main paper.

Note that the sum of c̄ij over all pairs i < j is equal to 28, and each entry of this matrix ranges between 0 and 1.

FIG. G: Weights µ(S), multiplied by the inverse sampling temperature β = 103, of the structures S competing with Snat =
SA, SB , SC , SD, and sorted in decreasing order.

Based on those definitions, we replace the sum over all possible structures (distinct from the native one) in (8) with
the sum over the NS most competing structures, as if they all had the same contact map c̄ defined above:

Heff (A) ' β ln

1 +NS exp

∑
i<j

(
c
(Snat)
ij − c̄ij

)
E(ai, aj)

 . (17)

This expression makes sense only for sequences A that are very good native folders. Within this approximation, we

recover the ‘gap’ function G(A) of Eq. (10), where the ‘differential’ contact map is ∆cij = c
(Snat)
ij − c̄ij and with the

additive constant − lnNS . The calculation of Section III A can be repeated, and we readily obtain that the effective

temperature δGmax is given by (13) with e−G(AGS) = NS e
−∆. Hence, the theoretical expression for the local pressure,

λTHij , given in Eq. [3] of the main text. Applications to the various sampling temperatures and pools of competing
structures of Section III.C are reported in Table A.

C. Numerical results for structures SA, SC , and SD

We show the comparison between the inferred and the energetic couplings for structures SA, SC , and SD in,
respectively Figs. H, I, and J. We also show the pressures for the different classes of contacts, and the contact maps
of the native folds and of the competing structures.
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D. Dependence of the pressures on MSA sampling

An interesting feature of the lattice-protein model is that we can restrict the pool of competing structures in the
partition function of the model (see Eq. [5] in the Methods section of the main paper). In order to test the effect of
competitor structures on the inferred couplings described by Eq. [3] of the main paper, we have generated three pools
of possible structures:

• Ωrand, which includes 103 randomly chosen structures, plus the native one;

• Ωclose, made of the native structure and the 999 closest structures, in terms of the number of common contacts;

• Ωfar made of the native structure and the 999 most distant structures.

The inferred couplings are compared to the MJ energetic parameters in Fig. L. We see that the pressure averaged
over the pair of contacts in the native fold, λ, is smaller for the pool of structures Ωfar and is maximal for Ωclose.
This result agrees with the fact that covariation, measured by the effective couplings, increases with the competition
between the native structure and the other structures in the pool. We also show in Fig. L the couplings obtained for
a low inverse sampling temperature, β = 101 (all the results shown in the main paper were obtained for β = 103).
As expected, we observe that the pressures λ decrease, and so do the inferred couplings. As expected, our theoretical
prediction for the pressure, Eq. [3] of the main text, is less accurate at low inverse temperatures.

We give the values of the pressures averaged over the pairs of residues in the classes UN, SN and CC (defined
according to the closest competitor SF ) and for the different pools of competing sequences and sampling temperatures
in Table A.

Pressure (inferred) Factor Pressure (theory)

Eq. [2] of main text β NS e
−∆ Eq. [3] of main text

UN 2.8 5.0357 4.46

SN 1.4 5.0357 2.74

CC -0.9 5.0357 -1.79

Ωfar 1.30 1.3208 1.66

Ωclose 2.75 5.0411 3.40

Ωrand 2.24 3.4319 2.81

β = 10 1.94 5.3425 4.02

β = 100 2.3 4.3598 3.24

TABLE A: Pressures λ averaged over all pairs of sites in contact, or only over the pairs in the classes UN, SN, CC (see Fig. 4
of the main paper, β = 1000) as we vary the pools of competing structures and the inverse sampling temperature for structure
SB .
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FIG. H: Structure SA. Top. Comparison between inferred and energetic couplings (only one over 50 points are shown); red
symbols corresponds to pairs of sites in contact, blue symbols to pairs of sites that are not in contact. Middle. Pressures λij

vs. cij − c̄ij . The classes UN, SN, CC and NN were defined according to the closest competitor structure of SA, i.e. with
the smallest effective gap ∆(S|SA), denoted by SG, see Fig. K. Bottom. Lower triangle: contact map cij shown with full
blue squares. True and false positives predicted from 28 top FAPC scores with the ACE method are shown with, respectively,
green and red dots. Upper triangle: contact map c̄ij averaged over all competitor folds with their Boltzmann weights. Missed
contacts i, j in the prediction have large c̄ij values, and correspond to the center of the fold, i = 24. Red squares locate false
positives.
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FIG. I: Structure SC . Top. Comparison between inferred and energetic couplings (only one over 50 points are shown); red
symbols corresponds to pairs of sites in contact, blue symbols to pairs of sites that are not in contact. Middle. Pressures λij

vs. cij − c̄ij . The classes UN, SN, CC and NN were defined according to the closest competitor structure of SC , i.e. with
the smallest effective gap ∆(S|SA), structure SE , see Fig. K. Bottom. Lower triangle: contact map cij shown with full blue
squares. True and false positives predicted from 28 top FAPC scores with the ACE method are shown with, respectively, green
and red dots. Upper triangle: contact map c̄ij averaged over all competitor folds. Red squares locate false positives.
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FIG. J: Structure SD. Top. Comparison between inferred and energetic couplings (only one over 50 points are shown); red
symbols corresponds to pairs of sites in contact, blue symbols to pairs of sites that are not in contact. Middle. Pressures
λij vs. cij − c̄ij . Structure SD has several close competitors, see Fig. G; we have thus retained the five structures with the
five smallest effective gaps ∆(S|SD). We define SN the set of contact pairs i, j such that the average contact map on this 5
structures only is larger than 0.4, the other contacts being pooled into UN. Bottom. Lower triangle: contact map cij shown
with full blue squares. True and false positives predicted from 28 top FAPC scores with the ACE method are shown with,
respectively, green and red dots. Upper triangle: contact map c̄ij averaged over all competitor folds. Red squares locate false
positives.
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FIG. K: Structures SE and SG (from top to down), which are the closest competitors to, respectively, SC and SA.
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FIG. L: Comparison between inferred and energetic couplings when MSA sampling parameters are varied for structure SB ,
either by changing the pool of competing structures or by modifying the sampling temperature. Solid lines are the prediction
of the analytical calculation of the average pressure (see Eq. [3] of the main paper), see Table A. Linear fits give slopes of 2.23,
2.76, 1.28 and 1.89 for, respectively, rand, far, close and β = 10.
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IV. CONCENTRATION OF SEQUENCE DISTRIBUTION DUE TO GAUSSIAN INFERENCE

We now illustrate on two very simple examples the biases introduced by the Gaussian distribution PG (5). For the
sake of simplicity, we consider only the case of amino acids taking q = 2 values, but our results are qualitatively valid
for generic q.

A. Case of a single amino acid

We consider first the case of a single amino acid (sequence of length unity), taking one of two values, say, a = 0
with frequency f0 and a = 1 with frequency f1 = 1 − f0. It is natural to choose the zero-sum gauge, in which the
sum over all lines and all columns of the correlation and coupling matrices is zero. The covariance matrix and the
coupling matrix (within the mean field approximation) are

ĉ = f0(1− f0)×
(

1 −1

−1 1

)
, Ĵ =

1

2f0(1− f0)
×
(

1 −1

−1 1

)
. (18)

Inserting this expression in Eq. (5), we obtain the probabilities of the two amino acids within the Mean-Field approx-
imation:

PG(a = 0) =
ef0/(1−f0)

e(1−f0)/f0 + ef0/(1−f0)
and PG(a = 1) =

e(1−f0)/f0

e(1−f0)/f0 + ef0/(1−f0)
. (19)

We plot the probability of state a = 0 as a function of its ‘true’ value f0 in Fig. M, left. We observe that the Gaussian
approximation recovers correctly the unbiased case (PG = 1

2 if f0 = 1
2 ), but strongly overestimates the bias in the

true frequency otherwise. In other words, the Gaussian distribution is strongly concentrated around the consensus
amino acid, see entropies plotted Fig. M, right.

B. Case of a sequence with two amino acids

FIG. M: Left. The continuous line shows the probability that a single amino acid take one out of two possible states in the
Gaussian approximation (y–axis), see Eq. (19) vs. its true value (x–axis). The dashed line is x = y. Right. Entropies of the
Gaussian (full line) and true (dashed line) distributions.

We now consider the case of a two amino-acid sequence, a1 and a2, each of which take two possible values, 0 or 1.
The probabilities of the four possible configuration of the sequence A = (a1, a2) are given by

f(0, 0) =
1

Z
, f(0, 1) = f(1, 0) =

eh

Z
, f(1, 1) =

e2h+J

Z
where Z = 1 + 2 eh + e2h+J . (20)

When the coupling J is different from zero the two amino acids covary. The Gaussian distribution can be easily
computed for this simple system. We do not reproduce the formulas here, but rather plot the entropy of the Gaussian
distribution as a function of the correlation c between the amino-acids value,

c = f(1, 1)− f(1, 0)f(0, 1) , (21)
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FIG. N: Entropy of the Gaussian (full line) and true (dashed line) distributions for f0 = 0.2 (left) and f0 = 0.5 (right) vs.
correlation c between the amino-acid values, see Eq. (21). The curves end up at the maximal and minimal possible values of c
given f0. For c = 0 the two amino acids are uncoupled and the entropies coincides with the values shown in Fig. M, right.

and compare it to the one of the true distribution. Results are shown in Fig. N for two values of f0 = f(1, 0) = f(0, 1).
Again, as in the single-amino acid case, we find that the entropy of the Gaussian approximation is always smaller
than the one of the true distribution. This proves that the Gaussian distribution is more concentrated than the true
distribution.
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