Supporting Information

Targeted high resolution ion mobility separation coupled to ultra-high resolution

mass spectrometry of endocrine disruptors in complex mixtures

Paolo Benigni¹; Christopher J. Thompson²; Mark E. Ridgeway²,

Melvin A. Park², and Francisco Fernandez-Lima^{1,3*}.

¹ Department of Chemistry and Biochemistry, Florida International University, Miami, USA

² Bruker Daltonics Inc., Billerica, Massachusetts, USA

³Biomolecular Sciences Institute, Florida International University, Miami, FL 33199

Table of Contents:

1- Additional details on the Methods

2- Figure S1. Relative abundance of the oxygen containing series (CxHyO1-15) identified in the SRFA sample.

3- Figure S2. Double Bond Equivalents (DBE) as a function of the carbon number for the oxygen containing series ($CxHyO_{1-15}$) identified in the SRFA sample.

4- Table S1. Candidate structures geometry and atomic charges for the EDC targeted compounds.

5- References

METHODS

Ion Mobility Spectrometry – Mass Spectrometry Separation

The reduced mobility, K_0 , of an ion in a TIMS cell is described by:

$$K_0 = \frac{v_g}{E} \frac{n}{n_o} = \frac{A}{(V_{elution} - V_{base})}$$
(1)

where v_g , E, n_0 , $V_{elution}$ and V_{base} are the velocity of the gas, applied electric field, standard gas density, elution and base voltages, respectively. The constant A can be determined using calibration standards of known reduced mobilities.

Reduced mobility values (K₀) were correlated with CCS (Ω) using the equation:

$$\Omega = \frac{(18\pi)^{1/2}}{16} \frac{ze}{(k_B T)^{1/2}} \left[\frac{1}{m_1} + \frac{1}{m_b} \right]^{1/2} \frac{1}{K_0} \frac{1}{N^*}$$
(3)

where z is the charge of the ion, $k_B^{}$ is the Boltzmann constant, N^* is the number density and $m_I^{}$ and $m_b^{}$ refer to the masses of the ion and bath gas, respectively. ¹

Theoretical Calculations

Candidate structures were proposed for each molecular ion observed in the IMS-FT-ICR MS experiments. The initial pool of candidate structures was obtained using serial molecular dynamics simulations of annealing and geometry optimization cycles in a NVT thermostat (equivalent to the approach described in ref²) using AMBER03 force field in YASARA software. In particular, the NVT thermostat was set to recreate the IMS cell experiment; the simulation box contained the molecular ion of interest with bath and dopant gas molecules. Final structures were optimized at the DFT/B3LYP/6-31G(d,p) level using Gaussian software.³

Vibrational frequencies were calculated to guarantee that the optimized structures correspond to a real minima in the energy space and zero-point energy corrections were applied to calculate the relative stability between the structures. Theoretical ion-neutral collision cross sections were calculated using MOBCAL ^{4,5} and IMoS (v 1.04b) ⁶⁻⁸ software for nitrogen as a bath gas at ca. 300K. In the IMoS calculations, 100 total rotations were performed using the diffuse hard sphere scattering method with a Maxwell distribution. Partial atomic charges were calculated using the Merz-Singh-Kollman scheme constrained to the molecular dipole moment. ^{9,10} All optimized geometries and partial atomic charges are provided in the supporting information.

Carbon Number

Table S1. Candidate structures geometry and atomic charges for the EDC targeted compounds.

hexestrol

Atom		Coordinates		Partial Charges
С	0.8034	2.15838	2.24896	-0.108
С	-0.21698	3.37566	-1.59239	-0.19335
0	4.8143	-2.37175	0.16052	-0.58302
С	1.53285	0.11356	-0.51033	0.1909
С	2.74572	0.63684	-0.04164	-0.25453
С	1.41577	-1.24955	-0.77242	-0.25405
С	3.82829	-0.21481	0.15241	-0.19728
С	2.4834	-2.10793	-0.55404	-0.24588
С	3.70626	-1.58804	-0.10714	0.33254
С	0.37166	1.02882	-0.7567	-0.11688
С	-0.6334	1.14454	0.43539	0.0906
0	-5.18129	-2.17482	-0.21793	-0.85452
С	-4.03312	-1.4351	-0.06098	0.50131
С	-4.19282	-0.03789	-0.06441	-0.18143
С	-2.76328	-2.00894	0.10471	-0.21694
С	-3.07505	0.76602	0.0895	-0.3696
С	-1.65919	-1.18418	0.27951	-0.39997
С	-1.79769	0.20792	0.24294	0.15352
С	0.87728	2.43308	-1.15482	0.25519
С	-0.00855	0.95028	1.82994	0.00863
Н	-0.17632	0.60017	-1.63563	0.02301
Н	-1.04883	2.19181	0.39931	0.0272
Н	1.3658	1.98634	3.17437	0.00238
Н	1.54628	2.38337	1.4554	0.02363
Н	0.18808	3.05168	2.39506	0.00295
Н	-0.79084	2.98863	-2.43923	0.0401
Н	-0.93574	3.52604	-0.76616	0.02962
Н	0.17098	4.36532	-1.86486	0.01117
Н	4.5845	-3.26623	-0.06084	0.38571
Н	2.79821	1.71399	0.20467	0.13639
Н	0.4566	-1.64321	-1.14255	0.16813
Н	4.75423	0.19555	0.56934	0.13926
Н	2.37686	-3.16523	-0.81444	0.1224
Н	-5.1733	0.40376	-0.28478	0.09234
Н	-2.63893	-3.09578	0.15073	0.08216
Н	-3.15793	1.85975	0.01296	0.10605
Н	-0.64955	-1.62231	0.35621	0.17303
Н	1.63604	2.33815	-1.9592	-0.0789
Н	1.43387	2.86084	-0.28286	-0.06256
Н	0.66424	0.0692	1.79637	0.02509
Н	-0.77556	0.69885	2.58441	-0.00641

				Partial
Atom		Coordinates		Charges
0	0.04883	0.0121	-0.01332	-0.70981
С	0.02021	-0.0005	1.41582	0.43585
С	1.39989	-0.00471	2.07929	-0.37502
С	1.06723	0.28389	3.54576	0.12247
С	-0.04325	1.3621	3.48955	-0.02663
С	-0.77078	1.16527	2.10186	0.2388
С	-0.6833	2.45003	1.26056	-0.35231
С	-2.24258	0.77119	2.32073	-0.02242
С	-3.02893	1.74555	3.21893	-0.04844
С	-2.19706	2.29923	4.41389	0.23056
С	-3.03682	2.59354	5.65075	-0.34997
С	-4.28218	3.24527	5.53244	-0.0108
С	-5.05333	3.60151	6.62658	-0.51027
С	-0.99825	1.37092	4.69583	0.04208
С	-0.30212	1.77913	5.99718	-0.07501
С	-1.25462	1.62917	7.18442	0.02157
С	-2.58575	2.32847	6.96122	0.17201
С	-3.35124	2.68446	8.06997	-0.53202
С	-4.63464	3.33601	7.98515	0.75933
0	-5.32805	3.65268	9.00102	-0.82494
Η	0.46141	0.83509	-0.29709	0.37772
Η	-0.48326	-0.9425	1.65551	0.01289
Η	1.93682	-0.9433	1.91609	0.07261
Η	2.01365	0.80336	1.65842	0.06573
Η	0.68279	-0.62535	4.0246	-0.04193
Η	1.93498	0.60562	4.12584	-0.00845
Η	0.44734	2.34433	3.46794	-0.01749
Η	-1.20288	2.3395	0.30335	0.06274
Η	-1.13929	3.28702	1.79337	0.07455
Н	0.35801	2.73313	1.06033	0.0474
Н	-2.73919	0.65812	1.34911	-0.02005
Н	-2.25963	-0.22349	2.78074	-0.04855
Н	-3.41475	2.57823	2.62264	0.00963
H	-3.90827	1.22642	3.61086	0.00233
H	-1.74775	3.24987	4.07204	-0.04135
H	-4.65788	3.48835	4.53877	0.05393
H	-6.009	4.10159	6.48661	0.12489
H	-1.38048	0.34858	4.84231	0.00823
H	0.60021	1.17566	6.15889	-0.0223
H	0.02498	2.82511	5.91218	0.00443
H	-1.42348	0.55669	7.36411	-0.01613
H	-0.78717	2.01686	8.09633	0.00054
H	-2.97814	2.46654	9.06965	0.11362

 α -estradiol

	Atom		Coordinates		Partial Charges
	С	0.06363	0.01932	0.04499	-0.32861
	С	0.02513	-0.00237	1.59253	0.44587
	С	1.49503	0.02355	2.07974	-0.28817
	С	-0.66097	-1.26344	2.13768	0.0274
	С	-0.85368	-1.42056	3.52668	-0.17188
	С	-1.43697	-2.54946	4.07914	-0.43208
•	С	-1.89724	-3.66433	3.27861	0.70566
	С	-1.69266	-3.47224	1.86297	-0.39056
	С	-1.10419	-2.32845	1.333	-0.2722
	0	-2.42975	-4.70344	3.77598	-0.81462
	С	-0.73907	1.26477	2.03276	0.05477
	С	-2.14195	1.29103	1.9498	-0.20249
	С	-2.88173	2.42279	2.27544	-0.23879
	С	-2.22727	3.57516	2.71443	0.42191
	С	-0.84037	3.57804	2.8187	-0.40027
	С	-0.11125	2.43273	2.47586	-0.15015
	0	-2.99964	4.67533	3.03757	-0.60259
	Н	0.54567	0.93865	-0.30321	0.04047
	Н	0.63089	-0.83177	-0.34303	0.06067
	Н	-0.94079	-0.01724	-0.38336	0.0446
	Н	1.55347	0.0863	3.16889	0.02942
	Н	1.9827	-0.9059	1.77643	0.04747
	Н	2.06454	0.85816	1.65156	0.02636
	Н	-0.54491	-0.61924	4.19796	0.09518
	Н	-1.5691	-2.62429	5.15613	0.11752
	Н	-2.02111	-4.26996	1.20057	0.10107
	Н	-0.99117	-2.27596	0.25304	0.12381
	Н	-2.66078	0.38801	1.647	0.13939
	Н	-3.96454	2.41908	2.21062	0.15299
	Н	-0.32117	4.46737	3.17079	0.14619
	Н	0.96736	2.47124	2.5709	0.12542
	Н	-2.41675	5.37531	3.34904	0.38623

bisphenol A

17-α-	Ethyny	lestradiol
-------	--------	------------

					Partial
	Atom		Coordinates		Charges
	0	-6.31537	-0.18184	-0.16129	-0.59389
	С	-4.94435	-0.28703	-0.03928	0.43473
	С	-4.19663	0.88466	-0.05573	-0.35196
	С	-2.80173	0.85445	0.06373	0.15109
	С	-2.12829	-0.3771	0.20345	-0.10616
	С	-2.90867	-1.54159	0.22159	-0.05672
	С	-4.29678	-1.51284	0.10194	-0.43044
	С	-0.61003	-0.43838	0.38229	0.02366
	С	0.04981	-1.70492	-0.20717	0.03103
\$	С	1.57611	-1.7413	0.00901	-0.27009
<	С	2.26078	-0.46364	-0.48605	0.91017
	С	1.576	0.7526	0.17922	0.01049
	С	2.50637	1.94114	-0.13682	-0.22884
	С	3.92548	1.31021	-0.21393	0.07504
	С	3.75045	-0.23694	0.01525	-0.21566
	С	3.91077	-0.58534	1.42084	0.49672
	С	3.9238	-0.79025	2.65084	-1.09294
	0	4.7174	-0.9886	-0.77094	-0.71367
	С	0.08243	0.85051	-0.12667	0.07903
	С	-0.6018	2.06817	0.50009	0.04711
	С	-2.0504	2.17318	0.02108	-0.1237
	С	2.21129	-0.41162	-2.02854	-0.64517
	Н	-0.41767	-0.46814	1.46607	0.01222
	Н	1.67255	0.56862	1.25637	0.00821
	Н	-0.06806	0.91783	-1.21589	-0.04855
	Н	-6.69499	-1.06558	-0.11813	0.38978
	Η	-4.71419	1.83358	-0.16028	0.16244
	Η	-2.42669	-2.5048	0.33658	0.10935
	Η	-4.86732	-2.4386	0.12138	0.15244
	Η	-0.37825	-2.59809	0.25859	0.00509
	Η	-0.20035	-1.77122	-1.27447	-0.04177
	Н	1.80489	-1.84865	1.07407	0.04333
	Η	1.99513	-2.62131	-0.49305	0.00619
	Η	2.23513	2.41593	-1.08804	0.01384
	Н	2.44595	2.71542	0.632	0.03501
	Η	4.37796	1.49493	-1.19665	-0.03201
	Н	4.60538	1.70863	0.53731	-0.00291
	Η	4.70365	-0.63194	-1.66631	0.40495
	Н	-0.56812	1.97709	1.59322	-0.01649
	Η	-0.06473	2.98724	0.24549	-0.01475
	Η	-2.058	2.53974	-1.01476	0.03362
	Н	-2.6008	2.91919	0.60571	0.02818
	Н	2.73125	-1.27978	-2.44488	0.0985
	Н	1.18711	-0.44036	-2.40875	0.1125
	Н	2.67632	0.48995	-2.43854	0.11098

Atom		Coordinates	Partial Charges		
0	-0.02394	-0.08503	-0.00103	-0.54838	
С	-0.00862	-0.03456	1.21123	0.46002	
С	1.25924	-0.01154	2.08071	0.39826	
С	2.13211	1.20697	1.70867	-0.12628	
С	3.35511	1.36362	2.63859	0.04215	
С	3.08468	0.94533	4.11289	0.09068	
С	3.97426	1.66656	5.11795	-0.2525	
С	5.35398	1.8247	4.86946	-0.06731	
С	6.22051	2.41155	5.77646	-0.48002	
С	5.77523	2.90492	7.06118	0.76769	
0	6.55306	3.44841	7.90457	-0.82778	
С	4.36469	2.71222	7.28912	-0.55554	
С	3.50181	2.12363	6.36682	0.1763	
С	2.02916	1.99699	6.72313	-0.00753	
С	1.31895	0.90924	5.91655	-0.09923	
С	1.58375	1.09493	4.42005	-0.01619	
С	0.73755	0.14396	3.54777	0.10156	
С	-0.74269	0.59471	3.41994	-0.03949	
С	-1.24414	0.0001	2.10113	-0.29271	
С	2.01312	-1.33166	1.82442	-0.34293	
Н	2.43996	1.12583	0.66181	-0.00129	
Н	1.51217	2.10909	1.77141	-0.00398	
Н	4.19594	0.78724	2.24227	-0.00338	
Н	3.67363	2.4099	2.62399	-0.01412	
Н	3.29523	-0.13649	4.18392	-0.01351	
Н	5.76492	1.46634	3.92591	0.06935	
Н	7.27713	2.51435	5.54042	0.11656	
Н	3.9721	3.05576	8.24503	0.12084	
Н	1.92909	1.79934	7.79603	0.01217	
Н	1.51948	2.95553	6.54385	-0.00496	
Н	1.68666	-0.0807	6.22081	0.02165	
Н	0.24081	0.92563	6.12375	-0.00678	
Н	1.29792	2.12826	4.16857	0.02054	
Н	0.75385	-0.84864	4.01801	-0.0599	
Н	-1.34276	0.29076	4.27982	0.02333	
Н	-0.78741	1.68838	3.36962	0.00463	
Н	-2.06338	0.53665	1.61823	0.0876	
Н	-1.56969	-1.04075	2.23342	0.07626	
Н	2.27349	-1.41618	0.76587	0.06878	
Н	2.92859	-1.38397	2.41581	0.06163	
Н	1.39516	-2.1956	2.09224	0.04378	

(E)-diethylstilbestrol

Atom	Coordinates			Partial Charges
0	0.35169	0.11722	0.00505	-0.79451
С	0.32226	0.10512	1.26863	0.77529
С	1.06025	1.04425	2.08879	-0.47607
С	1.0055	1.0325	3.46875	-0.04206
С	0.23684	0.09375	4.20139	-0.09809
С	0.19769	0.07428	5.67122	-0.03201
С	0.11077	1.19439	6.45871	-0.33393
С	0.29771	1.14449	7.93657	0.20651
С	1.49658	0.6923	8.52076	-0.25161
С	1.69862	0.68211	9.89952	-0.2115
С	0.69519	1.14563	10.74921	0.42217
0	0.93416	1.12228	12.11084	-0.61866
С	-0.49814	1.62081	10.20655	-0.51349
С	-0.68534	1.61933	8.82379	0.05882
С	-0.27337	2.57724	5.92383	0.33861
С	-1.68138	2.64623	5.30687	-0.16906
С	0.18003	-1.31596	6.31485	0.11831
С	-1.20429	-1.74644	6.83327	-0.01346
С	-0.45436	-0.86677	3.41723	-0.0674
С	-0.43531	-0.86211	2.03571	-0.47209
Н	1.69287	1.76166	1.57178	0.11777
Н	1.62139	1.74198	4.01442	0.0818
Н	2.29684	0.35496	7.87049	0.13305
Η	2.63423	0.33314	10.32375	0.14521
Н	0.15897	1.47146	12.56242	0.40582
Н	-1.28618	1.98714	10.86167	0.16107
Н	-1.62588	1.98701	8.42668	0.09097
Н	-0.21295	3.29389	6.74966	-0.11902
Н	0.44396	2.93117	5.18079	-0.03263
Н	-1.90217	3.66098	4.95585	-0.00267
Н	-1.76464	1.96763	4.4562	0.06269
Η	-2.44812	2.36711	6.03789	0.00441
Н	0.53189	-2.04383	5.58023	-0.04081
Η	0.88375	-1.36139	7.14832	-0.00181
Η	-1.16952	-2.76507	7.23759	-0.02402
Η	-1.55025	-1.08088	7.62856	-0.02695
Η	-1.95132	-1.7259	6.03506	-0.0091
Н	-1.05118	-1.62765	3.91534	0.11356
Н	-0.99735	-1.60633	1.47685	0.11491

(Z)-diethylstilbestrol

Atom	Coordinates			Partial Charges
0	-3.88502	-3.2652	-0.56398	-0.78584
С	-3.19784	-2.21287	-0.4369	0.74015
С	-1.97769	-1.96663	-1.1808	-0.38152
С	-1.22621	-0.82173	-1.02247	-0.11381
С	-1.59057	0.21965	-0.12925	-0.09566
С	-0.79002	1.43687	0.02821	0.04389
С	0.58264	1.50073	-0.05229	-0.47061
С	1.47904	0.32143	0.05923	0.41532
С	2.70728	0.24279	-0.62706	-0.31918
С	3.59325	-0.82466	-0.46256	-0.25034
С	3.27521	-1.85558	0.41394	0.41119
0	4.17016	-2.90178	0.55197	-0.6106
С	2.07373	-1.80183	1.12612	-0.33843
С	1.19927	-0.73701	0.94855	-0.2648
С	1.29835	2.83894	-0.22171	0.2861
С	1.34015	3.36324	-1.67135	-0.17192
С	-1.58421	2.72319	0.27353	0.12693
С	-1.58146	3.19444	1.74009	-0.11635
С	-2.8083	0.01967	0.57391	-0.13293
С	-3.56599	-1.12858	0.4505	-0.436
Η	-1.67704	-2.72406	-1.90033	0.09828
Н	-0.33121	-0.69787	-1.62484	0.12541
Η	2.98332	1.02291	-1.32736	0.16927
Н	4.52426	-0.86489	-1.01839	0.14418
Н	3.77027	-3.56603	1.12278	0.38715
Н	1.81739	-2.59806	1.82176	0.14722
Н	0.27057	-0.72413	1.50462	0.19181
Н	0.83598	3.60694	0.40463	-0.02513
Н	2.3252	2.74571	0.14664	-0.06949
Н	1.8718	4.3212	-1.73116	-0.00207
Н	1.84256	2.65801	-2.33917	0.02394
Н	0.33029	3.51108	-2.0642	0.03609
Н	-1.205	3.53227	-0.35728	-0.00316
Н	-2.6168	2.5629	-0.04347	-0.02995
Н	-2.1707	4.11159	1.85857	0.00113
Н	-2.00963	2.43301	2.3972	0.00981
Н	-0.56717	3.39668	2.09598	0.0148
Н	-3.15376	0.78356	1.26679	0.13667
Н	-4.48129	-1.24729	1.02504	0.10846

References:

(1) McDaniel, E. W.; Mason, E. A. *Mobility and diffusion of ions in gases*; John Wiley and Sons, Inc., New York: New York, 1973.

(2) Fernandez-Lima, F. A.; Wei, H.; Gao, Y. Q.; Russell, D. H. J. Phys. Chem. A 2009, 113, 8221.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. In *Gaussian, Inc.* Wallingford CT, 2004.

(4) Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. *Analytical Chemistry* **2011**, *84*, 1026.

(5) Kim, H. I.; Kim, H.; Pang, E. S.; Ryu, E. K.; Beegle, L. W.; Loo, J. A.; Goddard, W. A.; Kanik, I. *Anal. Chem.* **2009**, *81*, 8289.

(6) Larriba, C.; Hogan, C. J. *The Journal of Physical Chemistry A* **2013**, *117*, 3887.

(7) Larriba, C.; Hogan Jr, C. J. Journal of Computational Physics 2013, 251, 344.

(8) Ouyang, H.; Larriba-Andaluz, C.; Oberreit, D.; Hogan, C., Jr. *Journal of The American Society for Mass Spectrometry* **2013**, *24*, 1833.

(9) Singh, U. C.; Kollman, P. A. Journal of Computational Chemistry 1984, 5, 129.

(10) Besler, B. H.; Merz, K. M.; Kollman, P. A. Journal of Computational Chemistry **1990**, *11*, 431.