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General Experimental. Tetrahydrofuran (THF), N,N-dimethylformamide (DMF), and 

dichloromethane (CH2Cl2) were obtained by passing the previously degassed solvents 

through an activated alumina column. Reagents were purchased at the highest 

commercial quality and used without further purification, unless otherwise stated. 

NiCl2•glyme was purchased from Strem. Yields refer to chromatographically and 

spectroscopically (
1
H NMR) homogeneous material, unless otherwise stated. Reactions 

were monitored by GC/MS, LC/MS, and thin layer chromatography (TLC). TLC was 

performed using 0.25 mm E. Merck silica plates (60F-254), using short-wave UV light as 

the visualizing agent, and phosphomolybdic acid and Ce(SO4)2 or KMnO4 and heat as 

developing agents. NMR spectra were recorded on Bruker DRX-600, DRX-500, and 

AMX-400 instruments and are calibrated using residual undeuterated solvent (CHCl3 at 

7.26 ppm 
1
H NMR, 77.16 ppm 

13
C NMR, internal calibration for 

19
F NMR). The 

following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, br = broad. Column chromatography was performed 

using E. Merck silica gel (60, particle size 0.043–0.063 mm), and preparative TLC was 

performed on Merck silica plates (60F-254). High-resolution mass spectra (HRMS) were 

recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization time 

of flight reflectron experiments. Melting points were recorded on a Fisher-Johns 12-144 

melting point apparatus and are uncorrected.  The UCSD small molecule X-ray facility 

collected and analyzed all X-ray diffraction data.   

 

Handling of [Ni] catalysts.   

All Ni catalysts were handled open to air on the bench top, and the bottles were not stored 

under inert atmosphere. 
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Mechanistic investigations. 

 

 
 

Figure S1. Mechanistic experiments. 

 

Discussion: 

The fact that an enantioenriched redox-active ester loses chiral information (Figure S1A) 

and a cyclopropylacetic acid derivative ring-opens under the reaction conditions (Figure 

S1C) suggest the intermediacy of radical species during the catalytic cycle. Similar to the 

protocol for the arylation of redox-active esters,(21) we suggest a possible mechanism in 

which the Ni catalyst is responsible for the generation of such radicals.  

As outlined in Figure S1B, a pendant olefin substrate was designed and tested under the 

reaction conditions with arylzinc reagents and alkylzinc reagents in separate experiments. 

As a result, 5-exo-trig cyclization product was observed when phenylzinc chloride was 

used as coupling partner (SI-4:SI-5, 2.7:1). However, when an alkylzinc reagent was 

used instead, the acyclic product was obtained exclusively. Based on the distinct 

outcomes with arylzinc versus alkylzinc reagents, it is hypothesized that with alkylzinc 

reagents the radical generation and subsequent radical trapping occurs within the solvent 

cage. It is believed that the cationic Ni(II)-Ph species would be far more stable than the 

Ni(II)-alkyl species, thereby allowing some of the carbon-centered radical to escape and 
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cyclize in a 5-exo-trig fashion. On the other hand, when the cationic Ni(II)-alkyl complex 

is formed, the carbon-centered radical reacts at much faster rates with the Ni(II)-alkyl 

complex, preventing the radical from cyclizing. The fact that the cyclopropyl radical can 

rearrange but a 5-exo-trig cyclization does not occur is explained by the kinetics 

associated with the opening of a cyclopropyl ring (8.6 x 10
7 

s
-1

) (35) and 5-exo-trig 

cyclizations (2 x 10
5
 s

-1
). (36)  

  

 
 

Figure S2. Proposed catalytic cycle for the Ni-catalyzed decarboxylative alkyl-alkyl 

cross-coupling. 

 

With the results obtained from the above experiments, a possible mechanism for the Ni-

catalyzed decarboxylative cross-coupling with alkylzinc is postulated in Figure S2. The 

cycle would start by the slow generation of Ni(I)-X intermediates (I) which would 

quickly transmetallate with an alkylzinc species delivering the Ni(I) species II. This 

species would then undergo oxidative addition with the redox active ester via SET, thus 

generating a carbon-centered radical. A short-lived radical species would not leave a 

possible solvent cage before recombining with the highly electrophilic cationic alkyl-

Ni(II) species, forming Ni(III) complex III. Reductive elimination would deliver the 

desired product and regenerate the Ni(I) active species, thus closing the catalytic cycle.  
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Radical evidence in the conjunctive coupling. 

The intermediacy of radical species in the Ni-catalyzed alkyl-alkyl cross coupling of 

redox-active esters is further evidenced by the possibility of conducting the conjunctive 

coupling with tertiary redox-active esters, a radical acceptor, and phenylzinc chloride. 

However, an experiment to support the radical nature of the three-component reaction 

was designed (Figure S3A). When olefinic redox-active ester SI-11 was reacted with 

benzyl acrylate, phenylzinc chloride in the presence of Ni catalyst, cyclopentane SI-12 

was obtained in excellent yields.  

 

 
Figure S3. Proposed catalytic cycle for the cascade 3-component Ni-catalyzed 

conjunctive coupling. 
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A mechanistic proposal for the cascade conjunctive coupling is depicted in Figure S3B. 

The tertiary radical (formed after the step-wise oxidative addition via SET as before) 

undergoes a radical 1,4-addition to benzyl acrylate. Such a radical will then react with the 

pendant olefin generating a syn-substituted 5-member ring with a reactive primary 

radical.(34) Such radical can now be trapped by the cationic Ph–Ni(II) which further 

delivers the product. This result stresses the fact that cationic Ph–Ni(II) are stable enough 

of a species to allow the radical to undergo a 5-exo-trig cyclization before it  recombines 

with the Ph-Ni(II) complex.    
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Optimization of Reaction Parameters (Table SI-1) 
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Optimization of Catalyst Loading and Concentration (Table SI-2). 
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General Procedure for the synthesis of Redox-active Esters (General Procedure A). 

 

Redox-active esters were prepared according to the previously reported procedure.(21) In 

short, a round-bottom flask or culture tube was charged with (if solid) carboxylic acid 

(1.0 equiv), nucleophile (N-hydroxy-phthalimide or N-hydroxy-tetrachlorophthalimide 

(37) (1.0 equiv), and DMAP (0.1 equiv). Dichloromethane was added (0.1 – 0.2 M), and 

the mixture was stirred vigorously. Carboxylic acid (1.0 equiv) was added via syringe (if 

liquid).  DIC (1.0 equiv) was then added dropwise via syringe, and the mixture was 

allowed to stir until the acid was consumed (determined by TLC). Typical reaction times 

were between 0.5 h and 12 h. The mixture was filtered (over Celite, silica gel, or through 

a fritted funnel) and rinsed with additional CH2Cl2/Et2O. The solvent was removed under 

reduced pressure, and purification by column chromatography and recrystallization, if 

necessary, afforded the corresponding redox-active ester. 
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Graphical Supporting Information for the Synthesis of Redox-active Esters 

(General Procedure A) 

 

(Above) DIC, 1-tosylpiperidine-4-carboxylic acid, and N-hydroxy-tetrachlorophthalimide 

(DMAP not shown). 

 

(Left) 1-tosylpiperidine-4-carboxylic acid (Center) N-hydroxy-tetrachlorophthalimide 

(Right) DMAP. 

 

(Left) CH2Cl2. (Center) DIC in syringe. (Right) N-hydroxy-tetrachlorophthalimide in 

the flask. 
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(Left) Addition of DIC to reaction mixture. (Center) Reaction mixture after stirring for 2 

hours. (Right) TLC of reaction mixture (10:1 CH2Cl2: Et2O); top UV active spot is the 

desired product. 

 

 

 

(Left) Crude reaction mixture after reduction of solvent volume. (Center) Set up for 

column chromatography. (Right) Reaction mixture is loaded directly onto column. 
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(Left) Fractions from column chromatography. (Center) TLC of column fractions. 

(Right) Fractions with product were collected. 

 

 

 

(Left) Product after column chromatography. (Center) After addition of CH2Cl2 . (Right) 

The mixture is heated with a heat gun until all material solubilizes. 
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(Left) After heating. (Center) After addition of MeOH and cooling in cold room for 2 h.   

(Right) Filtration of the solid product. 

 

 

 

(Left) After filtration. The solid was washed with additional cold MeOH. (Center) The 

product was transferred to a vial. (Right) Drying under vacuum. 
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General Procedure for the preparation of alkyl zinc reagents from alkyl bromides. 

 

 

 

Two round-bottom flasks were flame-dried and allowed to cool under vacuum. Both 

flasks were then backfilled with argon from a balloon.  One flask was charged with Mg 

turnings (0.730 g, 30 mmol, 1.5 equiv) and I2 (approx. 0.050 g, 0.2 mmol, 0.02 equiv).  In 

the other flame-dried flask, alkyl bromide (1.0 equiv, 20 mmol) was dissolved in 

anhydrous THF (20 mL) to make a 0.5 M solution of the alkyl bromide in THF.  A small 

portion of the alkyl bromide solution (approx. 1 mL) was added to the Mg and I2, and the 

mixture was stirred.  The flask was heated gently with a heat gun until the dark brown 

color disappeared.  The rest of the alkyl bromide solution was added dropwise while the 

flask was heated with a heat gun.  After 1 hour, the resulting solution of Grignard reagent 

was titrated with I2 to afford Grignard reagents with titres typically ranging 0.3 – 0.44 M 

in THF.  To a separate flame-dried round-bottom flask, ZnCl2 (0.409 g, 1.0 M in THF, 3 

mmol) was added.  A portion of the solution of alkyl Grignard reagent (6 mmol) was 

added dropwise to the ZnCl2 solution, and the mixture was stirred for at least 10 min 

before use. The yield was assumed to be quantitative for this step.(38) On 0.1 mmol 

scale, the volume of dialkylzinc reagent solution used for the reaction was typically 

between 1.2 – 1.5 mL (corresponding to 0.2 mmol of dialkylzinc reagent). 
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Graphical Supporting Information for preparation of alkylzinc reagents from alkyl 

bromides. 

 

Part I. Alkyl Grignard Preparation 

 

 

(Left) Two round-bottom flasks under vacuum after flame-drying with a blowtorch. 

(Center) After cooling, one flask was charged with Mg turnings and I2. (Right) Flask 

containing Mg and I2 under Ar inert atmosphere. 

 

 

 

(Left) Round-bottom flask under Ar inert atmosphere. (Center) EtBr is taken up into a 

syringe. (Right) EtBr is added to the flask. 
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(Left) Addition of THF to EtBr (0.5 M). (Center) A portion of the EtBr solution was 

added to the Mg turnings and I2.  The mixture was gently heated with the heat gun until 

the I2 color disappeared. (Right) Dropwise addition of the entirety of the EtBr solution.  

The solution is periodically heated with the heat gun. 

 

 

 

(Left) Progression of addition of EtBr solution. Note the color change to a brown/grey 

solution. (Center) Grignard reagent after addition of EtBr solution. (Right) Close up 

photo of EtMgBr in THF. 
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Part II. Titration of alkyl Grignard reagent. 

 

 

 

(Left) A flame-dried culture tube is placed under inert Ar atmosphere. (Center) I2 (0.051 

g, 0.2 mmol) in 1.0 mL of THF. (Right) EtMgBr in THF. 

 

 

 

(Left) Start of titration. (Center, Right and Left) Progression of titration. (Right) End 

point of titration (disappearance of color). 
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Part III. Preparation of ZnCl2 solution. 

 

 

 

(Left) ZnCl2 was weighed and placed in a culture tube under vacuum. (Left Center) 

ZnCl2 was dried under vacuum with a blowtorch until it melts. (Right Center) After 

cooling, THF is added. (Right) After stirring all ZnCl2 is dissolved to make a 1.0 M 

solution in THF. 
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Part IV. Transmetallation of EtMgBr to ZnCl2. 

 

 

 

(Left) A flame-dried flask under inert Ar atmosphere. (Center) ZnCl2 solution in THF 

was added to the flask. (Right) The ZnCl2 solution was cooled to 0 °C in ice/water bath, 

and EtMgBr solution was added. 

 

 

 

(Left) Progression of addition of EtMgBr solution. (Center) After addition of EtMgBr. 

(Right) Et2Zn solution after stirring for 10 min at rt.  The solution was used at this point 

for the Ni-catalyzed sp
3
-sp

3
 cross-coupling reaction. 

 



 

 

S32 

 

General Procedure for the Ni-catalyzed cross-coupling reaction (General Procedure 

B).  

 

A culture tube was charged with redox-active ester (0.1 mmol, 1.0 equiv).  The tube was 

then evacuated and backfilled with argon from a balloon.  A solution of NiCl2•glyme (4.4 

mg, 0.02 mmol, 0.20 equiv) and ligand (bipy (L1) or di-tBuBipy (L2), 6.3 mg or 11 mg, 

respectively, 0.04 mmol, 0.4 equiv) in DMF (1.0 mL) was added.  The mixture was 

stirred for 5 minutes.  A solution of dialkylzinc (0.2 mmol, 2.0 equiv) in THF was added.  

The argon balloon was removed, and the culture tube was sealed with Teflon tape and 

electrical tape.  The resulting mixture was allowed to stir overnight (8 – 16 h) at rt.  The 

reaction mixture was quenched with 1M HCl (or half-saturated aqueous NH4Cl solution 

for acid sensitive substrates) and extracted with Et2O or EtOAc.  The organic layer was 

washed with water and brine and dried over MgSO4.  The organic layer was concentrated 

under vacuum by rotary evaporator in a water bath at 40 °C.  The crude product was 

purified by silica gel flash column chromatography or preparative TLC (PTLC) to yield 

the pure compound. 
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Graphical Supporting Information for the Ni-catalyzed cross-coupling reaction. 

Part I. Preparation of NiCl2•glyme/ligand stock solution. 

 

 

(Left) NiCl2•glyme and di-tBuBipy. (Center) The culture tube was evacuated and 

backfilled with argon from a balloon. (Right) Addition of DMF (anhydrous). 
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Part II. Ni-catalyzed cross-coupling reaction. 

 

 

 

(Left) Redox-active ester SI-22 in culture tube. (Center) The culture tube was evacuated 

and backfilled with argon from a balloon. (Right) Addition of NiCl2•glyme and di-

tBuBipy stock solution (1.0 mL). 

 

 

 

(Left) Before addition of dialkylzinc reagent. (Center) Addition of dialkylzinc reagent. 

(Right) After addition of dialkylzinc reagent. 
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(Left) After removal of balloon.  The tube was sealed with Teflon tape and electrical 

tape. (Center) After stirring for 8 hr. (Right) Dilution of reaction mixture with Et2O. 

 

 

 

 

 

(Left) Sat. NH4Cl (aq) was added. (Center) H2O was added. (Right) Reaction mixture 

after quench. 
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(Left) Extraction of aqueous layer with additional Et2O. (Center) Brine wash. (Right) 

Drying over MgSO4. 

 

 

 

(Left) Filtration of drying agent over optional silica gel pad. (Center) Concentrating the 

organic extracts. (Right) TLC (4:1 hexanes:EtOAc). Lane 1: Starting material redox-

active ester SI-22. Lane 2: Co-spot of starting material redox-active ester SI-22 and 

reaction mixture. Lane 3: Reaction mixture.  The desired product 31 is the dark-blue 

stained spot above the starting material spot.  

 

 

1  2   3 
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General Procedure for the Gram-Scale Ni-catalyzed cross-coupling reaction (4-

ethyl-1-tosylpiperidine, 3).  

 

The gram-scale procedure was minimally modified from General Procedure B.  A 

round-bottom flask was flame-dried and allowed to cool under vacuum.  The flask was 

then placed under inert Ar atmosphere via balloon.  Redox-active ester 1b (1.00 g, 1.8 

mmol, 1.0 equiv), NiCl2•glyme (0.077 g, 0.36 mmol, 0.2 equiv), and di-tBuBipy (0.188 

g, 0.72 mmol, 0.4 equiv) were added to the flask.  Anhydrous DMF (18 mL) was added, 

and the mixture was stirred for 5 min. The flask was placed in a room temperature water 

bath, freshly-prepared Et2Zn (solution in THF) was added, and the mixture was stirred at 

rt overnight.  The solution was cooled to 0 °C in an ice/water bath, and 1M HCl (aq.) was 

slowly added.  Et2O was added, and the mixture was transferred to a separatory funnel.  

The aqueous layer was extracted with Et2O.  The organic extracts were washed with brine 

and dried over MgSO4.  The drying agent was filtered, and the solvent was removed on a 

rotary evaporator.  The crude product was purified by silica gel flash column 

chromatography with gradient elution (10:1 to 6:1, hexanes:EtOAc). 
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Graphical Supporting Information for the Gram-Scale Ni-catalyzed cross-coupling 

reaction. 

 

 

 

(Left) Flask was flame-dried under vacuum. (Center) 4,5,6,7-tetrachloro-1,3-

dioxoisoindolin-2-yl 1-tosylpiperidine-4-carboxylate (1b). (Right) di-tBuBipy. 

 

 

 

 

(Left) NiCl2•glyme. (Center) Redox-active ester, NiCl2glyme, and di-tBuBipy in flask. 

(Right) Addition of DMF. 
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(Left) After addition of DMF. (Center) After 5 min of stirring. (Right) Addition of 

Et2Zn solution after placing the flask in a rt water bath. 

 

 

 

 

 

(Left) After stirring overnight at room temperature. (Center) The reaction mixture was 

cooled to 0 °C in an ice/water bath. (Right) Slow addition of 1M HCl (aq). 
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(Left) Quenched reaction mixture was transferred to a separatory funnel. (Center) 

Extraction with Et2O. (Right) Brine wash. 

 

 

 

 

 

 

(Left) Drying of organic layers. (Center) Filtration of drying agent. (Right) 

Concentration of organic layer. 
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(Left) TLC of reaction mixture (4:1 hexanes:EtOAc). Lane 1: Reaction mixture. Lane 2: 

Co-spot. Lane 3: Authentic product 3. (Center) Purification by column chromatography. 

(Right) Concentrating fractions containing pure 4-ethyl-1-tosylpiperidine (3). 

  

1    2     3 
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General Procedure for the in situ activation of carboxylic acids with HATU 

(General Procedure C). 

A culture tube was charged with carboxylic acid (0.1 mmol, 1.0 equiv) and HATU (1.0 

equiv).  The tube was then evacuated and backfilled with argon from a balloon. DMF (0.5 

mL) and Et3N (1.0 equiv) were added.  The mixture was stirred for 30 minutes.  A 

solution of NiCl2•glyme (0.2 equiv), and di-tBuBipy (0.4 equiv) in DMF (0.5 mL) was 

added, and the mixture was stirred for 5 min. A solution of dialkylzinc (0.2 mmol, 2.0 

equiv) in THF was then added.  The argon balloon was removed, and the culture tube was 

sealed with Teflon tape and electrical tape.  The resulting mixture was allowed to stir 

overnight (8 – 16 h) at rt.  The reaction mixture was quenched with 1M HCl (or half-

saturated aqueous NH4Cl solution for acid sensitive substrates) and extracted with Et2O 

or EtOAc.  The organic layer was washed with water and brine and dried over MgSO4.  

The organic layer was concentrated under vacuum by rotary evaporator in a water bath at 

40 °C.  The crude product was purified by silica gel flash column chromatography or 

preparative TLC (PTLC) to yield the pure compound. 
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Graphical Supporting Information for the in situ activation of carboxylic acids with 

HATU (General Procedure C). 

 

         

 

(Left) Biotin, Et3N, and HATU. (Right) Biotin and HATU in culture tube under Ar. 

 

 

 

(Left) Addition of DMF. (Center) Addition of Et3N. (Right) After addition of Et3N, 

mixture becomes homogenous. 
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(Left) Addition of NiCl2•glyme and di-tBuBipy in DMF. (Center) After addition of [Ni] 

and ligand. (Right) Before addition dialkylzinc. 

 

                            

 

(Left) Addition of dialkylzinc reagent. (Right) After addition of dialkylzinc reagent.  

Work up was performed as before. 
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General Procedure for the three-component Ni-catalyzed conjunctive cross-coupling 

reaction (General Procedure D).  

Part I. PhZnCl•LiCl Preparation. 

PhZnCl•LiCl was prepared in a manner similar to the report by Knochel and coworkers
 

(39, 40) and our previously reported procedure.(21) LiCl (0.663 g, 15.6 mmol, 1.25 

equiv.) was added to a round-bottom flask.  The flask was placed under vacuum and 

flame-dried.  Upon cooling the flask was backfilled with Ar from a balloon.  Magnesium 

turnings (0.760 g, 31 mmol, 2.5 equiv.) were added by quickly removing the septum, 

adding the magnesium turnings, and replacing the septum. Tetrahydrofuran (anhydrous, 

31.3 mL) was added, and the mixture was stirred vigorously for 5 min.  DIBAL–H (1.0 

M in THF, 0.2 mL, 0.01 equiv) was added via syringe, and the mixture was stirred 

vigorously for 5 min.  The flask was then cooled to 0 C in an ice/water bath, and 

bromobenzene was added (1.33 mL, 12.5 mmol, 1.0 equiv). The mixture was stirred at 0 

C for 1.5 hr.  ZnCl2  solution (1.0 M in THF, 12.5 mL, 12.5 mmol) was added to a 

separate flame-dried flask.  To this flask PhMgBr•LiCl was transferred via syringe.  

Often a white precipitate forms as the solution of PhMgBr•LiCl is added to the solution 

of ZnCl2, but the precipitate dissolves over the course of the addition.  After 10 minutes, 

the solution of PhZnCl•LiCl was titrated with I2. 
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Graphical Procedure PhZnCl•LiCl Preparation. 

 

        

 

(Left) Round-bottom flask, bromobenzene, LiCl, ZnCl2, and Mg turnings. (Right) Flame-

drying the flask and LiCl under vacuum. 

 

 

 

(Left) Flask under inert Ar atmosphere. (Center) Addition of Mg turnings. (Right) 

Addition of THF. 
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(Left) Addition of DIBAL-H. (Center) The reaction was cooled to 0 ºC. (Right) 

Addition of bromobenzene. 

 

 

 

(Left) ZnCl2. (Center) Flame-drying ZnCl2 until the solid melts. (Right) After flame-

drying, under inert Ar atmosphere. 
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(Left) Addition of THF to ZnCl2. (Center) PhMgBr•LiCl. (Right) Addition of 

PhMgBr•LiCl to ZnCl2 solution. 

 

 

(Above) PhZnCl•LiCl in THF. 
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Part II. Three-component Ni-catalyzed conjunctive cross-coupling reaction. 

An oven-dried test tube containing a stirring bar was charged with NiCl2·glyme (0.2 eq), 

di-tBuBipy (0.4 equiv) and redox-active N-hydroxyphthalimide ester (1.0 equiv). The 

tube was fitted with a septum and sealed with parafilm. The air in the tube was 

exchanged with argon using an argon balloon. DMF was then added via syringe and the 

mixture stirred for 2 minutes at rt. Benzyl acrylate (2.5 equiv) was added via microliter 

syringe. Then, PhZnCl•LiCl in THF (3.0 equiv) was added under argon at once, and the 

mixture was stirred for 8 h at rt. The mixture was quenched with half sat. NH4Cl. The 

resulting mixture was extracted with EtOAc. The separated organic layer was washed 

with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure to 

yield the crude product, which was purified by silica gel flash column chromatography or 

PTLC. 
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Graphical Supporting Information for the three-component Ni-catalyzed 

conjunctive cross-coupling reaction (General Procedure D). 

 

 

 

(Left) PhZnCl•LiCl (solution in THF), redox-active NHPI-ester, di-tBuBipy, 

NiCl2·glyme, and benzyl acrylate (Center) Tube containing the redox-active ester under 

for inert Ar. (Right) Addition of benzyl acrylate by microliter syringe. 

 

 

 

(Left) Addition of DMF. (Center) After 2 min of stirring. (Right) Before addition of 

PhZnCl•LiCl (solution in THF). 
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(Left) Addition of PhZnCl•LiCl. (Center) After addition of PhZnCl•LiCl. (Right) After 

stirring for 12 hr. 

 

 

 

(Left) Quench with half-saturated NH4Cl (aq). (Center) After quench. (Right) Quenched 

reaction mixture was transferred to a separatory funnel and extracted with EtOAc, dried, 

and concentrated. 
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(Above) TLC of reaction. Lane 1: Reaction mixture. Lane 2: Co-spot. Lane 3: Starting 

material redox-active ester.  The top spot in the reaction mixture is excess benzyl 

acrylate, and the spot below it is the desired product. 

 

  

1 2 3 
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Procedure for Gram Scale three-component Ni-catalyzed conjunctive cross-coupling 

reaction. 

An oven-dried 100 mL round bottom flask containing a stirring bar was charged with 

NiCl2·glyme (0.2 eq), di-tBuBipy (0.4 equiv) and N-hydroxy-phthalimide ester (1.0 

equiv). The flask was fitted with a septum. The air in the flask was exchanged to argon 

using an argon balloon and vent needle. DMF (anhydrous) and benzyl acrylate (2.5 

equiv) were then added via syringe, and the mixture stirred for 5 minutes at rt. Then, 

PhZnCl•LiCl in THF (3.0 equiv) was added under argon at once at the same temperature 

and the mixture was stirred for 8 h at rt. The mixture was poured into half sat. NH4Cl and 

the resulting mixture was extracted with EtOAc. The separated organic layer was washed 

with brine 3 times, dried over anhydrous Na2SO4 and concentrated under reduced 

pressure. 
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Graphical Supporting Information for the Gram-scale three-component Ni-

catalyzed conjunctive cross-coupling reaction. 

 

 

 

(Left) Flask containing redox-active N-hydroxy-phthalimide ester, NiCl2·glyme, and di-

tBuBipy.  (Center) Exchange of air for inert Ar atmosphere via Ar balloon and vent 

needle. (Right) Addition of benzyl acrylate via syringe. 

 

 

 

(Left) Addition of DMF.  (Center) Before addition of PhZnCl•LiCl. (Right) Progression 

of addition of PhZnCl•LiCl (note color change). 
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(Left) Completed addition of PhZnCl•LiCl.  (Center) Holes in septum are covered with 

electrical tape. (Right) Reaction mixture after 12 h. 

 

 

 

(Left) TLC of the reaction. Lane 1: Reaction mixture. Lane 2: Co-spot. Lane 3: Authentic 

product.  (Center) Reaction mixture was poured into half sat. NH4Cl (aq). (Right) 

Extraction and normal aqueous work up was performed. 

  

1  2  3 
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(Left) Crude product.  (Center) Purification by column chromatography. (Right) Pure 

product. 
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Troubleshooting: Frequently Asked Questions 

 

Part I. Redox-active Ester Synthesis. 

 

Question 1:  

How do I monitor the reaction? 

Answer:  

We use TLC analysis with UV visualization and staining (KMnO4) to monitor the 

reaction.  We do not recommend using LC/MS or GC/MS for reaction monitoring 

because we have found that on our instruments these redox-active esters are not 

guaranteed to be stable and show the proper m/z. 

 

Question 2: 

How do I purify my redox-active ester? 

Answer: 

We use a combination of silica gel flash column chromatography and recrystallization.  

The reaction mixture is typically filtered over silica gel that is eluted with CH2Cl2/Et2O; 

we do not do an aqueous work up.  After the filtrate is concentrated, the mixture is 

analyzed by 
1
H and 

13
C

 
NMR spectroscopy.  If the product is pure, it is used in the 

subsequent coupling reactions as is.  If the compound is not pure, the compound can be 

repurified by silica gel flash column chromatography.  Typical eluents for this are 

hexanes/EtOAc, hexanes/Et2O, hexanes/CH2Cl2, or CH2Cl2/Et2O. For N-hydroxy-

tetrachlorophthalimide esters, we recommend recrystallization with a small amount of 

CH2Cl2 and MeOH if the compound is still not pure.  The residue is dissolved in a small 

amount of CH2Cl2, and MeOH is added.  The mixture is heated gently with a heat gun 

until all solids dissolve, and the solution is cooled to room temperature.  After cooling to 

room temperature, the solution is either placed in a -20 °C freezer or a 4 °C cold room for 

at least 1 hour.  The mixture is then filtered, and the solid is washed with cold MeOH to 

afford pure ester.  Before attempting on large scale, we recommend using a small portion 

of the material; in some rare cases, we observed transesterification of the ester to the 

methyl ester for particularly sensitive substrates. 
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Question 3: 

It seems like the coupling is working but that the redox-active ester is unstable to silica 

gel because it streaks on the TLC plate; how do I purify the product? 

Answer: 

To purify the product, we recommend a filtration of the reaction mixture over silica gel 

(eluted with approx. 19:1 CH2Cl2:Et2O).  Following this, recrystallization of the esters 

from a small amount of CH2Cl2 with MeOH will result in very pure product.  

Additionally, we have observed that it is not essential to use pure starting material in the 

reaction. 

 

Question 4:  

Do I have to use CH2Cl2 for the coupling reaction? 

Answer:  

CH2Cl2 is not mandatory for the coupling. For some substrates, we also used EtOAc. 

 

Question 5:  

How should I store the redox-active ester? 

Answer:  

We have found that, in general, the redox-active esters are air-, moisture-, and light-

stable.  As such, we typically store them in a closed vial on the benchtop.  However, for 

long-term storage, we would recommend storing them under an argon or nitrogen 

atmosphere at – 20 °C to ensure stability. 

 

Question 6:  

I am trying to get high-resolution mass spec data for my redox-active ester, but I am 

having trouble.  What do I do? 

Answer: 

For these types of compounds, obtaining HRMS data by ESI is difficult.  We normally 

rely heavily on 
1
H and 

13
C NMR data to determine if we have the correct compound.  If 

necessary, a crystal structure can typically be obtained for N-hydroxy-

tetrachlorophthalimide redox-active esters. 
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Part II. Activation with HATU. 

 

Question 1:  

Why should I use HATU to activate my carboxylic acid? 

Answer:  

There are three reasons to use HATU. 

1. HATU should be used if the redox-active ester prepared by other methods is unstable 

and cannot be satisfactorily purified. 

2. We have found that for proline-derived substrates, this method gives the highest yields. 

3. HATU can be used if you want to run a one-pot reaction and not isolate the redox-

active ester. 

 

Part III. Nickel-catalyzed cross coupling. 

 

Question 1: 

How do you monitor the reactions? 

Answer: 

We monitor the reactions by a combination of TLC (and appropriate staining or UV 

visualization), GC/MS, and LC/MS.  For smaller molecules, GC/MS typically shows the 

formation of the product.  For compounds containing basic nitrogen atoms, LC/MS works 

well. 

 

Question 2: 

Do I need a glovebox to run this reaction? 

Answer: 

We do not set up the reaction in a glovebox.  A glovebox is not necessary to run this 

reaction.  The reaction can be setup and run in a glovebox, but this is not necessary as 

long as you have access to some inert gas (nitrogen or argon) because it is recommended 

to run the reaction under inert atmosphere. 
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Question 3: 

Is it necessary to use a freshly-prepared Grignard reagent for the reaction? 

Answer: 

It is not necessary to use a freshly-prepared Grignard reagent for the reaction to work.  

However, we did find that preparing the Grignard reagent fresh for each batch of 

reactions resulted in the highest yields. 

 

Question 4:  

Can I use monoalkylzinc reagents? 

Answer: Monoalkylzinc species prepared from Grignard reagents and ZnCl2 to give an 

alkyl zinc chloride reagent work for this reaction. 

 

Question 5: 

Do commercial dialkylzinc reagents (diethylzinc, dimethylzinc, etc) work in this 

reaction? 

Answer: 

Commercial dialkylzinc reagents can be used in this reaction.  However, preparing the 

dialkylzinc from a freshly-prepared Grignard reagent typically resulted in a higher yield 

than simply using the commercial dialkylzinc reagent.  

 

Question 6: 

Can I use THF with an inhibitor such as BHT, or should my solvent be inhibitor-free? 

Answer: 

We normally use THF that is inhibitor-free.  We have found that using THF with BHT as 

an inhibitor can be very detrimental to the yield of the reaction in some cases.  It is 

recommended that all THF with BHT be purified by distillation from sodium 

benzophenone ketyl. 
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Question 7: 

Can the reaction be run only in THF, or is the DMF cosolvent necessary? 

Answer:  

It is detrimental to the yield if the reaction is only run in THF. 

 

Question 8: 

Is it necessary to run the reaction for an overnight period (> 8 hours), or can I quench it 

sooner? 

Answer: 

The reaction can be stopped sooner if there is complete consumption of the redox-active 

ester starting material. The best way to determine if the starting material has been 

completely consumed is by TLC analysis with a co-spot of the reaction mixture and 

starting material. 

 

Question 9:  

Are there any indicative color changes during the reaction? 

Answer:  

We often observe that the reaction mixture changes from greenish-blue to dark red upon 

addition of the alkyl zinc reagent.  Within a short period of time, the reaction mixture 

continues to change to a green/black color.  However, these color changes are not 

indicative of the success of the reaction. 

 

Question 10:  

How do I work up the reaction? 

Answer:  

We quench the reaction by diluting the reaction with Et2O or EtOAc and slowly add 1M 

HCl (aq) at room temperature.  We then extract with additional solvent, wash the organic 

extracts with brine, and concentrate.  The crude product often contains solids that are 

phthalimide byproducts, but these are easily removed by column chromatography. 
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Question 11: 

My substrate is likely acid-sensitive.  What quench do you recommend in place of 1M 

HCl? 

 

Answer: 

For acid-sensitive substrates, half-saturated aqueous NH4Cl or simply water can be used 

in place of 1M HCl.  However, this quench often results in some formation of byproducts 

that are insoluble both in water and organic solvent.  Additionally, it is sufficient to add a 

small amount of alcoholic solvent to quench residual alkylzinc species, and the entire 

reaction mixture can be filtered over silica gel as an additional work up.  Aqueous 

workup is advised as it best removes DMF from the crude product. 

 

Question 12: 

How do I purify my product? 

Answer: 

We use both silica gel flash column chromatography and PTLC.  Reverse-phase HPLC 

can be used for very polar compounds. 

 

Question 13:  

How do I determine which redox-active ester to use? 

Answer:  

Typically all redox-active esters will give the desired product in some amount of yield.  

For primary redox-active esters, the N-hydroxy-tetrachlorophthalimide ester typically 

gives the highest yield. 

 

Question 14:  

What other possible byproduct could be observed in this reaction? 

Answer:  

We occasionally observed the decarboxylated product, ester, and ketone formation in this 

reaction at various times. 
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Question 15:  

I obtained the product, but the yield is not satisfactory for my purposes.  What do you 

recommend I try to optimize the reaction? 

 

Answer:  

For optimization, we recommend the following: 

1. Try the N-hydroxy-tetrachlorophthalimide ester.  This typically results in about 10% 

higher yield than the normal NHPI ester. 

2. Try heating the reaction, using 60 °C as a starting point. 

3. Try excess dialkylzinc reagent. 

4. Try using a more concentrated dialkylzinc reagent (the Grignard reagent can be 

prepared at concentrations of up to 3.0 M). 

5. Try bipyridine or dimethoxybipyridine if you used di-tBubipyridine. 

6. Try a higher loading of Ni precatalyst. 

 

Part IV. Three-component Coupling. 

 

Question 1:  

What types of redox-active esters will work well in this coupling reaction? 

Answer:  

Redox-active esters that generate tertiary radicals or -heteroatom-substituted radicals 

will work well in this reaction. 

 

Question 2:  

Do arylzinc reagents other than PhZnCl•LiCl work in this reaction? 

Answer:  

We anticipate that other aryl zinc reagents from other aryl bromides will also work well 

in this reaction.  In principle, if the aryl zinc reagent can be made, it should work in this 

reaction. 
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Question 3:  

How do you monitor the reaction? 

Answer:  

We monitor the reactions by a combination of TLC (and appropriate staining or UV 

visualization), GC/MS, and LC/MS.  For smaller molecules, GC/MS typically shows the 

formation of the product.  For compounds containing basic nitrogen atoms, LC/MS works 

well. 

 

Question 4:  

How do I purify the product? 

Answer:  

We purify the compounds by silica gel column chromatography or PTLC.  Often the 

desired product is of similar polarity to residual benzyl acrylate, so care is needed when 

purifying the material by column chromatography.  If very pure product is necessary for 

subsequent steps, we recommend purification by PTLC. 
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General Procedure for the solid phase Ni-catalyzed coupling.  

 

Methods for peptide synthesis: 

 

Analytical reverse-phase HPLC was performed on a Hitachi D-7000 separations module 

equipped with a L-4500A photodiode array detector. Peptides were analyzed using a 

Vydac 218TP54 Protein & Peptide C18 column (5 μm, 4.6 mm x 250 mm) at a flow rate 

of 1.5 mL min
-1

 using a mobile phase of 99% water/1% acetonitrile containing 0.1% TFA 

(Solvent A) and 10% water/90% acetonitrile containing 0.07% TFA (Solvent B). Results 

were analyzed using Hitachi Model D-7000 Chromatography Data Station Software. 

 

Preparative reverse-phase HPLC was performed using a Hitachi system comprised of an 

L-7150 pump and L-4000 programmable UV detector operating at a wavelength of 

230 nm coupled to a Hitachi D-2500 Chromato-Integrator. Peptides were purified on a 

Thermo Scientific Bio-basic C18 10 μm preparative column operating at a flow rate of 

12 mL min
-1

 using a mobile phase of 99% water/1% acetonitrile containing 0.1% TFA 

(Solvent A) and 10% water/90% acetonitrile containing 0.07% TFA (Solvent B) and a 

linear gradient as specified. Peptides were isolated as white solids (unless otherwise 

noted) following lyophilization. 

 

An Innova 2000 portable platform shaker (operating at 145 rpm) was used for the general 

mixing and agitation of solid-phase reactions (including SPPS and on-resin nickel 

couplings). 

 

Materials  

Commercial materials were used as received unless otherwise noted. Amino acids and 

coupling reagents were obtained from Novabiochem or Combi-blocks. Rink amide resin 

(0.8 mmol/g) was purchased from Chempep. Solid-phase reaction vessels and pressure 

caps were purchased from Torviq. Reagents that were not commercially available were 

synthesized following literature procedures. 
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(Left) Solid-phase reaction vessels purchased from Torviq. (Right) General coupling 

reagents (HATU and PyBOP) and Chempep Rink amide resin. 

 

 

(Above) Orbital shaker for solid-phase peptide synthesis (SPPS). 

 

 

Solid-phase peptide synthesis 

 

Preloading Rink amide resin  

 

Rink amide resin (1.0 equiv., substitution = 0.8 mmol/g) was swollen in dry DCM for 30 

min then washed with DCM (5 x 3 mL) and DMF (5 x 3 mL). A solution of Fmoc-Ala-

OH (4.0 equiv.) and N,N-diisopropylethylamine (DIEA) (8.0 equiv.) in DMF (final 

concentration of 0.1 M with respect to the resin) was added and the resin agitated on an 

orbital shaker at rt for 2-3 h. The resin was washed with DMF (5 x 3 mL), DCM (5 x 
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3 mL), and DMF (5 x 3 mL) and capped with a solution of acetic anhydride/pyridine 

(1:9 v/v, 3 mL) for 10 min. The resin was washed with DMF (5 x 3 mL), DCM (5 x 

3 mL), and DMF (5 x 3 mL) and subsequently submitted to iterative peptide assembly 

(Fmoc-SPPS). 

 

The loading efficiency was evaluated through treatment of the resin with 20% 

piperidine/DMF (3 mL, 2 × 3 min) to deprotect the Fmoc group. The combined 

deprotection solutions were diluted to 10 mL with 20% piperidine/DMF. An aliquot of 

this mixture (50 μL) was diluted 200-fold with 20% piperidine/DMF and the UV 

absorbance of the piperidine-fulvene adduct was measured (λ = 301 nm, ε = 7800 M
−1

 

cm
−1

) to quantify the amount of amino acid loaded onto the resin. The theoretical 

maximum for the reported yields of all isolated peptides are based on the numerical value 

obtained from the resin loading. 

 

General iterative peptide assembly (Fmoc-SPPS) 

 

Peptides were elongated using iterative Fmoc-solid-phase peptide synthesis (Fmoc-

SPPS), according to the following general protocols: 

 

Deprotection: The resin was treated with 20% piperidine/DMF (3 mL, 2 x 3 min) and 

washed with DMF (5 x 3 mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). 

 

General amino acid coupling: A preactivated solution of protected amino acid (4 equiv.), 

PyBOP (4 equiv.) and N-methylmorpholine (NMM) (8 equiv.) in DMF (final 

concentration 0.1 M) was added to the resin. After 1 h, the resin was washed with DMF 

(5 x 3 mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). 

 

Capping: Acetic anhydride/pyridine (1:9 v/v) was added to the resin (3 mL). After 3 min 

the resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL) and DMF (5 x 3 mL). 
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Cleavage: A mixture of TFA and water (95:5 v/v) was added to the resin. After 1 h, the 

resin was washed with TFA (3 x 2 mL) and DCM (3 x 2 mL). Note: The scavenger 

triisopropylsilane (TIS) was excluded from the cleavage mixture to prevent unwanted 

reduction of alkene-containing peptides. 

 

Work-up: The combined cleavage solution and TFA and DCM washes were concentrated 

under a stream of nitrogen. The residue was treated with cold Et2O to precipitate the 

crude peptide, which was subsequently dissolved in water/acetonitrile containing 0.1% 

TFA, filtered and purified by reverse-phase HPLC. 

 

Coupling of Fmoc-Glu(OAllyl)-OH and Fmoc-Asp(OAllyl)-OH 

A solution of the Fmoc-protected amino acid (4.0 equiv.), HATU (4.0 equiv.) and DIEA 

(8.0 equiv.) in DMF (final concentration 0.1 M) was added to the resin (1.0 equiv.) and 

shaken. After 16 h, the resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and 

DMF (5 x 3 mL). A capping step was performed as described above before proceeding 

with subsequent solid-phase transformations. 

 

Coupling of H-Pro-OAllylTFA 

A solution of H-Pro-OAllylTFA (10.0 equiv.), PyBOP (10.0 equiv.) and DIEA (20.0 

equiv.) in DMF (final concentration 0.1 M) was added to the resin (1.0 equiv.) and 

shaken. After 3 h, the resin was washed with DMF (5 x 3 mL), DCM (5 x 3 mL), and 

DMF (5 x 3 mL). 

 

On-resin deallylation 

A solution of Pd(PPh3)4 (25 mg, 22 mol) and PhSiH3 (123 mL, 1 mmol) in dry DCM 

(2 mL) was added to the resin (25 mol). The resin was shaken for 1 h and the progress 

of the reaction checked by cleavage of a small portion of resin beads and LC-MS 

analysis. The procedure was repeated if necessary, and upon completion, the resin was 

washed with DCM (10 x 3 mL) and DMF (10 x 3 mL). To remove residual Pd from the 

solid support, the resin-bound peptide was washed (2 x 15 min) with a solution of sodium 
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dimethyldithiocarbamate hydrate (0.02 M in DMF). Following Pd removal, the resin was 

washed with DMF (5 x 3 mL) and DCM (5 x 3 mL).  

 

Preparation of substrates for on-resin couplings 

Resin-bound peptides for solid-phase nickel couplings were prepared from Rink amide 

resin using Fmoc-SPPS as described in the general methods. Overall synthetic strategies 

for the preparation of resin-bound substrates P4, P7, and P11 are outlined below: 

 

Preparation of P4: 

 

 

 

Preparation of P7: 
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Preparation of P11: 

 

 

 

General procedures for on-resin activation: 

 

 

TCNHPI/NHPI: 

The resin-bound peptide (12.5 – 25 μmol) was washed with dry DMF (5 x 3 mL) under 

an argon atmosphere. Tetrachloro-N-hydroxyphthalimide (TCNHPI) or N-

hydroxyphthalimide (NHPI) (20.0 equiv.) and DMAP (2.0 equiv.) were added as solids to 

the reaction vessel by removing the plunger of the fritted syringe. Following addition, the 

plunger was replaced and a solution of DIC (20.0 equiv.) in dry DMF (40-60 mM 

concentration with respect to the resin-bound peptide) was added to the resin. The resin 

was capped, sealed with Teflon tape, and agitated at 37 
o
C for 2 h on a rotary evaporator 

Peptide

OH

O

Peptide

OA*

O

A) TCNHPI or NHPI (20 equiv.) 

DIC (20 equiv.), DMAP

DMF, 37 oC, 2 h

B) HATU (20 equiv.)

Et3N (20 equiv.), DMF, rt, 2 h

or

= N
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O

O
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Cl
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(see graphical representation below for additional details). The activation solution was 

then expelled and the resin washed under an argon atmosphere with dry DMF (5 x 3 mL), 

dry MeOH (5 x 3 mL) and dry DMF (5 x 3 mL). 

 

HATU: 

The resin-bound peptide was washed with dry DMF (5 x 3 mL) under an argon 

atmosphere. HATU (20.0 equiv.) was added to the reaction vessel as a solid by removing 

the plunger of the fritted syringe. Following addition, the plunger was replaced and a 

solution of Et3N (20.0 equiv.) in dry DMF (40-60 mM concentration with respect to the 

resin-bound peptide) was added to the resin. The resin was capped, sealed with Teflon 

tape, and agitated at rt for 2 h. The activation solution was then expelled and the resin 

washed with dry DMF (5 x 3 mL), dry MeOH (5 x 3 mL) and dry DMF (5 x 3 mL). 

 

Graphical Supporting Information for activation of resin-bound carboxylic acids 

with TCNHPI 

 

 
(Left) The resin-bound peptide (contained in the fritted solid-phase reaction vessel) is 

washed 5 times with dry DMF (round-bottom flask) under an argon atmosphere. 

(Center) A small, flame-dried reaction vial is charged with DMF and DIC. (Right) The 

needle of the solid-phase vessel is pierced into the septum of the small reaction vial. 
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(Left) The plunger of the solid-phase reaction vessel is carefully removed. (Right) 

Appropriate amounts of tetrachloro-N-hydroxyphthalimide (20 equiv.) and DMAP (2.0 

equiv.) are weighed out. 

 
(Left) Tetrachloro-N-hydroxyphthalimide is added as a solid to the reaction vessel. 

(Right) DMAP is added as a solid to the reaction vessel. 

 

 
(Left) The syringe plunger is carefully replaced. (Right) The plunger is pushed up 

toward the frit to reduce the dead volume in the syringe.  
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(Left) The solution of DIC and DMF in the small reaction flask is drawn up into the 

syringe; note the emergence of a dark red-orange color resulting from deprotonation of 

tetrachloro-N-hydroxyphthalimide by DMAP. (Right) The reaction vessel is capped with 

a pressure cap (Torviq) and thoroughly sealed with Teflon tape and parafilm. 

 

 
(Left) The solid-phase reaction vessel is attached to the bump trap of a rotary evaporator. 

(Right) The resin-bound peptide is lowered into the water bath, heated at 37 
o
C and 

agitated at 90 rpm for 2 h. 
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General procedure for on-resin nickel coupling: 

 

 

 

Following on-resin activation, the resin-bound peptide was immediately subjected to on-

resin nickel coupling. The activation solution was expelled from the syringe and the resin 

was washed with dry DMF (5 x 3 mL), dry MeOH (5 x 3 mL) and dry DMF (5 x 3 mL). 

Under an argon atmosphere, a solution of NiCl2·glyme (1.0 equiv.) and di-tBuBipy (2.0 

equiv.) in DMF (0.02 M – 0.04 M with respect to the Ni catalyst) was first added to the 

resin followed immediately by a solution of dialkylzinc reagent (10.0 equiv.) in THF or 

hexanes (0.20 M – 1.0 M, prepared as described previously or obtained from commercial 

sources). The addition of the dialkylzinc reagent to the resin is generally accompanied by 

a dark red color, which quickly subsides (2-5 seconds) to afford a dark green-black 

coupling solution. The resin was capped and agitated at rt for 12-16 h. The reaction 

solution was then expelled and the resin washed thoroughly with DMF (10 x 3 mL), 

DCM (10 x 3 mL) and DMF (10 x 3 mL). The outcome of the reaction was determined 

by cleavage of a small number of resin beads by treatment with TFA/H2O (95:5 v/v) for 

1 h at rt and analysis by LC-MS and analytical HPLC. If substantial amounts of unreacted 

carboxylic acid were observed, the activation-coupling procedure was repeated. 

 

Note: On-resin coupling reactions were found to proceed more efficiently at higher 

concentrations. As such, the higher end of the concentration ranges provided in the above 

procedure for both NiCl2·glyme/ligand and dialkylzinc solutions should be preferentially 

employed. 

 

Peptide

OA*

O

NiCl2·glyme (1.0 equiv.)
di-tBuBipy (2.0 equiv.)

R2Zn (10 equiv.)

solvent:DMF, rt
12 - 16 h

Peptide

R

Ac Ac
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Graphical Supporting Information for on-resin nickel coupling 

 

 
(Left) Resin-bound peptide following on-resin activation. (Right) Dry solutions of DMF 

(left) and MeOH (right) for washing. 

 

 
(Left) Following expulsion of the activation solution, the resin-bound peptide is washed 

with dry DMF (5 x 3 mL), dry MeOH (5 x 3 mL) and dry DMF (5 x 3 mL). (Right) 

Close-up of resin washing with DMF; following brief mixing with the resin, the washing 

solutions are expelled into the waste. 

 



 

 

S76 

 

 
(Left) A small-flame-dried reaction vial under argon is charged with a solution of 

NiCl2·glyme, and di-tBuBipy in DMF. (Right) A commercial bottle of diethylzinc 

(1.0 M in hexanes) utilized in the on-resin coupling procedure. 

 

 
(Left) A syringe containing the diethylzinc solution (right-hand syringe) is pierced into 

the septum of the small reaction vial containing the DMF solution of ligand and nickel 

catalyst; the resin-bound peptide (left-hand syringe) is poised for addition of the nickel 

solution, followed immediately by the addition of the dialkylzinc solution. (Right) 

Capped, resin-bound peptide following addition of nickel and dialkylzinc; note that the 

dark green color emerges within a few seconds of addition of both reagents to the resin. 
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(Left) After 12-16 h on an orbital shaker at rt, the coupling solution is expelled. (Center) 

The resin-bound peptide is washed with DMF (10 x 3 mL). (Right) The resin is further 

washed with DCM (10 x 3 mL) and DMF (10 x 3 mL).  

 

 
(Left) To evaluate the outcome of the reaction, a few resin beads are removed from the 

syringe and cleaved upon treatment with a solution TFA/H2O (95:5 v/v) at rt for 1 h. 

(Center) Close-up of the cleavage solution; note that the Rink amide resin beads 

employed here typically turn red upon addition of TFA. (Right) A filtered LC-MS 

sample prepared from the crude cleavage solution (following concentration of the TFA 

and dilution in 1:1 H2O/MeOH).  
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Resin cleavage and product purification: 

 

 

 

To isolate the peptide product, the resin was first washed with DCM (15 x 3 mL) then 

cleaved from the resin using TFA/H2O (95:5 v/v, 3 mL, rt, 1 h). The cleavage mixture 

was expelled into a 50 mL centrifuge tube and the resin washed with TFA (3 x 2 mL) and 

DCM (3 x 2 mL). The combined washings were added to the centrifuge tube, and the 

resulting solution was concentrated under a stream of nitrogen. The crude residue was 

treated with cold Et2O and sonicated to precipitate the peptide. The mixture was 

centrifuged (5 min, 1000 x g), the supernatant was discarded, and the crude peptide 

product was collected as a solid pellet. The crude product was resuspended in a mixture 

of H2O/acetonitrile containing 0.1% TFA and immediately purified by preparative 

reverse-phase HPLC using a linear gradient as specified. Fractions containing the desired 

product were concentrated on a rotary evaporator to remove acetonitrile and then 

lyophilized to afford the target compound as a fluffy white solid. 

 

 

(Above) Ether precipitation of crude cleavage residue in a 50 mL centrifuge tube. 

 

Peptide

R

O

NH2Ac
TFA/H2O (95:5 v/v)

Peptide

R

Ac
rt, 1 h
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Note on overall yield calculations and step counts: Yields are based on the amount of 

isolated material relative to the theoretical maximum based on the original loading of the 

solid-support. Upon attachment of the first amino acid to the resin, an Fmoc deprotection 

step is performed to quantify the loading of the resin (see general SPPS methods for 

details). In the step counts given below, this deprotection step is considered to be step #1 

in the overall peptide synthesis protocol, as it is the first step following the resin loading. 

The summation of all subsequent steps allows for the calculation of percent yield over a 

given number of steps from the original resin loading. 

 

Compound preparation and characterization data: 

Peptide 60 

 

Peptide 60 was prepared on a 22.5 μmol scale from resin-bound substrate P4 through 

activation as the corresponding TCNHPI ester and subsequent treatment with 

NiCl2·glyme (1.0 equiv.) and di-tBuBipy (2.0 equiv.) in DMF (0.04 M with respect to the 

Ni catalyst) followed by the dialkylzinc reagent (10.0 equiv., ~0.5 M in THF). After 

cleavage from the resin and ether precipitation, the crude peptide was purified by reverse-

phase HPLC (10% B for 5 min, 10% to 50% B over 35 min) and lyophilized to afford 

peptide 60 as a fluffy white solid (3.0 mg, 31% yield based on the original resin loading). 
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A) Crude analytical HPLC trace of peptide P4 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P4’ designates the TFA-cleaved peptide, accompanied by 

loss of side-chain protecting groups]; B) Crude reaction mixture depicting the formation 

of target peptide 60 following on-resin activation, on-resin nickel coupling, and TFA 

cleavage. 

 

 

Purified peptide product 60 (0 to 100% B over 25 min, λ = 230 nm, Rt = 12.2 min). 

 

1
H NMR (600 MHz, DMSO-d6): δ 9.14 (s, 1H), 8.01 (dd, J = 8.1, 3.0 Hz, 2H), 7.80 (d, J 

= 7.4 Hz, 1H), 7.24 (s, 1H), 7.03 (d, J = 8.5 Hz, 2H), 6.99 (s, 1H), 6.62 (d, J = 8.5 Hz, 
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2H), 5.79 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.03 – 4.96 (m, 1H), 4.96 – 4.90 (m, 1H), 4.55 

– 4.34 (m, 1H), 4.25 – 4.09 (m, 2H), 2.88 (dd, J = 14.0, 4.2 Hz, 1H), 2.60 (dd, J = 14.0, 

10.0 Hz, 1H), 2.09 – 1.89 (m, 2H), 1.75 (s, 3H), 1.71 – 1.62 (m, 1H), 1.59 – 1.45 (m, 1H), 

1.39 – 1.23 (m, 4H), 1.20 (d, J = 7.1 Hz, 3H) ppm; 

13
C NMR (151 MHz, DMSO-d6): δ 174.0, 171.6, 171.0, 169.2, 155.7, 138.7, 130.0, 

128.1, 114.8, 114.7, 54.4, 52.5, 47.9, 36.6, 33.1, 31.7, 28.1, 24.7, 22.5, 18.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C22H32N4O5Na [M+Na]
+
 455.2265; found 455.2245. 
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Peptide 61 

 

Peptide 61 was prepared on a 20 μmol scale from resin-bound substrate P4 through 

activation as the corresponding TCNHPI ester and subsequent treatment with 

NiCl2·glyme (1.0 equiv.) and di-tBuBipy (2.0 equiv.) in DMF (0.02 M with respect to the 

Ni catalyst) followed by diethylzinc (10.0 equiv., 1.0 M in hexanes). After cleavage from 

the resin and ether precipitation, the crude peptide was purified by reverse-phase HPLC 

(10% B for 5 min, 10% to 40% B over 25 min) and lyophilized to afford peptide 61 as a 

fluffy white solid (2.3 mg, 28% yield based on the original resin loading). 

 

A) Crude analytical HPLC trace of peptide P4 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P4’ designates the TFA-cleaved peptide, accompanied by 

loss of side-chain protecting groups]; B) Crude reaction mixture depicting the formation 

of target peptide 61 following on-resin activation, on-resin nickel coupling, and TFA 

cleavage. 
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Purified peptide product 61 (0 to 100% B over 25 min, λ = 230 nm, Rt = 10.5 min). 

 

 

1
H NMR (600 MHz, DMSO-d6): δ 9.14 (br s, 1 H), 8.07 – 7.96 (m, 2H), 7.80 (d, J = 7.4 

Hz, 1H), 7.24 (s, 1H), 7.03 (d, J = 8.5 Hz, 2H), 6.99 (s, 1H), 6.62 (d, J = 8.5 Hz, 2H), 

4.47 – 4.36 (m, 1H), 4.24 – 4.12 (m, 2H), 2.88 (dd, J = 14.0, 4.2 Hz, 1H), 2.60 (dd, J = 

14.0, 10.0 Hz, 1H), 1.75 (s, 3H), 1.70 – 1.62 (m, 1H), 1.56 – 1.44 (m, 1H), 1.31 – 1.22 

(m, 4H), 1.20 (d, J = 7.1 Hz, 3H), 0.91 – 0.72 (m, 3H) ppm; 

13
C NMR (151 MHz, DMSO-d6): δ 174.0, 171.6, 171.0, 169.2, 155.7, 130.0, 128.1, 

114.8, 54.3, 52.6, 47.9, 36.6, 31.5, 27.4, 22.5, 21.9, 18.4, 13.9 ppm; [note: residual TFA 

remaining after lyophilization can be observed in the 
13

C NMR spectrum]. 

HRMS (ESI-TOF, m/z): calcd for C20H30N4O5Na [M+Na]
+
 429.2108; found 429.2154. 
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Peptide 62 

 

Peptide 62 was prepared on a 17.3 μmol scale from resin-bound substrate P7 through 

activation as the corresponding NHPI ester and subsequent treatment with NiCl2·glyme 

(1.0 equiv.) and di-tBuBipy (2.0 equiv.) in DMF (0.04 M with respect to the Ni catalyst) 

followed by the dialkylzinc reagent (10.0 equiv., ~0.5 M in THF). After cleavage from 

the resin and ether precipitation, the crude peptide was purified by reverse-phase HPLC 

(5% B for 5 min, 5% to 50% B over 35 min) and lyophilized to afford peptide 62 as an 

opaque oil (1.3 mg, 20% yield based on the original resin loading). 

 

A) Crude analytical HPLC trace of peptide P7 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P7’ designates the TFA-cleaved peptide]; B) Crude reaction 

mixture (λ = 210 nm) depicting the formation of target peptide 62 following on-resin 

activation, on-resin nickel coupling, and TFA cleavage. 
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Purified peptide product 62 (0 to 100% B over 25 min, λ = 210 nm, Rt = 11.9 min). 

 

 

The product was isolated as a mixture of diastereomers (dr ~ 7:3). 

1
H NMR (600 MHz, 9:1 v/v DMSO-d6/D2O, diastereomers): δ δ 5.98 – 5.55 (m, 1H), 

5.10 – 5.00 (m, 1H), 4.98 – 4.94 (m, 0.3H), 4.94 – 4.91 (m, 0.7H), 4.31 – 4.07 (m, 2H), 

3.93 – 3.85 (m, 0.7H), 3.85 – 3.76 (m, 0.3H), 3.39 – 3.13 (m, 2H), 2.30 – 2.15 (m, 2H), 

2.09 – 1.24 (m, 10H), 1.83 (s, 3H), 1.20 (d, J = 7.2 Hz, 3H) ppm; 

13
C NMR (151 MHz, DMSO-d6, diastereomers): δ 174.1, 171.0, 169.9, 169.4, 138.4, 

138.0, 115.2, 114.6, 56.4, 56.1, 52.4, 52.2, 47.9, 46.1, 33.3, 31.7, 30.5, 30.5, 30.1, 29.6, 

28.6, 27.7, 27.4, 27.3, 23.5, 22.5, 21.5, 18.2. ppm; [note: additional signals are observed 

in the 
13

C NMR spectrum owing to the presence of diastereomers; a small amount of 

residual TFA remaining after lyophilization can also be observed (δ 157.8, quartet)]. 

HRMS (ESI-TOF, m/z): calcd for C18H31N4O4 [M+H]
+
 367.2340; found 367.2335. 
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Peptide 63 

 

 

Peptide 63 was prepared on a 20 μmol scale from resin-bound substrate P7 through 

activation as the corresponding TCNHPI ester and subsequent treatment with 

NiCl2·glyme (1.0 equiv.) and di-tBuBipy (2.0 equiv.) in DMF (0.02 M with respect to the 

Ni catalyst) followed by the dialkylzinc reagent (10.0 equiv., 0.2 M in THF). After 

cleavage from the resin and ether precipitation, the crude peptide was purified by reverse-

phase HPLC (25% B for 5 min, 25% to 60% B over 30 min) and lyophilized to afford 

peptide 63 as a yellow-orange oil (1.4 mg, 15% yield based on the original resin loading). 

 

A) Crude analytical HPLC trace of peptide P7 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P7’ designates the TFA-cleaved peptide]; B) Crude reaction 

mixture (λ = 210 nm) depicting the formation of target peptide 63, following on-resin 

activation, on-resin nickel coupling, and TFA cleavage. [L2 = di-tBuBipy] 
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Purified peptide product 63 (0 to 100% B over 25 min, λ = 210 nm, Rt = 14.1 min). 

 

 

The product was isolated as a mixture of diastereomers (dr ~ 3:1). 

1
H NMR (600 MHz, 9:1 v/v DMSO-d6/D2O, diastereomers): δ 7.45 – 7.18 (m, 5H), 

4.48 – 4.38 (m, 2H), 4.24 – 4.10 (m, 2H), 3.91 – 3.85 (m, 0.75H), 3.85 – 3.79 (m, 0.25H), 

3.41 – 3.27 (m, 4H, partially obscured by the water signal), 2.34 – 2.19 (m, 2H), 1.83 (s, 

3H), 1.85 – 1.20 (m, 10H), 1.20 (d, J = 7.2 Hz, 3H) ppm; 

13
C NMR (151 MHz, DMSO-d6, diastereomers): δ 174.1, 171.0, 169.9, 169.4, 138.7, 

128.2, 127.4, 127.3, 71.8, 69.7, 56.3, 52.4, 52.2, 47.9, 46.1, 31.1, 30.5, 29.6, 28.7, 27.4, 

27.3, 26.2, 23.5, 22.5, 21.5, 18.2 ppm; [note: a complex mixture is observed in the 
13

C 

NMR spectrum owing to the presence of diastereomers; a small amount of residual TFA 

remaining after lyophilization can also be observed (δ 157.9, quartet)]. 

HRMS (ESI-TOF, m/z): calcd for C24H37N4O5 [M+H]
+
 461.2758; found 461.2754. 
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Peptide 64 

 

Peptide 64 was prepared on a 12.5 μmol scale from resin-bound substrate P11. Double 

activation of the resin-bound Asp and Glu carboxylic acids was achieved via treatment 

with TCNHPI (40.0 equiv. with respect to the resin-bound peptide), DIC (40.0 equiv.) 

and DMAP (3.0 eq.). The doubly-activated peptide was then treated with NiCl2·glyme 

(2.0 equiv.) and di-tBuBipy (4.0 equiv.) in DMF (0.04 M with respect to the Ni catalyst) 

followed by the dialkylzinc reagent (20.0 equiv., ~0.5 M in THF). The activation-

coupling procedure was repeated one time prior to resin cleavage and ether precipitation 

of the crude product. The peptide was purified by reverse-phase HPLC (15% B for 5 min, 

15% to 60% B over 35 min) and lyophilized to afford peptide 64 as an oily white solid 

(1.7 mg, 21% yield based on the original resin loading). 
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A) Crude analytical HPLC trace of peptide P11 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P11’ designates the TFA-cleaved peptide]; B) Crude reaction 

mixture (λ = 230 nm) depicting the formation of target peptide 64, following two cycles 

of on-resin activation, and on-resin nickel coupling, then TFA cleavage and ether 

precipitation. 

 

Purified peptide product 64 (0 to 100% B over 25 min, λ = 230 nm, Rt = 15.1 min). 

 

1
H NMR (600 MHz, 9:1 v/v DMSO-d6/D2O): δ 7.96 – 7.60 (m, 2H, N-H protons exhibit 

slow exchange with D2O), 7.00 (d, J = 8.2 Hz, 2H), 6.62 (d, J = 8.4 Hz, 2H), 6.57 (br s, 

2H, partial exchange with D2O), 5.99 – 5.55 (m, 2H), 5.02 – 4.96 (m, 2H), 4.95 – 4.91 

(m, 2H), 4.47 – 4.40 (m, 1H), 4.39 – 4.29 (m, 1H), 4.29 – 4.25 (m, 1H), 4.24 – 4.11 (m, 
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2H), 3.72 – 3.58 (m, 1H), 2.90 (dd, J = 14.0, 4.7 Hz, 1H), 2.72 (dd, J = 14.2, 8.8 Hz, 1H), 

2.05 – 1.22 (m, 18H), 1.82 (s, 3H), 1.20 (d, J = 7.0 Hz, 3H) ppm; [note: one hydrogen is 

obscured by the water signal].  

13
C NMR (151 MHz, DMSO-d6): δ 174.0, 171.4, 170.9, 170.6, 169.1, 155.7, 138.7, 

138.4, 130.1, 127.6, 114.9, 114.8, 114.7, 109.5, 59.5, 54.3, 52.5, 50.3, 48.0, 46.8, 36.2, 

33.1, 32.9, 31.7, 30.6, 28.8, 28.1, 24.7, 24.3, 24.3, 22.2, 18.3 ppm; [note: residual TFA 

remaining after lyophilization can be observed in the 
13

C NMR spectrum – δ 157.7 

(quartet), 117.3 (quartet)]. 

HRMS (ESI-TOF, m/z): calcd for C34H50N6O7Na [M+Na]
+
 677.3633; found 677.3693. 
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Peptide 65 

 

 

Peptide 65 was prepared on a 12.5 μmol scale from resin-bound substrate P11. Double 

activation of the resin-bound Asp and Glu carboxylic acids was achieved via treatment 

with TCNHPI (40.0 equiv. with respect to the resin-bound peptide), DIC (40.0 equiv.) 

and DMAP (3.0 eq.). The doubly-activated peptide was then treated with NiCl2·glyme 

(2.0 equiv.) and di-tBuBipy (4.0 equiv.) in DMF (0.02 M with respect to the Ni catalyst) 

followed by diethylzinc (20.0 equiv., 1.0 M in hexanes). The activation-coupling 

procedure was repeated one time prior to resin cleavage and ether precipitation of the 

crude product. The peptide was purified by reverse-phase HPLC (10% B for 5 min, 10% 

to 60% B over 35 min) and lyophilized to afford peptide 65 as an oily white solid (1.0 

mg, 13% yield based on the original resin loading). 
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A) Crude analytical HPLC trace of peptide P11 following SPPS (0 to 100% B over 25 

min, λ = 230 nm) [note that P11’ designates the TFA-cleaved peptide]; B) Crude reaction 

mixture (λ = 230 nm) depicting the formation of target peptide 65, after one cycle of on-

resin activation and on-resin nickel coupling; C) Crude reaction mixture (λ = 230 nm) 

following the second cycle of on-resin activation and on-resin nickel coupling. 

 

 

 
Purified peptide product 65 (0 to 100% B over 25 min, λ = 230 nm, Rt = 12.9 min). 
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1
H NMR (600 MHz, 9:1 v/v DMSO-d6/D2O): δ 7.83 – 7.71 (m, 2H, N-H protons exhibit 

slow exchange with D2O), 6.99 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 8.4 Hz, 2H), 4.46 – 4.38 

(m, 1H), 4.37 – 4.29 (m, 1H), 4.29 – 4.24 (m, 1H), 4.24 – 4.09 (m, 2H), 3.69 – 3.55 (m, 

1H), 2.90 (dd, J = 14.2, 4.8 Hz, 1H), 2.73 (dd, J = 14.1, 8.7 Hz, 1H), 2.01 – 1.91 (m, 1H), 

1.82 (s, 3H), 1.80 – 1.21 (m, 13H), 1.20 (d, J = 7.1 Hz, 3H), 0.90 – 0.79 (m, 6H) ppm; 

[note: one hydrogen is obscured by the water signal] 

13
C NMR (151 MHz, DMSO-d6): δ 174.0, 171.4, 170.9, 170.9, 170.8, 169.1, 155.8, 

130.1, 127.6, 114.8, 59.5, 54.3, 52.6, 50.1, 48.0, 46.8, 36.1, 33.3, 31.6, 28.8, 27.4, 24.3, 

22.2, 21.9, 18.4, 18.2, 13.9, 13.7 ppm; [note: residual TFA remaining after lyophilization 

can be observed in the 
13

C NMR spectrum – δ 157.7 (quartet), 117.3 (quartet)]. 

HRMS (ESI-TOF, m/z): calcd for C30H46N6O7Na [M+Na]
+
 625.3320; found 625.3271. 

 



 

 

S94 

 

Troubleshooting: Frequently Asked Questions 

Question 1: 

How do you monitor the reactions? 

Answer: 

Monitoring the progress of reactions directly on-resin can be difficult and generally 

requires cleavage of the peptide from the solid-support prior to analysis using 

conventional methods (for Rink amide resin, cleavage requires treatment with TFA). As 

such, the on-resin activation of the carboxylic acid cannot be monitored without 

hydrolyzing the active ester. Excess equivalents of activating agents are therefore utilized 

to ensure complete activation of the acid. Following the nickel coupling, however, the 

outcome of the activation-coupling sequence can be evaluated by performing a “test 

cleavage,” whereby a small number of resin beads are treated with TFA to cleave the 

peptide and the resultant peptide-containing residue is analyzed by LC-MS and analytical 

HPLC (210 nm, 230 nm and 280 nm are generally the most useful for reaction 

monitoring).  

 

Question 2: 

What if the reaction does not proceed to completion? 

Answer: 

If there is still starting material bearing a free carboxylic acid after a single activation-

coupling procedure, the activation-coupling protocol may be repeated additional times 

without issue. In the event of repeated couplings, we suggest replacing the fritted syringe, 

which can gradually lose its integrity through repeated heating in the activation step. 

 

Question 3: 

What major byproducts should I look out for? 

Answer: 

Decarboxylation accompanied by reduction (net loss of 44 mass units from the starting 

peptide) is the major byproduct observed in the on-resin coupling protocol. In addition, 

during activation of the side-chain carboxylic acids of Asp and Glu, one might observe 

cyclization of the amide backbone onto the activated acid resulting in a byproduct 
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consistent with the mass of the starting peptide-H2O (this can be particularly problematic 

with Asp when the C-terminally adjacent residue is not Pro or a bulky residue such as Val 

or Ile). Backbone protection of the amide (e.g. with a Dmb group) can help resolve this 

issue. 

 

Question 4: 

What is the best method for activation of the resin-bound carboxylic acid? 

Answer: 

We have found that TCNHPI is generally the most favorable method for on-resin 

activation prior to the on-resin nickel coupling. However, in some cases (e.g. the 

preparation of peptide 62), cleaner reactions were obtained using NHPI. Although LC-

MS analysis after the activation-coupling protocol generally shows a larger amount of 

unreacted acid starting material when the NHPI ester is employed in place of the 

TCNHPI ester, the possibility of iterative on-resin couplings might make a very clean 

reaction with lower overall conversion preferable for some substrates. 

 

Question 5: 

How anhydrous does the reaction need to be? Is moisture tolerated at all? 

Answer: 

While reactions were not performed strictly anhydrously (activations and couplings were 

carried out in solid-phase reaction vessels which were capped and placed on an orbital 

shaker rather than in round bottom flasks under an inert atmosphere), we did make an 

effort to exclude water and oxygen from both the solvents used in the reaction steps as 

well as the solvents used to wash the peptide immediately before the reaction and in-

between the activation and coupling steps. To wash the resin “anhydrously,” we simply 

charged a round bottom flask with dry DMF under an inert atmosphere and syringed out 

portions of this solution to perform the wash steps (see photos for more details). Care was 

taken specifically to wash the activated ester (e.g. the on-resin TCNHPI ester) with dry 

solvent to minimize hydrolysis. We found a slight increase in overall yield using the 

“anhydrous” technique as opposed to general solid-phase protocol where washings and 

couplings are performed open flask (see additional optimization section for details). 
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Question 6: 

The reaction appears to be clean but my isolated yields are low. What might be the issue? 

Answer: 

Some model peptides bearing large hydrophobic side-chains were found to exhibit 

minimal solubility in water and acetonitrile mixtures. Loss of material before and during 

HPLC purification may therefore be a concern. Try dissolving the peptide residue in a 

small amount of DMSO prior to HPLC purification (note that DMSO was also the 

preferential solvent for NMR analysis). You should also carefully check LC-MS and 

analytical HPLC results from the crude reaction mixture to ensure that the starting 

material (generally more polar than the coupled product) is not eluting in the injection 

peak of the chromatogram, leading to an overestimation of reaction conversion. 

 

Question 7: 

How do I wash the resin after the coupling? 

Answer: 

We have found that standard washings (10 x DMF, 10 x DCM, 10 x DMF) are sufficient 

to remove the majority of excess reagents in the coupling step. However, in some cases, 

the bipyridine-based ligands were difficult to remove entirely and could be seen in the 

crude LC-MS traces following on-resin coupling. If it is essential to remove excess 

bipyridine, an additional washing step with CuSO4 in DMF (2 x 10 min) may also be 

performed. In some instances, however, this step resulted in the adherence of excess 

copper to the resin, as evidenced by a green tinge of the resin following treatment with 

CuSO4. To remove the copper, wash the resin repeatedly with sodium 

dimethyldithiocarbamate hydrate (0.02 M in DMF), until the dark yellow-brown color 

dissipates from the washing solution.  

 

Question 8: 

How many equivalents of dialkylzinc reagent should I use? 

Answer: 

In general, 10 equivalents of the dialkylzinc reagent (per activated ester) were used in the 

coupling reaction. In the preparation of model tripeptide 60, increasing to 20 equivalents 

did not have a substantial impact on the reaction yield or conversion. However, the 
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appropriate number of equivalents in any given experiment should be carefully judged by 

considering the nature of the peptide substrate. The basic dialkylzinc reagent may 

deprotonate backbone amides, resulting in consumption of multiple equivalents of the 

dialkylzinc reagent, depending on the length of the peptide. Consumption of the reagent 

can be accounted for by adding additional equivalents. 

 

Question 9: 

How important is the concentration of reagents to the success of the nickel coupling? 

Answer: 

In general, the higher the concentration, the better. More concentrated nickel/ligand 

solutions and more concentrated dialkylzinc reagents were consistently higher yielding 

than more dilute preparations, specifically minimizing the amount of observed 

decarboxylation byproducts and recovered starting material. In comparison to solution-

phase couplings, resin-bound substrates generally exhibit a “pseudo-dilution” effect, 

requiring higher concentrations of reactive species to facilitate efficient couplings.  

 

Question 10: 

Do I need to use excess catalyst and ligand relative to the solution-phase coupling 

protocol? 

Answer: 

In optimization reactions, we found that 20 mol% nickel catalyst and 40 mol% ligand 

loading resulted in lower conversion rates relative to stoichiometric nickel and 2.0 

equivalents of the ligand. We suspect that some of the catalyst and ligand might adhere to 

the resin or bind to the peptide substrate, reducing turnover of the catalyst. This 

phenomenon may be substrate or resin-specific, so we recommend screening catalyst 

loadings if problems arise during the coupling. 

 

Question 11: 

What resins are acceptable? 

Answer: 

We utilized Rink amide resin as a robust support for our resin-bound peptides. However, 

we hypothesize that additional resins may be employed so long as they are stable to 
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treatment with organozinc reagents and have suitable swelling properties in the ideal 

reaction solvents (DMF/THF or DMF/hexanes).  

 

Question 12: 

What steps can be taken to optimize the reaction? 

Answer: 

There are a number of approaches to optimizing the reaction. Problems can arise either 

during the on-resin activation step or during the nickel coupling step, so efforts can be 

made to optimize both steps. 

 

Optimization of on-resin activation: 

1. To optimize on-resin activation, try increasing the number of equivalents of 

activating agent (TCNHPI/DIC or HATU) and increasing the concentration of the 

activation solution (ideally aim for a 0.1 M final reaction concentration with 

respect to the resin-bound peptide).  

2. Extend the length of the activation protocol. 

3. Run the reaction at elevated temperatures (37 
o
C or slightly higher). 

 

Optimization of on-resin nickel coupling: 

1. Add more equivalents of the nickel catalyst, ligand, and dialkylzinc reagent. 

2. Increase the concentration of the reaction by preparing a more concentrated 

dialkylzinc reagent or a more concentrated solution of catalyst and ligand. 

3. Try a different mode of activation – TCNHPI was generally the most reactive for 

on-resin couplings but occasionally resulted in additional byproduct formation. 

NHPI or HATU may be employed instead. 

4. Increase the length of the coupling or try heating the reaction (37 
o
C or slightly 

higher). 

5. Make sure that the reaction is sufficiently anhydrous in order to avoid hydrolysis 

of the activated ester. 
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Additional Optimization Studies: 

1) Activation temperature: 

 

To probe the effect of temperature on the on-resin activation step, peptide P4 was 

activated with TCNHPI according to the general methods at either rt or at 37 
o
C for 2 h. 

The resin-bound peptide was then subjected to the on-resin nickel coupling by treatment 

with NiCl2·glyme (1.0 equiv.) and di-tBuBipy (2.0 equiv.) in DMF (0.02 M with respect 

to the Ni catalyst) followed by the addition of dialkylzinc reagent (10.0 equiv., 0.2 M in 

THF). Following TFA cleavage, the crude reaction mixtures were evaluated by analytical 

HPLC. 

 

A) Crude analytical HPLC trace (0 to 100% B over 25 min, λ = 230 nm) of the 

preparation of peptide 60 using room temperature activation of P4 with TCNHPI. B) 

Crude preparation of peptide 60 using 37 
o
C activation of P4 with TCNHPI. 
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2) Sensitivity to moisture: 

 

The requirement for “anhydrous” conditions in the activation and coupling steps was 

probed by subjecting peptide P4 to the activation-coupling under “anhydrous” or “open 

flask” conditions. “Anhydrous” activation with TCNHPI for 16 h at rt was performed 

using dry DMF and washing steps were carried out under an argon atmosphere with dry 

solvents. Transfer of the nickel/ligand solution and dialkylzinc reagent to the solid-phase 

reaction vessel was also performed under argon. For the “open flask” protocol, addition 

of the activation and nickel coupling solutions were not carried out under an argon 

atmosphere and no special precautions were taken when washing the resin. 

 

A) Crude analytical HPLC trace (0 to 100% B over 25 min, λ = 230 nm) of the 

“anhydrous” preparation of peptide 60. B) Crude analytical HPLC trace of the “open 

flask” preparation of peptide 60. 
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3) Modes of activation: 

 

Peptide P7 was activated with HATU, TCNHPI, or NHPI according to the general 

procedures and then subjected to on-resin nickel coupling. Following cleavage from the 

resin the crude peptides were evaluated using analytical HPLC.  

 

A) Crude analytical HPLC trace (0 to 100% B over 25 min, λ = 210 nm) of HATU 

activation of peptide P7 and subsequent on-resin nickel coupling. B) Crude analytical 

HPLC trace (λ = 210 nm) of TCNHPI activation of peptide P7 and subsequent on-resin 
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nickel coupling; C) Crude analytical HPLC trace (λ = 210 nm) of NHPI activation of 

peptide P7 and subsequent on-resin nickel coupling. 

 

While HATU and TCNHPI activation resulted in complete consumption of the starting 

peptide, substantial byproducts were also observed. Overall conversion was lower with 

NHPI activation, but the crude reaction mixture indicated cleaner formation of peptide 

62, accompanied only by uncoupled starting material (P7’). 
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Experimental Procedures and Characterization Data for Redox-active Esters 

 

(+)-1,3-dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2-methylpropanoate 

((+)-SI-1) 

On 1.0 mmol scale, general procedure A was followed with (+)-3-((tert-

butyldimethylsilyl)oxy)-2-methylpropanoic acid
 
(41) and purification by flash column 

chromatography (silica gel, 9:1 hexanes:EtOAc) afforded N-hydroxypthalimide ester (+)-

SI-1 as a colorless oil (0.295 g, 81%). 

Rf = 0.46 (4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.88 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 

2H), 3.94 (dd, J = 9.9, 6.6 Hz, 1H), 3.80 (dd, J = 9.8, 6.1 Hz, 1H), 3.12 – 2.97 (m, 1H), 

1.36 (d, J = 7.1 Hz, 3H), 0.92 (s, 9H), 0.10 (d, J = 1.0 Hz, 6H, overlapping peaks) ppm; 

13
C NMR (151 MHz, CDCl3:) δ 171.2, 134.8, 129.2, 124.0, 64.6, 40.6, 26.0, 18.4, 13.7,  

-5.4 (2C) ppm; 

HRMS (ESI-TOF, m/z): calcd for C18H26NO5Si [M+H]
+
 364.1575; found 364.1575; 

D
20

 = 27.9 º (c = 1.0, CH2Cl2). 

 

 

(-)-1,3-dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2-methylpropanoate ((-)-

SI-1) 

On 1.0 mmol scale, general procedure A was followed with (-)-3-((tert-

butyldimethylsilyl)oxy)-2-methylpropanoic acid
 
(41)  and purification by flash column 

chromatography (silica gel, 9:1 hexanes:EtOAc) afforded N-hydroxypthalimide ester (-)-

SI-1 as a colorless oil (0.296 g, 81%). 

Rf = 0.46 (4:1 hexanes:EtOAc); 
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1
H NMR (600 MHz, CDCl3): δ 7.88 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 

2H), 3.94 (dd, J = 9.9, 6.6 Hz, 1H), 3.80 (dd, J = 9.8, 6.1 Hz, 1H), 3.12 – 2.97 (m, 1H), 

1.36 (d, J = 7.1 Hz, 3H), 0.92 (s, 9H), 0.10 (d, J = 1.0 Hz, 6H, overlapping peaks) ppm; 

13
C NMR (151 MHz, CDCl3:) δ 171.2, 134.8, 129.2, 124.0, 64.6, 40.6, 26.0, 18.4, 13.7, 

-5.4 (2C) ppm; 

HRMS (ESI-TOF, m/z): calcd for C18H26NO5Si [M+H]
+
 364.1575; found 364.1574; 

D
20

 = - 27.6 º (c = 1.0, CH2Cl2). 

 

4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl hept-6-enoate (SI-3).  

On 2.5 mmol scale, general procedure A was followed with 6-heptenoic acid, and 

purification by flash column chromatography (silica gel, 4:1 hexanes:EtOAc) furnished 

N-hydroxy-tetrachlorophthalimide ester SI-3 (839 mg, 81% yield) as a yellow solid. 

m.p. = 79 °C; 

Rf = 0.79 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 5.82 (ddt, J = 16.9, 10.0, 6.7 Hz, 1H), 5.16 – 4.79 (m, 

2H), 2.70 (t, J = 7.4 Hz, 2H), 2.14 (q, J = 7.2 Hz, 2H), 1.82 (p, J = 7.5 Hz, 2H), 1.57 (p, J 

= 7.3 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 169.2, 157.7, 141.1, 138.0, 130.6, 124.9, 115.3, 33.3, 

30.9, 28.0, 24.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H12Cl4NO4
+ [M+H]

+
 409.9515; found 409.9523. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-cyclopropylacetate (SI-8).  
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On 5.0 mmol scale, general procedure A was followed with cyclopropane acetic acid.  

Purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-

hydroxy-tetrachlorophthalimide ester SI-8 as a yellow solid. This compound was then 

recrystallized from CH2Cl2/MeOH to yield a pale yellow solid (1.55 g, 81 %). 

m.p.= 141-142°C 

Rf = 0.56 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 2.58 (d, J = 7.1 Hz, 2H), 1.22 – 1.13 (m, 1H), 0.71 – 

0.66 (m, 2H), 0.36 – 0.30 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 168.6, 157.7, 141.2, 130.6, 124.9, 36.1, 6.7, 4.8 ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H8Cl4NO4 [M+H]
+
 381.9202; found 381.9204. 

 

 
1,3-dioxoisoindolin-2-yl 2,2-dimethylpent-4-enoate (SI-11). 

Following the General Procedure A with 2,2-dimethylpent-4-enoic acid (5 mmol), 

purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded SI-11 (1.19 g, 

87% yield) as a white solid.  

m.p.= 35-36 ºC; 

Rf = 0.50 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (500 MHz, CDCl3): δ 7.87-7.89 (m, 2H), 7.76-7.80 (m, 2H), 5.86-5.95 (m, 

1H), 5.17-5.21 (m, 2H), 2.49 (d, J = 7.5 Hz, 2H), 1.39 (s, 6H) ppm; 

13
C NMR (125 MHz, CDCl3): δ 173.6, 162.2, 134.8, 133.1, 129.2, 124.0, 119.4, 44.7, 

42.1, 24.8 ppm; 

HRMS (ESI-TOF): calc’d for C15H16NO4 [M+H]
+
 274.1074; found 274.1080. 
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1,3-dioxoisoindolin-2-yl 1-tosylpiperidine-4-carboxylate (1a).  

On 10.0 mmol scale, general procedure A was followed with 1-tosylpiperidine-4-

carboxylic acid
 
(42) and purification by flash column chromatography (silica gel, 10:1 

CH2Cl2:Et2O) furnished N-hydroxy-phthalimide ester 1a as a white solid. This compound 

was further washed with small amount of hexanes and MeOH to yield a white solid (4.79 

g, 85 %). 

m.p.= 209 °C; 

Rf = 0.79 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.90 – 7.84 (m, 2H), 7.81 – 7.76 (m, 2H), 7.67 – 7.64 

(m, 2H), 7.36 – 7.31 (m, 2H), 3.64 (d, J = 12.3 Hz, 2H), 2.72 (td, J = 9.8, 4.9 Hz, 1H), 

2.65 (ddd, J = 12.7, 10.3, 3.1 Hz, 2H), 2.44 (s, 3H), 2.15 (dq, J = 12.8, 4.1 Hz, 2H), 2.03 

(dtd, J = 13.8, 10.1, 3.9 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.3, 161.9, 143.9, 135.0, 133.3, 129.9, 129.0, 127.8, 

124.1, 45.0, 37.7, 27.4, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C21H21N2SO6 [M+H]
+
 429.1115; found 429.1114. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 1-tosylpiperidine-4-carboxylate (1b).  

On 10.0 mmol scale, general procedure A was followed with 1-tosylpiperidine-4-

carboxylic acid
 
(42) and purification by flash column chromatography (silica gel, 10:1 

CH2Cl2:Et2O) furnished N-hydroxy-tetrachlorophthalimide ester 1b as a pale yellow 

solid. This compound was further recrystallized from CH2Cl2/MeOH to yield a white 

solid (3.81 g, 67 %). 

m.p.= 209 °C; 
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Rf = 0.21 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.66 – 7.63 (m, 2H), 7.35 – 7.32 (m, 2H), 3.62 (dt, J = 

11.8, 4.4 Hz, 2H), 2.73 (tt, J = 9.9, 4.1 Hz, 1H), 2.65 (ddd, J = 12.7, 10.2, 3.1 Hz, 2H), 

2.44 (s, 3H), 2.17 – 2.10 (m, 2H), 2.01 (dtd, J = 13.8, 10.0, 3.8 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 169.8, 157.5, 143.9, 141.3, 133.2, 130.7, 129.9, 127.8, 

124.7, 44.9, 37.6, 27.4, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C21H17Cl4N2O6S [M+H]
+
 564.9556; found 564.9556. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclopentanecarboxylate (SI-13).  

On 2.3 mmol scale, general procedure A was followed with cyclopentane carboxylic 

acid, and purification by flash column chromatography (silica gel, 10:1 hexanes:EtOAc) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-13 as a white solid. This compound 

was further recrystallized from CH2Cl2/MeOH to yield a white solid (645 mg, 61 %). 

m.p.= 110 °C; 

Rf = 0.79 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 3.16 – 3.07 (m, 1H), 2.13 – 1.98 (m, 4H), 1.85 – 1.74 

(m, 2H), 1.73 – 1.63 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 172.6, 157.9, 141.1, 130.6, 124.9, 40.7, 30.4, 26.1 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H10Cl4NO4 [M+H]
+
 395.9358; found 395.9349. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl tetrahydrofuran-3-carboxylate (SI-14). 

On 5.0 mmol scale, general procedure A was followed with tetrahydrofuran-3-carboxylic 

acid, and purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) 
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furnished N-hydroxy-tetrachlorophthalimide ester SI-14 as a yellow solid. This 

compound was further recrystallized from CH2Cl2/MeOH to yield a white solid (1.06 g, 

53 %).  

m.p.= 122 °C; 

Rf = 0.24 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.17 – 4.10 (m, 2H), 3.95 (ddd, J = 8.7, 7.3, 6.6 Hz, 1H), 

3.90 (ddd, J = 8.7, 7.3, 6.2 Hz, 1H), 3.50 – 3.42 (m, 1H), 2.41 – 2.31 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.2, 157.6, 141.3, 130.7, 124.8, 70.1, 68.4, 41.0, 30.1 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H8Cl4NO5 [M+H]
+
 397.9151; found 397.9153. 

 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclohexanecarboxylate (SI-15).  

On 5.0 mmol scale, general procedure A was followed with cyclohexane carboxylic acid, 

and purification by flash column chromatography (silica gel, 10:1 hexanes:EtOAc) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-15 as a white solid. This compound 

was further recrystallized from CH2Cl2/MeOH to yield a white solid (1.34 g, 65 %). 

m.p.= 150 °C; 

Rf = 0.79 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 2.74 (tt, J = 10.9, 3.7 Hz, 1H), 2.12 – 2.04 (m, 2H), 1.83 

(dt, J = 12.9, 3.8 Hz, 2H), 1.72 – 1.61 (m, 3H), 1.44 – 1.26 (m, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.9, 157.2, 140.5, 130.0, 124.3, 39.9, 28.3, 25.0, 24.5 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H12Cl4NO4 [M+H]
+
 409.9515; found 409.9525. 
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4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl tetrahydro-2H-pyran-4-carboxylate (SI-

16).  

On 5.0 mmol scale, general procedure A was followed with tetrahydro-2H-pyran-4-

carboxylic acid, and purification by flash column chromatography (silica gel, 10:1 

hexanes:EtOAc) furnished N-hydroxy-tetrachlorophthalimide ester SI-16 as a yellow 

solid. This compound was further recrystallized from CH2Cl2/MeOH to yield a pale 

yellow solid (1.86 g, 90 %). 

m.p.= 156 °C; 

Rf = 0.35 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.02 (dt, J = 11.8, 3.9 Hz, 2H), 3.54 (ddd, J = 11.8, 10.3, 

2.9 Hz, 2H), 3.01 (ddd, J = 14.7, 10.2, 4.4 Hz, 1H), 2.07 – 1.92 (m, 4H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.2, 157.7, 141.3, 130.7, 124.8, 66.6, 37.7, 28.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H11Cl4NO5 [M+H]
+
 411.9308; found 411.9303. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 4,4-difluorocyclohexane-1-carboxylate 

(SI-17).  

On 5 mmol scale, general procedure A was followed with 4,4-

difluorocyclohexanecarboxylic acid, and purification by flash column chromatography 

(silica gel, 9:1 hexanes:EtOAc) followed by recrystallization from CH2Cl2 and MeOH 

furnished N-hydroxy-tetrachlorophthalimide ester SI-17 as a white  solid (1.63 g, 73%).  

m.p.= 186 - 189 °C; 

Rf = 0.14 (silica gel, 9:1 hexanes:EtOAc); 
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1
H NMR (600 MHz, CDCl3): δ 2.96 – 2.82 (m, 1H), 2.24 – 2.13 (m, 4H), 2.09 (m, 2H), 

1.98 – 1.84 (m, 2H); 

13
C NMR (151 MHz, CDCl3): δ 170.1, 157.7, 141.3, 130.7, 124.8, 122.2 (t, J = 241.6 

Hz), 37.9, 32.1 (t, J = 24.8 Hz), 25.1 (t, J = 5.0 Hz) ppm; 

19
F NMR (376 MHz, CDCl3): δ -96.18 (d, J = 241.9 Hz), -98.80 (d, J = 244.4 Hz) ppm; 

HRMS (ESI-TOF, m/z): High-resolution mass spec data could not be obtained for this 

compound. 

 

  

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 1-tosylazetidine-3-carboxylate (SI-18). 

On 5.0 mmol scale, general procedure A was followed with 1-tosylazetidine-3-carboxylic 

acid, and purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-18 as a yellow solid. This 

compound was further recrystallized from CH2Cl2/MeOH to yield a white solid (1.70 g, 

63 %). 

m.p.= 183 °C; 

Rf = 0.10 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.75 (d, J = 8.3 Hz, 2H), 7.41 – 7.38 (m, 2H), 4.18 (dd, J 

= 8.9 Hz, 2H), 4.07 (dd, J = 8.9, 6.6 Hz, 2H), 3.63 (tt, J = 9.1, 6.5 Hz, 1H), 2.44 (d, J = 

0.7 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 167.6, 157.2, 144.8, 141.4, 131.1, 130.8, 130.2, 128.5, 

124.6, 52.5, 29.2, 21.8 ppm; 

HRMS (ESI-TOF, m/z): calcd for C19H13Cl4N2O6S [M+H]
+
 536.9243; found 536.9252. 
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4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl isobutyrate (SI-19). 

On 1 mmol scale, general procedure A was followed with isobutryic acid, and 

purification by flash column chromatography (silica gel, 9:1 hexanes:EtOAc) furnished 

N-hydroxy-tetrachlorophthalimide ester SI-19 as a white solid (0.272 g, 73%). 

m.p.= 107 - 110 °C; 

Rf = 0.50 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 2.96 (hept, J = 7.0 Hz, 1H), 1.37 (d, J = 7.0 Hz, 6H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 172.7, 157.8, 141.1, 130.6, 124.9, 31.9, 19.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C12H8Cl4NO4 [M+H]
+
 369.9202; found 369.9203. 

 

 
1,3-Dioxoisoindolin-2-yl 2-fluoropropanoate (SI-20).  

On 2.9 mmol scale, general procedure A (30 min reaction time) was followed with 2-

fluoropropionic acid, and purification by flash column chromatography (silica gel, 4:1 

hexanes:EtOAc) furnished N-hydroxy-tetrachlorophthalimide ester SI-20 (385 mg, 56% 

yield) as a white solid (NOTE: SI-20 is unstable to silica gel. Therefore, the purification 

was quickly performed with a short path of silica gel). 

m.p.= 79 - 81 °C; 

Rf = 0.13 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 7.97 – 7.90 (m, 2H), 7.87 – 7.80 (m, 2H), 5.44 (dq, J = 

47.6, 6.9 Hz, 1H), 1.85 (dd, J = 23.5, 7.0 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 166.4, 160.9, 134.5, 128.3, 123.7, 83.8 (d, J = 185.9 Hz), 

18.2 (d, J = 22.1 Hz) ppm; 

19
F NMR (376 MHz, CDCl3) δ -187.00 ppm; 

HRMS (ESI-TOF, m/z): calcd for C11H9FNO4 [M+H]
+
 238.0510; found 238.0516. 

 



 

 

S112 

 

 

4-methyl 5-(4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl) (4R,5R)-2,2-dimethyl-1,3-

dioxolane-4,5-dicarboxylate (SI-21) 

On 0.5 mmol scale, general procedure A was followed with (-)-(4R,5R)-5-

(methoxycarbonyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid
 
(43) and purification by 

flash column chromatography (silica gel, 4:1 hexanes:EtOAc) afforded N-hydroxy-

tetrachlorophthalimide ester SI-21 as a waxy white-yellow amorphous solid (0.105 g, 

45%). 

Rf = 0.18 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, C6D6): δ 5.14 (d, J = 4.5 Hz, 1H), 5.07 (d, J = 4.5 Hz, 1H), 3.23 (s, 

3H), 1.52 (s, 3H), 1.40 (s, 3H) ppm; 

13
C NMR (151 MHz, C6D6): δ 169.2, 167.6, 157.0, 140.4, 130.1, 124.7, 115.5, 77.9, 

75.9, 52.3, 26.6, 26.4 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

D
20

 = -32.8 º (c = 1.0, CH2Cl2). 

 

 

 

4-ethyl 5-(4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl) (4S,5S)-2,2-dimethyl-1,3-

dioxolane-4,5-dicarboxylate (SI-22). 
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On 2.5 mmol scale, general procedure A was followed with (+)-(4S,5S)-5-

(ethoxycarbonyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid,(43) and purification by 

flash column chromatography (silica gel, CH2Cl2) furnished N-hydroxy-

tetrachlorophthalimide ester SI-22 as an amorphous yellow solid (0.240 g, 19%). 

Rf = 0.43 (silica gel, CH2Cl2); 

1
H NMR (600 MHz, C6D6): δ 5.17 (d, J = 4.7 Hz, 1H), 5.15 (d, J = 4.6 Hz, 1H), 3.92 – 

3.79 (m, 2H), 1.52 (d, J = 0.8 Hz, 3H), 1.41 (d, J = 0.8 Hz, 3H), 0.86 (t, J = 7.1 Hz, 3H) 

ppm; 

13
C NMR (151 MHz, C6D6): δ 168.7, 167.7, 157.0, 140.3, 130.1, 124.8, 115.5, 78.2, 

76.0, 62.0, 26.7, 26.5, 13.9 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

D
20

 = +30.6 º (c = 1.0, CH2Cl2). 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 5-phenylpentanoate (SI-23).  

On 5.0 mmol scale, general procedure A was followed with 5-phenylvaleric acid, and 

purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-

hydroxy-tetrachlorophthalimide ester SI-23 as a yellow solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a pale yellow solid (1.29 g, 56 %). 

m.p.= 80 °C; 

Rf = 0.64 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.29 (dd, J = 8.2, 6.9 Hz, 2H), 7.21 – 7.17 (m, 3H), 2.72 

– 2.65 (m, 4H), 1.86 – 1.75 (m, 4H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 169.1, 157.7, 141.7, 141.1, 130.6, 128.5 (2C), 126.1, 

124.8, 35.5, 30.9, 30.5, 24.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C19H14Cl4NO4 [M+H]
+
 459.9761; found 459.9674. 
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methyl (4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl) adipate (SI-24).  

On 5.0 mmol scale, general procedure A was followed with adipic acid monomethyl 

ester, and purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-24 as a yellow solid. This 

compound was further recrystallized from CH2Cl2/MeOH to yield a white solid (1.59 g, 

72 %). 

m.p.= 97 °C; 

Rf = 0.59 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, Acetone-d6): δ 3.63 (s, 3H), 2.81 (t, J = 7.3 Hz, 2H), 2.41 (t, J = 7.2 

Hz, 2H), 1.85 – 1.74 (m, 4H) ppm; 

13
C NMR (151 MHz, Acetone-d6): δ 173.8, 170.2, 158.6, 141.1, 130.8, 126.5, 51.7, 33.8, 

31.0, 25.0, 24.8 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H12Cl4NO4 [M+H]
+
 441.9413; found 441.9416. 

 

 
 

4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl 3-cyclopentylpropanoate (SI-25).  

On 2.0 mmol scale, general procedure A was followed with 3-cyclopentylpropanoic acid, 

and purification by flash column chromatography (silica gel, 4:1 hexanes:EtOAc) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-25 (0.14 g, 17% yield) as a white 

solid. 

m.p.= 94 °C; 
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Rf = 0.64 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 2.70 (t, J = 7.6 Hz, 2H), 1.98 – 1.73 (m, 5H), 1.73 – 1.47 

(m, 4H), 1.25 – 1.07 (m, 2H) ppm; 

13
C NMR (101 MHz, CDCl3) δ 169.3, 157.6, 141.0, 130.4, 124.7, 39.4, 32.3, 30.8, 30.3, 

25.1 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 3-(pyridin-3-yl)propanoate (SI-26).  

On 2.0 mmol scale, general procedure A was followed with 3-(pyridin-3-yl)propanoic 

acid, and purification by flash column chromatography (silica gel, 4:1 CH2Cl2:EtOAc) 

furnished N-hydroxy-tetrachlorophthalimide ester SI-26 as a yellow solid (611 mg, 70 

%). 

m.p.= 133-134 °C; 

Rf = 0.48 (silica gel, 4:1 CH2Cl2:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 8.53 (d, J = 2.2 Hz, 1H), 8.50 (dd, J = 4.8, 1.6 Hz, 1H), 

7.59 (dt, J = 7.9, 1.9 Hz, 1H), 7.28 – 7.27 (m, 1H), 3.10 (t, J = 7.6 Hz, 2H), 3.03 – 2.97 

(m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 168.2, 157.5, 149.8, 148.4, 141.2, 136.0, 134.5, 130.6, 

124.7, 123.7, 32.3, 27.8 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H9Cl4N2O4 [M+H]
+
 432.9311; found 432.9310. 
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4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl hex-5-enoate (SI-27). 

On 1 mmol scale, general procedure A was followed with 5-hexenoic acid, and 

purification by flash column chromatography (silica gel, 4:1 hexanes:EtOAc) furnished 

N-hydroxy-tetrachlorophthalimide ester SI-27 as a white solid (0.344 g, 87%). 

m.p.= 75 °C; 

Rf = 0.29 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.79 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.11 (dq, J = 17.1, 

1.6 Hz, 1H), 5.06 (ddt, J = 10.2, 1.9, 1.2 Hz, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.29 – 2.17 

(m, 2H), 1.89 (p, J = 7.3 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 169.2, 157.7, 141.2, 137.0, 130.6, 124.9, 116.5, 32.7, 

30.2, 23.9 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H10Cl4NO4 [M+H]
+
 395.9358; found 395.9360. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl pent-4-ynoate (SI-28). 

On 5.0 mmol scale, general procedure A was followed with pent-4-ynoic acid, and 

purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-

hydroxy-tetrachlorophthalimide ester SI-28 as a yellow solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a yellow needle (1.09 g, 57 %). 

m.p.= 178 °C; 

Rf = 0.59 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 2.94 (dd, J = 8.0, 6.8 Hz, 2H), 2.66 (ddd, J = 8.3, 6.8, 

2.7 Hz, 2H), 2.08 (t, J = 2.7 Hz, 1H) ppm; 
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13
C NMR (151 MHz, CDCl3): δ 167.7, 157.5, 141.3, 130.7, 124.8, 80.8, 70.4, 30.5, 14.4 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H6Cl4NO4 [M+H]
+
 379.9045; found 379.9049. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-

heptadecafluoroundecanoate (SI-29). 

On 0.41 mmol scale, general procedure A was followed with 

4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanoic acid, and purification 

by flash column chromatography (silica gel, 95:5 CH2Cl2:Et2O) and trituration with 

MeOH furnished N-hydroxy-tetrachlorophthalimide ester SI-29 as a fluffy white solid 

(0.140 g, 44%).  Note: This reaction was run in EtOAc due to the insolubility of the 

starting material in CH2Cl2. 

m.p.= 107 - 110 °C; 

Rf = 0.63 (silica gel, 1:1 hexanes:CH2Cl2); 

1
H NMR (600 MHz, C6D6): δ 2.27 – 2.20 (m, 2H), 1.96 – 1.85 (m, 2H) ppm; 

13
C NMR (151 MHz, C6D6): δ 167.8, 157.2, 140.4, 130.2, 110.4, 26.0 (t, J = 21.9 Hz), 

22.5 (t, J = 4.1 Hz) ppm; 

19
F NMR (376 MHz, C6D6): δ -81.74 (t, J = 9.8 Hz), -115.29 (t, J = 14.1 Hz), -122.51 (d, 

J = 86.5 Hz), -123.48, -124.07, -126.76 – -127.10 (m) ppm; 

Note: 
19

F shifts are relative to C6F6 in C6D6 (-163.6 ppm). 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 
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1-(1,3-Dioxoisoindolin-2-yl) 4-methyl bicyclo[2.2.2]octane-1,4-dicarboxylate (SI-30). 

On 2.5 mmol scale, general procedure A was followed with 4-

(methoxycarbonyl)bicyclo[2.2.2]octane-1-carboxylic acid, and purification by flash 

column chromatography (silica gel, 9:1 hexanes:EtOAc) furnished N-hydroxy-

tetrachlorophthalimide ester SI-30 (802 mg, 89% yield) as a white solid. 

m.p.= 156 – 158  °C; 

Rf = 0.32 (silica gel, 9:1 hexanes:EtOAc); 

1
H NMR (500 MHz, CDCl3) δ 7.94 (ddd, J = 5.5, 3.1, 1.0 Hz, 2H), 7.85 (ddd, J = 5.6, 

3.1, 1.0 Hz, 2H), 3.74 (s, 3H), 2.17 – 2.06 (m, 6H), 2.04 – 1.94 (m, 6H) ppm; 

13
C NMR (126 MHz, CDCl3) δ 177.7, 173.7, 162.4, 135.1, 129.4, 124.3, 52.3, 38.9, 

38.7, 28.0, 27.9 ppm; 

HRMS (ESI-TOF, m/z): calcd for C19H20NO6 [M+H]
+
 358.1285; found 358.1284. 

 

 

(-) - 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-(((1R,2S,4S)-2-isopropyl-4-

methylcyclohexyl)oxy)acetate (SI-31).  

On 5.0 mmol scale, general procedure A was followed with (-)-menthoxyacetic acid, and 

purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-

hydroxy-tetrachlorophthalimide ester SI-31 as a yellow solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a white solid (1.72 g, 63 %). 

m.p.= 125-126°C; 

Rf = 0.80 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.52 (s, 2H), 3.28 (td, J = 10.6, 4.2 Hz, 1H), 2.28 (pd, J 

= 6.9, 2.5 Hz, 1H), 2.12 (dd, J = 10.6, 6.0 Hz, 1H), 1.65 (m, 2H), 1.38 (m, 1H), 1.30 (ddt, 

J = 13.0, 10.3, 3.1 Hz, 1H), 1.04 – 0.82 (m, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 7.1 

Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 167.1, 157.4, 141.3, 130.7, 124.8, 81.1, 63.6, 48.3, 39.8, 

34.5, 31.6, 25.6, 23.4, 22.4, 21.1, 16.4 ppm; 
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HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

[α]D
20

= -55.6° (c= 1.0, CH2Cl2).  

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-(benzyloxy)acetate (SI-32).  

On 5.0 mmol scale, general procedure A was followed with benzyloxyacetic acid, and 

purification by flash column chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-

hydroxy-tetrachlorophthalimide ester SI-32 as a yellow solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a pale yellow solid (1.46 g, 63 %). 

m.p.= 91-92 °C; 

Rf = 0.45 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.41 – 7.36 (m, 4H), 7.36 – 7.32 (m, 1H), 4.72 (s, 2H), 

4.50 (s, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 166.5, 157.4, 141.3, 136.3, 130.7, 128.8, 128.6, 128.4, 

124.7, 73.8, 64.9 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-(((3s,5s,7s)-adamantan-1-

yl)oxy)acetate (SI-33). 

On 5.0 mmol scale, general procedure A was followed with 2-(((3s,5s,7s)-adamantan-1-

yl)oxy)acetic acid,(44) and purification by flash column chromatography (silica gel, 10:1 

CH2Cl2:Et2O) furnished N-hydroxy-tetrachlorophthalimide ester SI-33 as a pale yellow 
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solid. This compound was further recrystallized from CH2Cl2/MeOH to yield a white 

solid (1.65 g, 67 %). 

m.p.= 139-140°C; 

Rf = 0.61 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.49 (s, 2H), 2.22 – 2.17 (m, 3H), 1.81 (d, J = 2.9 Hz, 

6H), 1.64 (q, J = 12.2 Hz, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 167.9, 157.4, 141.2, 130.6, 124.8, 75.4, 57.2, 41.2, 36.3, 

30.7 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

 

 

tert-butyl 4-(2-oxo-2-((4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-

yl)oxy)ethoxy)piperidine-1-carboxylate (SI-34).  

On 5.0 mmol scale, general procedure A was followed with 2-((1-(tert-

butoxycarbonyl)piperidin-4-yl)oxy)acetic acid,(45) and purification by flash column 

chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-hydroxy-

tetrachlorophthalimide ester SI-34 as a yellow solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a white solid (1.72 g, 63 %). 

m.p.= 107-109 °C; 

Rf = 0.25 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.53 (s, 2H), 3.80 – 3.72 (m, 2H), 3.67 (dt, J = 8.1, 4.2 

Hz, 1H), 3.14 (ddd, J = 13.5, 8.9, 3.6 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.61 (tq, J = 8.8, 4.3 

Hz, 2H), 1.45 (s, 9H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 166.9, 157.4, 154.9, 141.4, 130.7, 124.7, 79.8, 76.8, 

63.8, 41.0, 30.8, 28.6 ppm; 

HRMS (ESI-TOF, m/z): calcd for C20H21Cl4N2O7 [M+H]
+
 541.0097; found 541.0099. 
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tert-butyl 4-((1-oxo-1-((4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl)oxy)propan-2-

yl)oxy)piperidine-1-carboxylate (SI-35). 

On 2.5 mmol scale, general procedure A was followed with 2-((1-(tert-

butoxycarbonyl)piperidin-4-yl)oxy)propanoic acid,(46) and purification by flash column 

chromatography (silica gel, 10:1 CH2Cl2:Et2O) furnished N-hydroxy-

tetrachlorophthalimide ester SI-35 as a white solid. This compound was further 

recrystallized from CH2Cl2/MeOH to yield a white solid (712 mg, 52 %). 

m.p.= 127-128°C; 

Rf = 0.25 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 4.47 (q, J = 6.8 Hz, 1H), 3.81 – 3.73 (m, 2H), 3.66 (tt, J 

= 8.0, 3.7 Hz, 1H), 3.13 (dddd, J = 13.4, 8.9, 3.6, 1.9 Hz, 2H), 1.86 (m, 2H), 1.66 – 1.59 

(m, 1H), 1.62 (d, J = 6.9 Hz, 3H), 1.58 – 1.52 (m, 1H), 1.44 (s, 9H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 169.7, 157.5, 154.9, 141.3, 130.7, 124.8, 79.7, 75.7, 

71.0, 41.1 (br, weak), 31.7, 30.4, 28.6, 19.5 ppm; Note: 
13

C resonances 31.7 and 30.4 

belong to the same carbon atom, as verified by HSQC. 

HRMS (ESI-TOF, m/z): calcd for C21H23Cl4N2O7 [M+H]
+
 554.0254; found 554.0255. 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 10-(3-hexyloxiran-2-yl)decanoate (SI-

36). 
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On 5.0 mmol scale, general procedure A was followed with trans-9,10-epoxystearic acid, 

and purification by flash column chromatography (silica gel, 9:1 hexanes:EtOAc) and 

recrystallization from CH2Cl2 and MeOH furnished N-hydroxy-tetrachlorophthalimide 

ester SI-36 as a yellow solid (1.46 g, 50%).  Due to the low solubility of the starting 

material in CH2Cl2, the reaction was run for an extended period of time (5 days). 

m.p.= 44 – 45 °C; 

Rf = 0.22 (silica gel, 1:1 hexanes:CH2Cl2); 

1
H NMR (600 MHz, CDCl3) δ 2.68 – 2.64 (m, 4H), 1.83 – 1.75 (m, 2H), 1.54 – 1.18 (m, 

24H), 0.88 (t, J = 7.0 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 169.3, 157.7, 141.1, 130.6, 124.9, 59.1, 59.0, 32.3, 32.2, 

32.0, 31.0, 29.7, 29.6, 29.39, 29.27, 29.1, 28.8, 26.2, 26.1, 24.8, 22.8, 14.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C26H34Cl4NO5 [M+H]
+
 580.1186; found 580.1188. 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-(2,4-dichlorophenoxy)acetate (SI-37). 

On 5.0 mmol scale, general procedure A was followed with 2,4-dichlorophenoxyacetic 

acid (2,4-D), and purification by flash column chromatography (silica gel, 10:1 

CH2Cl2:Et2O) furnished N-hydroxy-tetrachlorophthalimide ester SI-37 as a yellow solid. 

This compound was further recrystallized from CH2Cl2/MeOH to yield a yellow solid 

(1.73 g, 69 %).  

m.p.= 206-207°C; 

Rf = 0.46 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.42 (d, J = 2.5 Hz, 1H), 7.25 (dd, J = 8.8, 2.5 Hz, 1H), 

6.93 (d, J = 8.8 Hz, 1H), 5.10 (s, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 164.7, 157.2, 151.9, 141.5, 130.9, 130.7, 128.5, 128.1, 

124.8, 124.6, 115.7, 64.7 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 
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4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl (S)-3-(((tert-butoxycarbonyl)amino) 

methyl)-5-methylhexanoate (SI-38). 

On 0.20 mmol scale, general procedure A was followed with pregabalin, and purification 

by flash column chromatography (silica gel, 4:1 hexanes:EtOAc) furnished N-hydroxy-

tetrachlorophthalimide ester SI-38 (92 mg, 85% yield) as a white solid. 

m.p.= 129 – 131 °C; 

Rf = 0.64 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3): δ 4.88 – 4.79 (m, 1H), 3.42 – 3.23 (m, 1H), 3.20 – 3.00 

(m, 1H), 2.66 (d, J = 6.3 Hz, 2H), 2.38 – 2.17 (m, 1H), 1.74 (hept, J = 6.7 Hz, 1H), 1.46 

(s, 9H), 1.29 (t, J = 7.3 Hz, 2H), 0.95 (dd, J = 9.5, 6.6 Hz, 6H) ppm;
 

13
C NMR (101 MHz, CDCl3): δ 168.4, 157.5, 156.1, 141.1, 130.5, 124.7, 43.8, 41.0, 

34.3, 33.8, 28.4, 25.2, 22.7, 22.6 ppm; 

HRMS (ESI-TOF, m/z): calcd for C21H25Cl4N2O6 [M+H]
+
 541.0461; found 541.0459; 

[]D
20

 = + 2.0º (c = 0.82, CHCl3). 

 

 

4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-

isopropyl-3-phenyl-4-(phenylcarbamoyl)-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-

dioxan-4-yl)acetate (SI-39).  

Acetal protection: Atorvastatin calcium salt (20 mg, 0.017 mmol) was weighed in a 

round-bottomed flask. Under Ar atmosphere, 2,2-dimethoxypropane (0.6 mL, 4.896 
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mmol) was added via syringe followed by a solution of conc. H2SO4 (5 L) in 5 mL of 

acetone. The mixture turned yellow, and after 30 minutes, the solution was evaporated to 

dryness and the crude product was taken to the next step without further purification.  

N-hydroxy-tetrachlorophthalimide ester formation: The above crude mixture, was 

dissolved in CH2Cl2 (5 mL) and N-hydroxy-tetrachlorophthalimide (11 mg, 0.035 mmol), 

DMAP (1 mg, 0.008 mmol) and DIC (7 L, 0.040 mmol) were added. After stirring for 

30 minutes, the mixture was evaporated to dryness and purified by flash column 

chromatography (silica gel, 4:1 hexanes:EtOAc) to afford SI-39 (11 mg, 35% yield over 

2 steps) as a yellow solid. 

m.p. = 120 – 122 ºC; 

Rf = 0.3 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3) δ 7.22 – 7.12 (m, 9H), 7.07 (d, J = 8.0 Hz, 2H), 6.99 (dt, J 

= 11.2, 7.8 Hz, 3H), 6.86 (bs, 1H), 4.28 (ddt, J = 9.1, 6.7, 3.2 Hz, 1H), 4.11 – 4.05 (m, 

1H), 3.92 – 3.82 (m, 1H), 3.77 – 3.68 (m, 1H), 3.59 (p, J = 7.2 Hz, 1H), 2.85 (dd, J = 

15.2, 6.8 Hz, 1H), 2.69 (dd, J = 15.3, 6.5 Hz, 2H), 1.80 – 1.59 (m, 2H), 1.54 (d, J = 7.1 

Hz, 5H), 1.50 (dt, J = 12.8, 2.5 Hz, 1H), 1.39 (s, 3H), 1.35 (s, 3H), 1.32 – 1.10 (m, 2H) 

ppm;  

13
C NMR (151 MHz, CDCl3) δ 165.8, 164.3, 161.8 (d, J = 247.8 Hz), 156.9, 141.1, 

140.6, 137.9, 134.2, 132.7 (d, J = 7.8 Hz), 130.6, 130.0, 128.3, 128.2, 127.9, 127.8 (d, J = 

3.2 Hz), 126.1, 124.2, 123.0, 121.4, 118.7, 115.0 (d, J = 21.7 Hz), 98.7, 65.8, 64.9, 40.3, 

37.8, 37.5, 35.2, 29.3, 29.3, 25.6, 21.3, 21.1, 19.1 ppm; 

19
F NMR (376 MHz, CDCl3) δ -113.94 ppm; 

HRMS (ESI-TOF, m/z): calcd for C44H39Cl4FN3O7 [M+H]
+
 880.1521; found 880.1527; 

[]D
20 

= +8.0º (c = 0.4, CHCl3). 
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(3R,5S,7R,8R,9S,10S,12S,13R,14S)-10,13-dimethyl-17-((R)-5-oxo-5-((4,5,6,7-

tetrachloro-1,3-dioxoisoindolin-2-yl)oxy)pentan-2-yl)hexadecahydro-1H-

cyclopenta[a]phenanthrene-3,7,12-triyl triacetate (SI-40).  

On 2.5 mmol scale, general procedure A was followed with acylated cholic acid,(47) and 

purification by flash column chromatography (silica gel, 1:1 hexanes:EtOAc) furnished 

N-hydroxy-tetrachlorophthalimide ester SI-40 as a yellow-white fluffy solid (0.700 g, 

34%). 

m.p.= 128 - 129 °C; 

Rf = 0.52 (silica gel, 1:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.10 (d, J = 2.9 Hz, 1H), 4.91 (m, J = 3.2 Hz, 1H), 4.57 

(m, 1H), 2.70 (m, J = 14.6, 9.5, 4.4 Hz, 1H), 2.56 (ddd, J = 15.9, 9.1, 7.0 Hz, 1H), 2.15 

(s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.04 – 1.99, (m, 1H), 1.98 – 1.83 (m, 4H), 1.77 (tt, J = 

14.5, 3.6 Hz, 2H), 1.72 – 1.58 (m, 6H), 1.54 – 1.39 (m, 5H), 1.38 – 1.30 (m, 2H), 1.17 – 

1.03 (m, 2H), 0.92 (s, 3H), 0.88 (d, J = 6.2 Hz, 3H), 0.76 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.7, 170.6, 170.5, 169.6, 157.7, 141.2, 130.6, 124.8, 

75.5, 74.2, 70.8, 47.5, 45.3, 43.6, 41.1, 37.9, 34.9, 34.8, 34.7, 34.5, 31.4, 30.8, 29.0, 28.1, 

27.4, 27.1, 25.7, 23.0, 22.7, 21.8, 21.7, 21.6, 17.6, 12.4 ppm; 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

D
20

 = + 38.7 º (c = 1.0, CH2Cl2). 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl (R)-4-((5S,8R,9S,10S,13R,14S,17R)-

10,13-dimethyl-3,7,12-trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-

yl)pentanoate (SI-41).  
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On 2.0 mmol scale, general procedure A was followed with dehydrocholic acid, and 

purification by flash column chromatography (silica gel, 4:1 hexanes:EtOAc) furnished 

N-hydroxy-tetrachlorophthalimide ester SI-41 (1.12 g, 82% yield) as a yellow solid. 

mp: >200 ºC; 

Rf = 0.41 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3) δ 2.99 – 2.85 (m, 3H), 2.78 (ddd, J = 16.0, 8.7, 5.2 Hz, 

1H), 2.67 (dt, J = 16.1, 8.2 Hz, 1H), 2.43 – 2.22 (m, 6H), 2.20 – 2.14 (m, 2H), 2.13 – 1.97 

(m, 5H), 1.89 (td, J = 11.5, 7.2 Hz, 1H), 1.73 – 1.51 (m, 5H), 1.48 – 1.30 (m, 3H), 1.14 

(s, 3H), 0.95 (d, J = 6.7 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 211.4, 208.5, 208.2, 169.0, 157.1, 140.5, 130.0, 124.3, 

56.5, 51.3, 48.5, 46.4, 45.1, 44.5, 42.3, 38.2, 36.0, 35.6, 34.9, 34.8, 29.9, 27.9, 27.2, 24.7, 

21.5, 18.0, 13.7, 11.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C32H34Cl4NO7 [M+H]
+
 684.1084; found 684.1081. 

[]D
20 

= +13.2º (c = 1.05, CHCl3). 

 

 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl (9Z,12Z)-octadeca-9,12-dienoate (SI-42). 

On 2.5 mmol scale, general procedure A was followed with linoleic acid, and purification 

by flash column chromatography (silica gel, 9:1 hexanes:EtOAc) furnished N-hydroxy-

tetrachlorophthalimide ester SI-42 as a yellow oil (1.08 g, 77%). 

Rf = 0.28 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.41 – 5.30 (m, 4H), 2.80 – 2.75 (m, 2H), 2.66 (t, J = 7.5 

Hz, 2H), 2.05 (qd, J = 7.2, 1.3 Hz, 4H), 1.81 – 1.75 (m, 2H), 1.48 – 1.40 (m, 2H), 1.40 – 

1.23 (m, 12H), 0.89 (t, J = 7.0 Hz, 3H). 
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13
C NMR (151 MHz, CDCl3): δ 169.3, 157.7, 141.1, 130.6, 130.4, 130.1, 128.2, 128.0, 

124.9, 31.7, 31.0, 29.7, 29.5, 29.1 (2C), 28.9, 27.4, 27.3, 25.8, 24.8, 22.8, 14.3. 

HRMS (ESI-TOF, m/z): High resolution mass spec data could not be obtained for this 

compound. 

 

  

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl (E)-octadec-9-enoate (SI-43). 

On 2.5 mmol scale, general procedure A was followed with elaidic acid, and purification 

by flash column chromatography (silica gel, 9:1 hexanes:EtOAc) furnished N-hydroxy-

tetrachlorophthalimide ester SI-43 as a yellow-white solid (1.24 g, 88%). 

m.p.= 42 - 43 °C; 

Rf = 0.25 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.40 – 5.36 (m, 2H), 2.66 (t, J = 7.5 Hz, 2H), 2.01 – 1.92 

(m, 5H), 1.78 (p, J = 7.6 Hz, 2H), 1.48 – 1.40 (m, 2H), 1.37 – 1.16 (m, 17H), 0.88 (t, J = 

7.0 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 169.3, 157.7, 141.1, 130.7, 130.6, 130.3, 124.9, 32.8, 

32.7, 32.1, 31.0, 29.8, 29.7, 29.6, 29.5, 29.3, 29.1, 29.0, 28.9, 24.8, 22.8, 14.23. 

HRMS (ESI-TOF, m/z): calcd for C26H34Cl4NO4 [M+H]
+
 564.1236; found 564.1240. 

 

 

1,3-dioxoisoindolin-2-yl 2,2-dimethylbutanoate (SI-44). 

Following the General Procedure A with 2,2-dimethylbutanoic acid (5.0 mmol), 

purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded N-hydroxy-

phthalimide ester SI-44 (1.31 g, 90% yield) as a colorless oil.  

Rf = 0.46 (silica gel, 6:1 hexanes:EtOAc); 
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1
H NMR (600 MHz, CDCl3): δ 7.85-7.88 (m, 2H), 7.76-7.79 (m, 2H), 1.78 (q, J = 7.8 

Hz, 2H), 1.38 (s, 6H), 1.04 (t, J = 7.8 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.0, 162.3, 134.8, 129.2, 124.0, 42.6, 33.7, 24.8, 9.23 

ppm; 

HRMS (ESI-TOF): calc’d for C14H16NO4 [M+H]
+
 262.1074; found 262.1075. 

 

 

1,3-dioxoisoindolin-2-yl 1-ethylcyclobutane-1-carboxylate (SI-45). 

Following the General Procedure A with 1-ethylcyclobutane-1-carboxylic acid
 
(48) (3.2 

mmol), purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded N-

hydroxy-phthalimide ester SI-45 (705 mg, 81% yield) as a white solid.  

m.p.= 50-51 ºC; 

Rf = 0.46 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.87-7.90 (m, 2H), 7.77-7.80 (m, 2H), 2.66-2.70 (m, 

2H), 1.99-2.10 (m, 6H), 1.03 (t, J = 7.2 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 173.1, 162.4, 134.8, 129.3, 124.0, 47.4, 30.9, 30.1, 16.0, 

9.1 ppm; 

HRMS (ESI-TOF): calc’d for C15H16NO4 [M+H]
+
 274.1074; found 274.1075. 

 

 

 
1,3-dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropanoate (SI-

46). 

Following the General Procedure A with 3-((tert-butyldimethylsilyl)oxy)-2,2-

dimethylpropanoic acid
 
(49) (5.0 mmol), purification by flash column (silica gel, 10:1 

hexanes:EtOAc) afforded N-hydroxy-phthalimide ester SI-46 (1.73 g, 92% yield) as 

colorless oil.  
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Rf = 0.55 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.86-7.88 (m, 2H), 7.76-7.79 (m, 2H), 3.75 (s, 2H), 1.39 

(s, 6H), 0.92 (s, 9H), 0.09 (s, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 172.9, 162.0, 134.7, 129.2, 124.0, 69.3, 45.0, 26.0, 22.0, 

18.4, -5.50 ppm; 

HRMS (ESI-TOF): calc’d for C19H28NO5Si [M+H]
+
 378.1731; found 378.1735. 

 

 

 
1,3-dioxoisoindolin-2-yl 3-(methoxymethoxy)-2,2-dimethylpropanoate (SI-47). 

Following the General Procedure A with 3-(methoxymethoxy)-2,2-dimethylpropanoic 

acid
 

(50) (2.0 mmol), purification by flash column (silica gel, 15:1 to 10:1 

hexanes:EtOAc) afforded N-hydroxy-phthalimide ester SI-47 (522 mg, 85% yield) as a 

white solid.  

m.p.= 30-31 ºC; 

Rf = 0.31 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.86-7.88 (m, 2H), 7.77-7.78 (m, 2H), 4.71 (s, 2H), 3.70 

(s, 2H), 3.41 (s, 3H), 1.44 (s, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ172.6, 162.1, 134.8, 129.2, 124.0, 97.0, 74.0, 55.5, 43.4, 

22.5 ppm; 

HRMS (ESI-TOF): calc’d for C15H18NO6 [M+H]
+
 308.1129; found 308.1131. 

 

 

1,3-dioxoisoindolin-2-yl 4-methyl-1-tosylpiperidine-4-carboxylate (SI-48). 
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Following the General Procedure A with 4-methyl-1-tosylpiperidine-4-carboxylic acid (1 

mmol), purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded N-

hydroxy-phthalimide ester SI-48 (316 mg, 71 % yield) as a white solid.  

m.p.= 159-160 ºC; 

Rf = 0.75 (silica gel, 10:1 CH2Cl2:Et2O); 

1
H NMR (600 MHz, CDCl3): δ 7.81-7.84 (m, 2H), 7.76-7.79 (m, 2H), 7.65 (d, J = 7.8 

Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 3.63 (d, J = 13.2 Hz, 2H), 2.70 (t, J = 11.4 Hz, 2H), 

2.44 (s, 3H), 2.33 (d, d, J = 13.8 Hz, 2H), 1.69-1.74 (m, 2H), 1.44 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 172.4, 161.8, 143.7, 134.9, 133.4, 129.9, 129.0, 127.7, 

124.0, 43.6, 41.2, 34.5, 26.2, 21.7 ppm. 

HRMS (ESI-TOF): calc’d for C22H23N2O6S [M+H]
+
 443.1271; found 443.1274. 

 

 

1,3-dioxoisoindolin-2-yl 2-methyl-2-(methylthio)propanoate (SI-49). 

Following the General Procedure A with 2-methyl-2-(methylthio)propanoic acid (51) 

(7.45 mmol), purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded N-

hydroxy-phthalimide ester SI-49 (1.75 g, 84% yield) as a white solid.  

m.p.= 118-120 ºC; 

Rf = 0.56 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.86-7.90 (m, 2H), 7.77-7.80 (m, 2H), 2.28 (s, 3H), 1.69 

(s, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.3, 162.0, 134.9, 129.1, 124.1, 45.6, 25.1, 13.2 ppm; 

HRMS (ESI-TOF): calc’d for C13H14NO4S [M+H]
+
 280.0638; found 280.0643. 
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1,3-dioxoisoindolin-2-yl 2-methoxy-2-methylpropanoate (SI-50). 

Following the General Procedure A with 2-methoxy-2-methylpropanoic acid
 
(52) (1.0 

mmol), purification by flash column (silica gel, 10:1 hexanes:EtOAc) afforded N-

hydroxy-phthalimide ester SI-50 (270 mg, 99% yield) as a white solid. 

m.p.= 63 ºC; 

Rf = 0.41 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.87-7.92 (m, 2H), 7.77-7.81 (m, 2H), 3.45 (s, 3H), 1.63 

(s, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 171.1, 162.0, 135.0, 129.1, 124.1, 77.9, 53.1, 24.6 ppm;  

HRMS (ESI-TOF): calc’d for C13H14NO5 [M+H]
+
 264.0866; found 264.0866. 

 

 

1,3-dioxoisoindolin-2-yl 2-((tert-butoxycarbonyl)(methyl)amino)-2-

methylpropanoate (SI-51). 

Following the General Procedure A with 2-((tert-butoxycarbonyl)(methyl)amino)-2-

methylpropanoic acid
 
(53) (5.0 mmol), purification by flash column (silica gel, 4:1 to 3:1 

hexanes:EtOAc) afforded N-hydroxy-phthalimide ester SI-51 (1.18 g, 65% yield) as a 

white solid.  

m.p.= 124 ºC; 

Rf = 0.33 silica gel, (4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.84-7.87 (m, 2H), 7.74-7.77 (m, 2H), 2.98 (s, 3H), 1.65 

(s, 6H), 1.54 (s, 9H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 171.6, 162.0, 155.2, 134.7, 129.2, 123.9, 81.3 (br), 60.3, 

29.6, 28.2, 24.7 (br) ppm; 

HRMS (ESI-TOF): calc’d for C18H23N2O6 [M+H]
+
 363.1551; found 363.1551. 

 

 



 

 

S132 

 

 

1,3-dioxoisoindolin-2-yl 2-(4-chlorophenoxy)-2-methylpropanoate (SI-52). 

Following the General Procedure A with clofibric acid (5.0 mmol), purification by flash 

column (silica gel, 10:1 hexanes:EtOAc) afforded N-hydroxy-phthalimide ester SI-52 

(1.65 g, 92% yield) as a white solid.  

m.p. = 103 ºC; 

Rf = 0.48 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.89-7.93 (m, 2H), 7.79-7.82 (m, 2H), 7.28-7.30 (m, 

2H), 7.03-7.06 (m, 2H), 1.78 (s, 6H) ppm. 

13
C NMR (151 MHz, CDCl3): δ 170.7, 161.9, 153.3, 135.0, 129.5, 129.1, 128.6, 124.2, 

121.8, 79.1, 25.7 ppm; 

HRMS (ESI-TOF): calc’d for C18H15ClNO5 [M+H]
+
 360.0633; found 360.0639. 

 

The following redox-active esters were prepared following the literature procedure, 

and all spectra data matches that which is previously reported.  See ref. 21 for SI-53 

– SI-56 and ref. 54 for SI-57 – SI-59. 
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Experimental Procedures and Characterization Data for Products 

 

 

tert-butyldimethyl((2-methylhex-5-en-1-yl)oxy)silane (SI-2) 

On 1.0 mmol scale, general procedure B was followed with both (+)-SI-1 and (-)-SI-1 

seperately. Purification by PTLC (silica gel, 97.5:2.5 hexanes:EtOAc) afforded SI-2 as a 

colorless oil (0.011 g, 48%). The reported value for the R-enantiomer of SI-2 is []D
30

 = 

+ 2.2 (c = 2.68, CH2Cl2).(55) 

Rf = 0.34 (hexanes); 

1
H NMR (600 MHz, CDCl3): δ 5.81 (ddt, J = 16.9, 10.1, 6.6 Hz, 1H), 5.00 (ddt, J = 

17.1, 2.1, 1.6 Hz, 1H), 4.93 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 3.45 (dd, J = 9.8, 5.9 Hz, 

1H), 3.38 (dd, J = 9.8, 6.4 Hz, 1H), 2.14 – 2.08 (m, 1H), 2.06 – 1.99 (m, 1H), 1.65 – 1.57 

(m, 1H), 1.53 – 1.46 (m, 1H), 1.16 (dddd, J = 13.6, 9.6, 8.1, 5.6 Hz, 1H), 0.89 (s, 9H), 

0.04 (s, 6H). 

13
C NMR (151 MHz, CDCl3): δ 139.4, 114.2, 68.4, 35.4, 32.6, 31.4, 26.1, 18.5, 16.7, -

5.2 (2C). 

GC/MS (EI): 213 (1%, -Me), 171 (20%, -tBu), 75 (100%). 

D
20

 = 0 º (c = 1.0, CH2Cl2) 

 

 

 

((Non-8-en-1-yloxy)methyl)benzene (SI-6). On 0.1 mmol scale, general procedure B 

was followed. Purification by PTLC (silica gel, 10:1 hexanes:EtOAc) furnished the 

desired product SI-6 (12 mg, 53% yield) as a colorless oil. 

Rf = 0.62 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3) δ 7.42 – 7.16 (m, 5H), 5.81 (ddt, J = 16.9, 10.2, 6.7 Hz, 

1H), 4.99 (dq, J = 17.1, 1.7 Hz, 1H), 4.93 (ddt, J = 10.2, 2.3, 1.3 Hz, 1H), 4.50 (s, 2H), 

3.46 (t, J = 6.7 Hz, 2H), 2.06 – 2.01 (m, 2H), 1.68 – 1.58 (m, 2H), 1.45 – 1.21 (m, 8H) 

ppm; 
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13
C NMR (151 MHz, CDCl3) δ 138.7, 138.3, 127.9, 127.2, 127.0, 113.7, 72.4, 70.04, 

33.3, 29.3, 28.9, 28.6, 28.4, 25.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H25O [M+H]
+
; 233.1900, found 233.1912. 

 

  

((hept-6-en-1-yloxy)methyl)benzene (SI-9).  

On 0.1 mmol scale, N-hydroxy-tetrachlorophthalimide SI-8 was used following general 

procedure B. The reaction was quenched with 1M HCl and purification by PTLC (silica 

gel, 10:1 hexanes: Et2O) furnished coupling product SI-9 as a colorless oil (10.4 mg, 51 

%). 

Rf = 0.64 (silica gel, 10:1 hexanes:Et2O); 

1
H NMR (600 MHz, CDCl3): δ 7.36 – 7.33 (m, 4H), 7.32 – 7.26 (m, 1H), 5.81 (ddt, J = 

17.0, 10.2, 6.7 Hz, 1H), 5.00 (ddt, J = 17.1, 2.2, 1.6 Hz, 1H), 4.94 (ddt, J = 10.2, 2.3, 1.2 

Hz, 1H), 4.51 (s, 2H), 3.47 (t, J = 6.6 Hz, 2H), 2.06 (tdd, J = 6.8, 5.2, 1.5 Hz, 2H), 1.66 – 

1.59 (m, 2H), 1.44 – 1.36 (m, 4H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 139.1, 138.8, 128.5, 127.8, 127.6, 114.4, 73.0, 70.6, 

34.0, 29.7, 28.9, 25.9 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H21O [M+H]
+
 205.1587; found 205.1591. 

 

 
benzyl (1R,2R)-2-benzyl-4,4-dimethylcyclopentane-1-carboxylate (SI-12). 

Following the General Procedure D with SI-11 (0.1 mmol), purification by flash column 

(silica gel, 20:1 hexanes:EtOAc) and PTLC (silica gel, 20:1 hexanes:EtOAc) afforded SI-

12 (26.1 mg, 81% yield) as a colorless oil.  

Rf = 0.64 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (500 MHz, CDCl3): δ 7.09-7.37 (m, 10H), 5.08 (dd, J = 42.5, 12.0 Hz, 2H), 

3.11 (dd, J = 16.5, 8.0 Hz, 1H), 2.80 (dd, J = 13.0, 5.0 Hz, 1H), 2.63-2.71 (m, 1H), 2.39 
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(dd, J = 13.0, 10.5 Hz, 1H), 1.93 (dd, J = 13.5, 8.5 Hz, 1H), 1.68 (dd, J = 13.5, 8.0 Hz, 

1H), 1.41 (d, J = 8.5 Hz, 2H), 1.11 (s, 3H), 0.92 (s, 3H) ppm; 

13
C NMR (125 MHz, CDCl3): δ 175.4, 141.3, 136.2, 128.9, 128.7, 128.6, 128.4 (2C), 

126.0, 66.3, 47.1, 46.6, 43.8, 43.5, 38.4, 38.0, 30.1, 29.4 ppm;  

HRMS (ESI-TOF): calc’d for C22H27O2 [M+H]
+
 323.2006; found 323.2018. 

 

 

4-ethyl-1-tosylpiperidine (3).  

I. 0.1 mmol scale. 

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 6:1 hexanes:EtOAc) 

furnished coupling product 3 as a white solid (22.4 mg, 84 %). 

II. Gram-scale. 

One gram of 1b was used, following the gram-scale procedure B.  After purification by 

column chromatography (silica gel, 10:1 to 6:1 hexanes:EtOAc) afforded 3 as a white 

solid (0.379 g, 79%). 

m.p.= 58 °C; 

Rf = 0.58 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.66 – 7.62 (m, 2H), 7.33 – 7.29 (m, 2H), 3.77 – 3.72 

(m, 2H), 2.43 (s, 3H), 2.20 (td, J = 12.0, 2.6 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.30 – 1.20 

(m, 4H), 1.05 (dddd, J = 14.5, 11.4, 7.0, 3.2 Hz, 1H), 0.84 (t, J = 7.5 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.4, 129.7, 127.9, 46.7, 37.0, 31.3, 28.9, 21.7, 

11.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H22NSO2 [M+H]
+
 268.1366; found 268.1365. 

 

 

4-methyl-1-tosylpiperidine (4).  
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On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 4 as a white solid (18.3 mg, 72 %). 

m.p.= 66 °C; 

Rf = 0.62 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.66 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 3.75 

(d, J = 11.8 Hz, 2H), 2.45 (s, 3H), 2.28 – 2.19 (m, 2H), 1.72 – 1.63 (m, 2H), 1.36 – 1.24 

(m, 3H), 0.92 (d, J = 5.7 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 142.8, 132.9, 129.1, 127.3, 46.0, 32.9, 29.7, 21.1, 21.0 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H20NSO2 [M+H]
+
 254.1209; found 254.1208. 

 

 

 

4-(methyl-
13

C)-1-tosylpiperidine (4-
13

C) 

Part I. Procedure for preparation of Zn(
13

Me)2: 

To a dry two-necked 25 ml flask with stir bar under nitrogen was weighed ZnCl2 (13.6 

mg, 0.100 mmol).  This was placed under vacuum at 150 °C for 3 h, cooled to room 

temperature and then to 0 °C in an ice-water bath under nitrogen. To a separate dry flask 

with stir bar under nitrogen was weighed Mg powder (5.4 mg, 0.22 mmol) and 0.20 ml of  

anhydrous Et2O was added. To this was syringed in 
13

CH3I (12.4 µL, 0.20 mmol, Isotec 

99 atom %) in 0.20 mL diethyl ether. After stirring at room temperature for 30 min, only 

a small amount of Mg remained. To the ZnCl2 was syringed in the freshly prepared 

Grignard reagent in ether dropwise over 5 min.  The reaction was then stirred at room 

temperature for 1h.  

Part II. Procedure for Ni-catalyzed coupling reaction. 

To a second dry 25 ml flask with stir bar under nitrogen was weighed 4,5,6,7-tetrachloro-

1,3-dioxoisoindolin-2-yl 1-tosylpiperidine-4-carboxylate (114.0 mg, 0.201 mmol).  To 

this was syringed in a solution of NiCl2•glyme (8.8 mg, 0.040 mmol) and di-tBuBipy 

(21.4 mg, 0.080 mmol) in DMF (2.0 mL + 0.3 mL DMF rinse).  The [Ni]/L and 
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piperidine solution was syringed into the Zn(
13

CH3)2 solution at room temperature.  The 

resulting dark rust colored solution was stirred at room temperature overnight.  To the 

reaction was added 1N HCl (1.7 mL, 1.7 mmol). After stirring for 10 min, diethyl ether 

(15 mL) was added and the layers were separated. The aqueous layer was extracted with 

ether (2 x 15 mL). The combined ether extracts were washed with brine (1 x 10 mL), 

dried over Na2SO4, filtered and the solvent was removed under reduced pressure to give 

a dark yellow orange solid. The crude product was coated onto silica gel (0.56 g) and 

then was purified by flash chromatography 2x (12.0 g RediSep Rf Gold, eluent = 6:1 

hexane:EtOAc). Pure fractions of the product were pooled, and the solvent was removed 

under reduced pressure and then dried under vacuum to give 29.1 mg of white solid (56 

% yield). 

 

LC/MS Conditions: 

Finnigan LXQ LC/MS System. Detection = ESI (+) ion LC Column = Phenomenex Luna 

3 μm, C18, 50 X 3.0 mm, Flowrate = 0.50 ml/min, UV detection by PDA from 200 - 400 

nm. Gradient (Mobile Phase A = 1000 H2O : 1 Formic acid, Mobile Phase B = 1000 

MeCN : 1 Formic acid) 0 min 10% B, 10 min 100% B). 

LC/MS of product. Retention time = 7.17 min, m/z (+ ion) = 255.25(100%) 

/256.17(12%) /257.17(7%). 

 

1
H-NMR (400 MHz, CDCl3): δ 7.68 - 7.65 (m, 2H), 7.36 - 7.32 (m, 2H), 3.79 - 3.73 (m, 

2H), 2.45 (s, 3H), 2.29 - 2.21 (m, 2H), 1.68 (dd, J = 9.4, 2.4 Hz, 2H), 1.29 - 1.27 (m, 3H), 

1.08 (d, J = 5.7 Hz, 1.5H), 0.77 (d, J = 5.6 Hz, 1.5H). The two peaks at 1.08 and 0.77 

ppm are actually a single system with a large J 
13

C-
1
H coupling constant of 124 Hz. 

Taking this into account gives 0.93 (dd, J = 5.6 Hz and J 
13

C-
1
H = 124 Hz, 3H). 

13
C-NMR (101 MHz, CDCl3): δ 143.3, 133.4, 129.5, 127.7, 46.5, 33.4, 30.0, 24.7, 21.5. 

Peak at 21.5 ppm is the 
13

C methyl. 

 

 
4-(cyclohexylmethyl)-1-tosylpiperidine (5).  
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On 0.1 mmol scale, 1b was used following general procedure B with bipyridine as the 

ligand. The reaction was quenched with 1M HCl and purified by PTLC (silica gel, 6:1 

hexanes:EtOAc) to furnish coupling product 5 as a white solid (22.7 mg, 77 %). 

m.p.= 48-50 °C; 

Rf = 0.62 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.64 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.75 

(d, J = 11.6 Hz, 2H), 2.43 (s, 3H), 2.20 (td, J = 11.9, 2.6 Hz, 2H), 1.75 – 1.64 (m, 2H), 

1.34 – 1.17 (m, 8H), 1.13 (tdd, J = 10.0, 6.2, 2.9 Hz, 1H), 0.86 (t, J = 6.9 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.4, 129.7, 127.9, 46.7, 35.9, 35.3, 31.7, 28.9, 

22.9, 21.7, 14.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H26NSO2 [M+H]
+
 296.1679; found 296.1680. 

 

 

 
4-nonyl-1-tosylpiperidine (6).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 6 as a white solid (22.7 mg, 62 %). 

m.p.= 45°C; 

Rf = 0.55 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 3.74 

(d, J = 11.7 Hz, 2H), 2.42 (s, 3H), 2.20 (td, J = 11.9, 2.5 Hz, 2H), 1.70 (d, J = 12.9 Hz, 

2H), 1.31 – 1.16 (m, 18H), 1.15 – 1.09 (m, 1H), 0.86 (t, J = 6.9 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.4, 129.6, 127.9, 46.7, 36.2, 35.2, 32.0, 31.7, 

29.8, 29.7, 29.7, 29.4, 26.7, 22.8, 21.7, 14.2 ppm; 

HRMS (ESI-TOF, m/z): calcfd for C21H36NSO2 [M+H]
+
 366.2461; found 366.2454. 

 

 

4-(but-3-en-1-yl)-1-tosylpiperidine (7).  
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On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 7 as a colorless oil (22.4 mg, 76 %). 

Rf = 0.43 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.65 – 7.62 (m, 2H), 7.33 – 7.29 (m, 2H), 5.73 (ddt, J = 

16.9, 10.2, 6.6 Hz, 1H), 4.96 (dq, J = 17.2, 1.7 Hz, 1H), 4.91 (ddt, J = 10.2, 2.3, 1.3 Hz, 

1H), 3.75 (dt, J = 11.3, 2.6 Hz, 2H), 2.42 (s, 3H), 2.20 (td, J = 11.9, 2.6 Hz, 2H), 2.04 – 

1.99 (m, 2H), 1.74 – 1.68 (m, 2H), 1.34 – 1.23 (m, 4H), 1.18 (dtt, J = 18.5, 8.0, 3.6 Hz, 

1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 138.6, 133.3, 129.7, 127.9, 114.7, 46.6, 35.2, 

34.6, 31.5, 30.8, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H24NSO2 [M+H]
+
 294.1522; found 294.1526. 

 

 

4-(pent-4-en-1-yl)-1-tosylpiperidine (8).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 8 as a colorless oil (22.0 mg, 72 %). 

Rf = 0.57 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.65 – 7.62 (m, 2H), 7.31 (d, J = 7.7 Hz, 2H), 5.76 (ddt, 

J = 17.0, 10.2, 6.7 Hz, 1H), 4.96 (dq, J = 17.2, 1.7 Hz, 1H), 4.92 (ddt, J = 10.2, 2.2, 1.2 

Hz, 1H), 3.78 – 3.72 (m, 2H), 2.43 (s, 3H), 2.20 (td, J = 11.9, 2.6 Hz, 2H), 2.03 – 1.96 

(m, 2H), 1.74 – 1.67 (m, 2H), 1.36 – 1.29 (m, 2H), 1.29 – 1.25 (m, 2H), 1.25 – 1.19 (m, 

2H), 1.18 – 1.09 (m, 1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.8, 133.3, 129.7, 127.9, 127.9, 114.6, 46.7, 35.6, 

35.2, 33.9, 31.6, 26.0, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C17H26NSO2 [M+H]
+
 308.1679; found 308.1664. 
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4-(cyclohexylmethyl)-1-tosylpiperidine (9).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 9 as a white solid (18.8 mg, 56 %). 

m.p.= 99-101 °C; 

Rf = 0.54 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 8.3 Hz, 2H), 7.34 – 7.29 (m, 2H), 3.74 (d, J 

= 11.7 Hz, 2H), 2.43 (s, 3H), 2.25 – 2.14 (m, 2H), 1.70 – 1.54 (m, 7H), 1.29 – 1.21 (m, 

4H), 1.20 – 1.08 (m, 3H), 1.06 (t, J = 6.3 Hz, 2H), 0.84 – 0.75 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.3, 129.7, 127.9, 46.7, 44.1, 34.3, 33.6, 32.1, 

31.9, 26.8, 26.4, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C19H30NSO2 [M+H]
+
 336.1992; found 336.1996. 

 

 

4-(5-phenylpentyl)-1-tosylpiperidine (10).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 10 as a colorless oil (32.4 mg, 84 %). 

Rf = 0.57 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.64 (d, J = 8.2 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.28 – 

7.24 (m, 1H), 7.18 – 7.12 (m, 4H), 3.74 (d, J = 11.7 Hz, 2H), 2.62 – 2.53 (t, J = 7.2, 2H), 

2.43 (s, 3H), 2.19 (td, J = 12.0, 2.6 Hz, 2H), 1.73 – 1.65 (m, 2H), 1.57 (dd, J = 15.2, 7.3 

Hz, 2H), 1.31 – 1.22 (m, 6H), 1.19 (dd, J = 8.6, 5.0 Hz, 2H), 1.11 (dddt, J = 14.1, 10.9, 

6.6, 3.3 Hz, 1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 142.8, 133.4, 129.7, 128.5, 128.4, 127.9, 125.8, 

46.7, 36.1, 36.1, 35.2, 31.7, 31.5, 29.5, 26.6, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C23H32NSO2 [M+H]
+
 386.2148; found 386.2138. 
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4-(pent-3-yn-1-yl)-1-tosylpiperidine (11).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 11 as a white solid (25.6 mg, 84 %). 

m.p.= 107-108 °C; 

Rf = 0.39 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.66 – 7.61 (m, 2H), 7.34 – 7.29 (m, 2H), 3.75 (d, J = 

11.7 Hz, 2H), 2.43 (s, 3H), 2.23 (td, J = 11.6, 2.5 Hz, 2H), 2.11 (tq, J = 7.2, 2.6 Hz, 2H), 

1.75 – 1.69 (m, 5H), 1.38 (q, J = 6.8 Hz, 2H), 1.35 – 1.23 (m, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 142.9, 132.8, 129.1, 127.3, 78.1, 75.3, 45.9, 34.6, 33.4, 

30.6, 21.1, 15.4, 3.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C17H24NSO2 [M+H]
+
 306.1522; found 306.1516. 

 

 

1-tosyl-4-(5-(trimethylsilyl)pent-4-yn-1-yl)piperidine (12).  

On 0.1 mmol scale, 1a was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 12 as a colorless oil (29.8 mg, 77 %). 

Rf = 0.57 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 8.3 Hz, 2H), 7.31 (dd, J = 8.5, 0.8 Hz, 2H), 

3.81 – 3.68 (m, 2H), 2.42 (s, 3H), 2.21 (td, J = 11.8, 2.6 Hz, 2H), 2.16 (t, J = 7.1 Hz, 2H), 

1.71 (d, J = 12.4 Hz, 2H), 1.51 – 1.42 (m, 2H), 1.33 – 1.24 (m, 4H), 1.22 – 1.13 (m, 1H), 

0.11 (s, 9H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.3, 129.7, 127.9, 107.2, 84.8, 46.6, 35.3, 34.8, 

31.6, 25.8, 21.7, 20.0, 0.3 ppm; 
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HRMS (ESI-TOF, m/z): calcd for C20H32NSiSO2 [M+H]
+
 378.1918; found 378.1919. 

 

 

4-(4-chlorobutyl)-1-tosylpiperidine (13).  

On 0.1 mmol scale, 1a was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 13 as a white solid (26.6 mg, 81 %). 

Rf = 0.36 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 3.75 

(dt, J = 12.2, 3.2 Hz, 2H), 3.49 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.20 (td, J = 12.0, 2.5 Hz, 

2H), 1.75 – 1.66 (m, 4H), 1.44 – 1.35 (m, 2H), 1.32 – 1.24 (m, 2H), 1.24 – 1.19 (m, 2H), 

1.19 – 1.10 (m, 1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.5, 133.3, 129.7, 127.8, 46.6, 45.1, 35.4, 35.1, 32.7, 

31.6, 24.0, 21.6 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H25NClSO2 [M+H]
+
 330.1289; found 330.1277. 

 

 

4-(3-(benzyloxy)propyl)-1-tosylpiperidine (14).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 14 as a colorless oil (29.9 mg, 77 %). 

Rf = 0.55 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.66 – 7.61 (m, 2H), 7.34 – 7.29 (m, 6H), 7.28 – 7.25 

(m, 1H), 4.47 (s, 2H), 3.75 (dt, J = 11.3, 3.3 Hz, 2H), 3.41 (t, J = 6.5 Hz, 2H), 2.43 (s, 

3H), 2.19 (td, J = 11.9, 2.6 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.60 – 1.53 (m, 2H), 1.32 – 1.23 

(m, 4H), 1.14 (dtd, J = 15.0, 7.9, 7.4, 3.5 Hz, 1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 138.6, 133.3, 129.7, 128.5, 127.9, 127.7, 127.7, 

73.1, 70.5, 46.6, 35.1, 32.7, 31.6, 27.0, 21.6 ppm; 
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HRMS (ESI-TOF, m/z): calcd for C22H30NSO3 [M+H]
+
 388.1941; found 388.1942. 

 

4-(3-((tert-butyldimethylsilyl)oxy)propyl)-1-tosylpiperidine (15).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 15 as a white solid (30.8 mg, 75 %). 

m.p.= 39-41 °C; 

Rf = 0.54 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.65 – 7.61 (m, 2H), 7.33 – 7.29 (m, 2H), 3.74 (dt, J = 

11.3, 2.5 Hz, 2H), 3.54 (t, J = 6.5 Hz, 2H), 2.42 (s, 3H), 2.21 (td, J = 11.9, 2.6 Hz, 2H), 

1.75 – 1.68 (m, 2H), 1.50 – 1.42 (m, 2H), 1.32 – 1.21 (m, 4H), 1.15 (dddd, J = 14.8, 8.0, 

6.9, 3.6 Hz, 1H), 0.86 (s, 9H), 0.01 (s, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.4, 129.7, 127.9, 63.3, 46.6, 35.1, 32.4, 31.7, 

30.0, 26.0, 21.7, 18.5, -5.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C21H38NSO3 [M+H]
+
 412.2336; found 412.2327. 

 

 

4-(2-(1,3-dioxan-2-yl)ethyl)-1-tosylpiperidine (16).  

On 0.1 mmol scale, 1b was used following general procedure B with bipyridine. The 

reaction was quenched with 1M HCl and purified by PTLC (silica gel, 6:1 

hexanes:EtOAc) to furnish coupling product 16 as a colorless oil (25.8 mg, 73 %). 

Rf = 0.16 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.6 Hz, 2H), 4.45 

(t, J = 5.1 Hz, 1H), 4.07 (ddt, J = 10.5, 5.0, 1.4 Hz, 2H), 3.77 – 3.69 (m, 4H), 2.42 (s, 

3H), 2.20 (td, J = 11.9, 2.6 Hz, 2H), 2.04 (dtt, J = 13.5, 12.5, 5.0 Hz, 1H), 1.74 – 1.67 (m, 

2H), 1.57 – 1.50 (m, 2H), 1.35 – 1.21 (m, 5H), 1.13 (dtd, J = 15.0, 7.8, 7.4, 3.5 Hz, 1H) 

ppm; 
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13
C NMR (151 MHz, CDCl3): δ 143.4, 133.3, 129.7, 127.9, 102.4, 67.0, 46.6, 35.2, 32.6, 

31.6, 30.3, 25.9, 21.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C18H28NSO4 [M+H]
+
 354.1734; found 354.1722. 

 

 

4-cyclopropyl-1-tosylpiperidine (17).  

On 0.1 mmol scale, 1b was used following general procedure B. The reaction was 

quenched with 1M HCl and purified by PTLC (silica gel, 6:1 hexanes:EtOAc) to furnish 

coupling product 17 as a white solid (20.5 mg, 73 %) 

m.p.= 94-95°C; 

Rf = 0.67 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.63 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 3.73 

(d, J = 12.0, 2H), 2.42 (s, 3H), 2.19 (td, J = 11.8, 2.7 Hz, 2H), 1.83 – 1.73 (m, 2H), 1.45 

(qd, J = 12.0, 4.1 Hz, 2H), 0.49 (ddt, J = 13.3, 8.8, 4.4 Hz, 1H), 0.38 (m, 3H), -0.02 (q, J 

= 4.9 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.4, 133.3, 129.6, 127.8, 46.6, 40.7, 31.4, 21.6, 16.4, 

3.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H22SNO2 [M+H]
+
 280.1366; found 280.1367. 

 

 

((3-cyclobutylpropoxy)methyl)benzene (18).  

On 0.1 mmol scale, SI-53 was used following general procedure B. Purification by PTLC 

(silica gel, 10:1 hexanes:EtOAc) furnished the desired product 18 (15 mg, 75% yield) as 

a colorless oil. 

Rf = 0.78 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 7.50 – 7.15 (m, 5H), 4.52 (s, 2H), 3.47 (t, J = 6.5 Hz, 

2H), 2.28 (p, J = 7.8 Hz, 1H), 2.13 – 1.95 (m, 2H), 1.93 – 1.75 (m, 2H), 1.69 – 1.41 (m, 

6H) ppm; 
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13
C NMR (101 MHz, CDCl3) δ 138.7, 128.3, 127.6, 127.5, 72.8, 70.6, 36.0, 33.4, 28.3, 

27.5, 18.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H21O [M+H]
+
 205.1587; found 205.1588. 

 

 

((3-cyclopentylpropoxy)methyl)benzene (19).  

On 0.1 mmol scale, SI-13 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 10:1 hexanes:Et2O) 

furnished coupling product  19 as a colorless oil (14.3 mg, 66 %). 

Rf = 0.70 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.37 – 7.32 (m, 4H), 7.30 – 7.27 (m, 1H), 4.51 (s, 2H), 

3.47 (t, J = 6.8 Hz, 2H), 1.81 – 1.71 (m, 3H), 1.68 – 1.62 (m, 2H), 1.62 – 1.56 (m, 2H), 

1.54 – 1.67 (m, 2H), 1.40 – 1.34 (m, 2H), 1.12 – 1.04 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.3, 127.9, 127.2, 127.0, 72.4, 70.4, 39.6, 32.2, 32.1, 

28.6, 24.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H23O [M+H]
+
 219.1743; found 219.1743. 

 

 

3-(3-(benzyloxy)propyl)tetrahydrofuran (20).  

On 0.1 mmol scale, SI-14 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 10:1 hexanes:Et2O) 

furnished coupling product 20 as a colorless oil (14.5 mg, 66 %). 

Rf = 0.48 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.37 – 7.32 (m, 4H), 7.30-7.26 (m, 1H), 4.50 (s, 2H), 

3.90 (t, J = 7.7 Hz, 1H), 3.84 (td, J = 8.2, 4.6 Hz, 1H), 3.74 (q, J = 7.8 Hz, 1H), 3.47 (t, J 

= 6.5 Hz, 2H), 3.33 (t, J = 7.8 Hz, 1H), 2.18 (hept, J = 7.5 Hz, 1H), 2.03 (dtd, J = 12.2, 

7.5, 4.6 Hz, 1H), 1.70 – 1.57 (m, 2H), 1.54 – 1.42 (m, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.1, 127.9, 127.2, 127.1, 73.0, 72.5, 69.8, 67.5, 38.8, 

32.0, 29.4, 28.4 ppm; 
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HRMS (ESI-TOF, m/z): calcd for C14H21O [M+H]
+
 221.1536; found 221.1536. 

 

 

((3-cyclohexylpropoxy)methyl)benzene (21).  

On 0.1 mmol scale, SI-15 was used following general procedure B. Bipyridyl was used 

as the ligand. The reaction was quenched with 1M HCl and purification by PTLC (silica 

gel, 10:1 hexanes:EtOAc) furnished coupling product 21 as a colorless oil (17.5 mg, 75 

%). 

Rf = 0.70 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.37 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 4.51 (s, 2H), 

3.45 (t, J = 6.7 Hz, 2H), 1.74 – 1.66 (m, 4H), 1.66 – 1.60 (m, 3H), 1.29 – 1.08 (m, 6H), 

0.92 – 0.88 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.3, 127.9, 127.2, 127.0, 72.4, 70.5, 37.1, 33.4, 32.9, 

26.7, 26.3, 26.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H25O [M+H]
+
 233.1900; found 233.1902. 

 

 

4-(3-(benzyloxy)propyl)tetrahydro-2H-pyran (22).  

On 0.1 mmol scale, SI-16 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 10:1 hexanes:Et2O) 

furnished coupling product 22 as a colorless oil (14.3 mg, 61 %) 

Rf = 0.57 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.35 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 4.51 (s, 2H), 

3.94 (ddd, J = 11.7, 4.8, 1.7 Hz, 2H), 3.46 (t, J = 6.6 Hz, 2H), 3.36 (td, J = 11.7, 2.1 Hz, 

2H), 1.68 – 1.56 (m, 4H), 1.51 – 1.42 (m, 1H), 1.35 – 1.29 (m, 2H), 1.29 – 1.23 (m, 2H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.7, 128.5, 127.8, 127.7, 73.1, 70.7, 68.3, 35.0, 33.5, 

33.3, 26.8 ppm; 
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HRMS (ESI-TOF, m/z): calcd for C15H23O2 [M+H]
+
 235.1693; found 235.1693. 

 

 

((3-(4,4-difluorocyclohexyl)propoxy)methyl)benzene (23) 

On 0.1 mmol scale, general procedure B was followed with SI-17 and bipyridine. 

Purification by PTLC (97.5:2.5 hexanes:EtOAc) afforded 23 as a colorless oil (0.019 g, 

71%). 

Rf = 0.50 (silica gel, 9:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.37 – 7.32 (m, 4H), 7.30 – 7.26 (m, 1H), 4.50 (s, 2H), 

3.46 (t, J = 6.5 Hz, 2H), 2.11 – 2.01 (m, 2H), 1.81 – 1.74 (m, 2H), 1.74 – 1.58 (m, 4H), 

1.36 – 1.31 (m, 3H), 1.29 – 1.20 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.7, 128.5, 127.8, 127.7, 124.0 (dd, J1 = 241.4, 240.0 

Hz), 73.1, 70.6, 35.8, 33.6 (dd, J = 25.3, 22.1 Hz), 32.4, 29.1 (d, J = 9.7 Hz), 27.6 ppm; 

19
F NMR (376 MHz, CDCl3): δ -91.74 (d, J = 234.7 Hz), -102.23 (d, J = 234.1 Hz) ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H21F2O [M-H]
-
 267.1566; found 267.1563. 

 

 

2-(3-(Benzyloxy)propyl)-2,3-dihydro-1H-indene (24).  

On 0.1 mmol scale, SI-54 was used following general procedure B.  Purification by 

PTLC (silica gel, 10:1 hexanes:EtOAc) furnished the desired product 24 (24 mg, 89% 

yield) as a colorless oil.  

Rf = 0.57 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.38 (m, 4H), 7.36 – 7.28 (m, 1H), 7.25 – 7.19 (m, 

2H), 7.19 – 7.11 (m, 2H), 4.55 (s, 2H), 3.54 (t, J = 6.5 Hz, 2H), 3.08 (dd, J = 15.4, 7.8 

Hz, 2H), 2.63 (dd, J = 15.5, 8.2 Hz, 2H), 2.49 (h, J = 7.7 Hz, 1H), 1.81 – 1.69 (m, 2H), 

1.68 – 1.55 (m, 2H) ppm; 

13
C NMR (101 MHz, CDCl3) δ 143.5, 138.6, 128.4, 127.6, 127.5, 126.0, 124.4, 73.0, 

71.0, 40.1, 39.3, 32.3, 28.7 ppm; 
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HRMS (ESI-TOF, m/z): calcd for C19H23O [M+H]
+
 267.1743; found 267.1741. 

 

 

2-(3-(benzyloxy)propyl)bicyclo[2.2.2]octane (25). 

On 0.1 mmol scale, SI-55 was used and followed general procedure B.  Purification by 

PTLC (silica gel, 10:1 hexanes:EtOAc) furnished the desired product 25 (17 mg, 65% 

yield) as a colorless oil. 

Rf = 0.67 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 7.42 – 6.95 (m, 5H), 4.51 (s, 2H), 3.47 (t, J = 6.7 Hz, 

2H), 1.85 – 0.94 (m, 18H) ppm; 

13
C NMR (101 MHz, CDCl3) δ 138.7, 128.3, 127.6, 127.5, 72.8, 70.8, 35.7, 34.2, 32.4, 

28.3, 27.8, 27.4, 26.1, 25.3, 24.8, 20.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C18H27O [M+H]
+
 259.2056; found 259.2052. 

 

 

3-butyl-1-tosylazetidine (26).  

On 0.1 mmol scale, SI-18 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 6:1 hexanes:EtOAc) 

furnished coupling product 26 as a colorless oil (12.3 mg, 46%). 

Rf = 0.46 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.72 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 7.8 Hz, 2H), 3.83 

(t, J = 8.0 Hz, 2H), 3.37 (dd, J = 7.8, 6.2 Hz, 2H), 2.46 (s, 3H), 2.37 (pt, J = 7.8, 6.2 Hz, 

1H), 1.35 – 1.29 (m, 2H), 1.23 – 1.16 (m, 2H), 1.11 – 1.02 (m, 2H), 0.82 (t, J = 7.3 Hz, 

3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 144.0, 131.9, 129.8, 128.5, 56.2, 33.4, 28.9, 28.8, 22.5, 

21.7, 14.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H22NSO2 [M+H]
+
 268.1366; found 268.1358. 
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2-(3-(Benzyloxy)propyl)tetrahydrofuran (27).  

On 0.1 mmol scale, SI-56 was used following general procedure B.  Purification by 

PTLC (silica gel, 4:1 hexanes:EtOAc) furnished the desired product 27 (11 mg, 51% 

yield) as a yellow oil. 

Rf = 0.42 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3) δ 7.48 – 7.22 (m, 5H), 4.50 (s, 2H), 3.91 – 3.77 (m, 2H), 

3.71 (q, J = 7.4 Hz, 1H), 3.50 (q, J = 5.9 Hz, 2H), 2.03 – 1.55 (m, 7H), 1.45 (dq, J = 11.9, 

8.0 Hz, 1H) ppm; 

13
C NMR (101 MHz, CDCl3) δ 138.6, 128.3, 127.6, 127.5, 79.1, 72.8, 70.3, 67.7, 32.3, 

31.4, 26.6, 25.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H21O2 [M+H]
+
 221.1536; found 221.1536. 

 

 

benzyl 2-butylpyrrolidine-1-carboxylate (28) 

On 0.1 mmol scale, general procedure C was followed with N-Benzyloxycarbonyl-L-

proline with the following modification: the reaction mixture was heated to 60 ºC for a 

period of 12h.  Purification by flash column chromatography (silica gel, 4:1 

hexanes:EtOAc) afforded 28 (0.012 g, 46%) as a colorless oil. 

Rf = 0.59 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, Acetone-d6): δ 7.42 – 7.33 (m, 4H), 7.33 – 7.27 (m, 1H), 5.19 – 

5.00 (m, 2H), 3.79 (s, 1H), 3.47 – 3.25 (m, 2H), 2.00 – 1.62 (m, 3H), 1.29 (d, J = 37.0 

Hz, 7H), 0.98 – 0.68 (m, 3H) ppm; 

Note: Due to an issue with rotamers, the 
13

C NMR spectrum is complex. For details, 

please see the attached corresponding spectra. 

HRMS (ESI-TOF, m/z): calcd for C16H24NO2 [M+H]
+
 262.1802; found 262.1804. 
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(((4-methylpentyl)oxy)methyl)benzene (29). 

On 0.1 mmol scale, general procedure B was followed with SI-19 and bipyridine. 

Purification by PTLC (97.5:2.5 hexanes:EtOAc) afforded 29 as a colorless oil (0.012 g, 

62%). 

Rf = 0.71 (silica gel, 9:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.35 (m, 4H), 7.30 – 7.26 (m, 1H), 4.51 (s, 2H), 3.46 (t, 

J = 6.7 Hz, 2H), 1.66 – 1.59 (m, 2H), 1.55 (h, J = 6.7 Hz, 1H), 1.27 – 1.22 (m, 2H), 0.89 

(d, J = 6.7 Hz, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.9, 128.5, 127.8, 127.6, 73.1, 71.0, 35.5, 28.1, 27.8, 

22.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H21O [M+H]
+
 193.1587; found 193.1585. 

 

 

 

(((4-Fluoropentyl)oxy)methyl)benzene (30).  

On 0.1 mmol scale, SI-20 was used following general procedure B. Purification by PTLC 

(silica gel, 4:1 hexanes:EtOAc) furnished the desired product 30 (11 mg, 56% yield) as a 

colorless oil. 

Rf = 0.47 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3) δ 7.44 – 7.28 (m, 5H), 4.85 – 4.59 (m, 1H), 4.53 (s, 2H), 

3.65 – 3.41 (m, 2H), 1.88 – 1.62 (m, 4H), 1.35 (dd, J = 23.9, 6.2 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 138.1, 127.9, 127.2, 127.1, 90.4 (d, J = 164.1 Hz), 72.4, 

69.5, 33.2 (d, J = 21.0 Hz), 25.0 (d, J = 4.5 Hz), 20.6 (d, J = 22.7 Hz) ppm; 

19
F NMR (376 MHz, CDCl3) δ -173.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C12H18FO [M+H]
+
 197.1336; found 197.1337. 
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ethyl (4S,5R)-5-(but-3-en-1-yl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (31) 

On 0.1 mmol scale, general procedure B was followed with SI-22. Purification by PTLC 

(9:1 hexanes:EtOAc) afforded 31 (10:1 dr) as a colorless oil (0.009 g, 40%). 

Rf = 0.59 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.83 (ddt, J = 16.9, 10.2, 6.5 Hz, 1H), 5.06 (dq, J = 17.1, 

1.7 Hz, 1H), 5.00 (ddt, J = 10.2, 1.9, 1.3 Hz, 1H), 4.29 – 4.20 (m, 2H), 4.16 – 4.11 (m, 

2H), 2.31 – 2.22 (m, 1H), 2.22 – 2.12 (m, 1H), 1.92 – 1.83 (m, 1H), 1.82 – 1.73 (m, 1H), 

1.47 (d, J = 0.7 Hz, 3H), 1.44 (d, J = 0.7 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 171.0, 137.7, 115.3, 111.0, 79.2, 78.7, 61.5, 32.9, 29.8, 

27.3, 25.8, 14.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C12H21O4 [M+H]
+
 229.1434; found 229.1437. 

D
20

 = +16.7 º (c = 0.33, CH2Cl2). 

 

 

ethyl (4S,5R)-5-(but-3-en-1-yl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (32) 

On 0.1 mmol scale, general procedure B was followed with SI-22. Purification by PTLC 

(9:1 hexanes:EtOAc) afforded 32 (dr > 20:1) as a colorless oil (0.019 g, 59%). 

Rf = 0.50 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.34 (d, J = 5.7 Hz, 4H), 7.28 (ddd, J = 8.3, 3.6, 2.5 Hz, 

1H), 4.51 (s, 2H), 4.28 – 4.18 (m, 2H), 4.17 – 4.09 (m, 2H), 3.57 – 3.48 (m, 2H), 1.95 – 



 

 

S152 

 

1.86 (m, 1H), 1.86 – 1.79 (m, 1H), 1.79 – 1.71 (m, 2H), 1.46 (s, 3H), 1.43 (s, 3H), 1.28 (t, 

J = 7.1 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 171.0, 138.7, 128.5, 127.73, 127.68, 111.0, 79.2, 79.1, 

73.0, 70.0, 61.5, 30.4, 27.3, 26.0, 25.8, 14.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C18H27O5 [M+H]
+
 323.1853; found 323.1855. 

D
20

 = +13.4 º (c = 1.0, CH2Cl2). 

 

Assignment of stereochemistry for 31 and 32: 

 

 

The stereochemistry of 31 and 32 was assigned to be predominantly trans based on the 

reaction shown above.  Diagnostic peaks from the crude 
1
H NMR spectrum of SI-60 

matches that which is published for the trans diastereomer shown above.(56, 57)  

  

 

hexylbenzene (33).  

On 0.1 mmol scale, SI-23 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, hexanes) furnished coupling 

product 33 as a colorless oil (9.7 mg, 60%). 

Rf = 0.88 (silica gel, hexanes); 

1
H NMR (600 MHz, CDCl3): δ 7.30 – 7.27 (m, 2H), 7.20 – 7.16 (m, 3H), 2.61 (t, J = 7.9 

Hz, 2H), 1.66 – 1.58 (m, 2H), 1.37 – 1.27 (m, 6H), 0.89 (t, J = 6.7 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.1, 128.5, 128.4, 125.7, 36.2, 31.9, 31.7, 29.2, 22.8, 

14.3 ppm; 

The NMR data matches the reported data.(58) 
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methyl 8-(benzyloxy)octanoate (34).  

On 0.1 mmol scale, SI-24 was used following general procedure B. Bipyridyl was used 

as the ligand. The reaction was quenched with 1M HCl and purification by PTLC (silica 

gel, 10:1 hexanes:Et2O) furnished coupling product 34 as a colorless oil (16.0 mg, 61 %). 

Rf = 0.34 (silica gel, 10:1 hexanes:Et2O); 

1
H NMR (600 MHz, CDCl3): δ 7.37 – 7.32 (m, 4H), 7.30 – 7.27 (m, 1H), 4.50 (s, 2H), 

3.66 (s, 3H), 3.46 (t, J = 6.6 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 1.65 – 1.57 (m, 4H), 1.40 – 

1.29 (m, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.4, 138.8, 128.5, 127.8, 127.6, 73.0, 70.5, 51.6, 34.2, 

29.8, 29.2 (2C), 26.2, 25.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C16H25O3 [M+H]
+
 265.1798; found 265.1798. 

 

 

(((5-Cyclopentylpentyl)oxy)methyl)benzene (35).  

On 0.1 mmol scale, SI-25 was used and followed general procedure B with bipyridine as 

the ligand. Purification by PTLC (silica gel, 10:1 hexanes:EtOAc) furnished the desired 

product 35 (14 mg, 59% yield) as a colorless oil. 

Rf = 0.76 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.39 – 7.35 (m, 4H), 7.33 – 7.28 (m, 1H), 4.53 (s, 2H), 

3.49 (t, J = 6.7 Hz, 2H), 1.79 – 1.71 (m, 3H), 1.68 – 1.57 (m, 4H), 1.55 – 1.49 (m, 2H), 

1.42 – 1.30 (m, 6H), 1.15 – 1.03 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.3, 127.9, 127.2, 127.0, 72.4, 70.1, 39.6, 35.7, 32.3, 

29.4, 28.2, 26.0, 24.7 ppm; 

HRMS (ESI-TOF, m/z): calcd for C17H27O [M+H]
+
 247.2056; found 247.2057. 
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3-(hex-5-en-1-yl)pyridine (36).  

On 0.1 mmol scale, SI-26 was used following general procedure B. The reaction was 

quenched with saturated NH4Cl, and purification by PTLC (silica gel, 4:1 

hexanes:EtOAc) furnished coupling product 36 as a colorless oil (11.7 mg, 73%) 

Rf = 0.29 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 8.48 – 8.41 (m, 2H), 7.49 (d, J = 7.9 Hz, 1H), 7.20 (dd, J 

= 7.8, 4.8 Hz, 1H), 5.79 (ddt, J = 17.0, 10.1, 6.7 Hz, 1H), 5.00 (dq, J = 17.1, 1.7 Hz, 1H), 

4.95 (ddt, J = 10.2, 2.3, 1.3 Hz, 1H), 2.61 (t, J = 7.7 Hz, 2H), 2.13 – 2.04 (m, 2H), 1.64 

(tt, J = 9.3, 6.9 Hz, 2H), 1.44 (tt, J = 7.5, 7.5 Hz, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 150.0, 147.3, 138.7, 138.0, 136.0, 123.4, 114.8, 33.6, 

33.0, 30.7, 28.5 ppm; 

HRMS (ESI-TOF, m/z): calcd for C11H16N [M+H]
+
 162.1277; found 162.1279. 

 

 

((oct-7-en-1-yloxy)methyl)benzene (37) 

On 0.1 mmol scale, general procedure B was followed with SI-27 and bipyridine as 

ligand. Purification by PTLC (PhMe) afforded 37 as a colorless oil (0.015 g, 69%). 

Rf = 0.14 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3): δ 7.35 – 7.34 (m, 4H), 7.31 – 7.27 (m, 1H), 5.81 (ddt, J = 

16.9, 10.1, 6.7 Hz, 1H), 4.99 (dd, J = 17.1, 1.9 Hz, 1H), 4.93 (d, J = 10.2, 1.6 Hz, 1H), 

4.50 (s, 2H), 3.47 (t, J = 6.6 Hz, 2H), 2.04 (q, J = 7.1 Hz, 2H), 1.62 (p, J = 6.7 Hz, 2H), 

1.45 – 1.23 (m, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 139.3, 138.9, 128.5, 127.8, 127.6, 114.3, 73.0, 70.6, 

33.9, 29.9, 29.1, 29.0, 26.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H23O [M+H]
+
 219.1743; found 219.1752. 
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((hept-6-yn-1-yloxy)methyl)benzene (38).  

On 0.1 mmol scale, SI-28 was used following general procedure B. The reaction was 

quenched with 1M HCl, and purification by PTLC (silica gel, 10:1 hexanes:Et2O) 

furnished coupling product 38 as a colorless oil (11.2 mg, 55 %). 

Rf = 0.67 (silica gel, 10:1 hexanes:Et2O); 

1
H NMR (600 MHz, CDCl3): δ 7.34 (d, J = 5.2 Hz, 4H), 7.30 – 7.27 (m, 1H), 4.50 (s, 

2H), 3.48 (t, J = 6.5 Hz, 2H), 2.20 (td, J = 7.0, 2.6 Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.64 

(dq, J = 7.9, 6.5 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.52 – 1.46 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.8, 128.5, 127.8, 127.6, 84.7, 73.1, 70.4, 68.4, 29.4, 

28.5, 25.6, 18.5 ppm; 

HRMS (ESI-TOF, m/z): calcd for C14H19O [M+H]
+
 203.1430; found 203.1429. 

 

 

(4-cyclohexylbutyl)benzene (39). On 0.1 mmol scale, SI-23 was used and followed 

general procedure B. The temperature of this reaction was 60 °C. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, hexanes) furnished coupling 

product 39 as a colorless oil (8.6 mg, 40%). 

Rf = 0.89 (silica gel, hexanes); 

1
H NMR (600 MHz, CDCl3): δ 7.30 – 7.26 (m, 2H), 7.19 – 7.16 (m, 3H), 2.60 (t, J = 

=7.7 Hz, 2H), 1.72 – 1.67 (m, 4H), 1.66 – 1.52 (m, 3H), 1.40 – 1.33 (m, 2H), 1.24 – 1.11 

(m, 6H), 0.91 – 0.82 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 143.1, 128.5, 128.4, 125.7, 37.8, 37.5, 36.2, 33.6, 32.0, 

26.9, 26.7, 26.6 ppm. 

The NMR data matches the previous reported synthetic sample. (59)  
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(((6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-

heptadecafluorotridecyl)oxy)methyl)benzene (40) 

On 0.1 mmol scale, general procedure A was followed with SI-29.  Purification by PTLC 

(PhMe) afforded 40 as a colorless oil (0.032 g, 54%). 

Rf = 0.77(silica gel, PhMe); 

1
H NMR (600 MHz, CDCl3): δ 7.40 – 7.34 (m, 4H), 7.33 – 7.29 (m, 1H), 4.53 (s, 2H), 

3.51 (t, J = 6.4 Hz, 2H), 2.18 – 1.97 (m, 2H), 1.76 – 1.60 (m, 4H), 1.56 – 1.46 (m, 2H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.6, 128.5, 127.8, 127.7, 73.1, 70.0, 31.0 (t, J = 22.3 

Hz), 29.6, 26.0, 20.1 (t, J = 3.5 Hz) ppm; 

19
F NMR (376 MHz, CDCl3): δ -81.07 (t, J = 10.1 Hz), -114.69 (t, J = 14.2 Hz), -121.90 

– -122.40 (m), -122.84 – -123.20 (m), -123.85 (t, J = 14.3 Hz), -126.42 (t, J = 13.0 Hz) 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C20H17F17NaO [M+Na]
+
 619.0900; found 619.0882. 

 

 

1-(But-3-en-1-yl)adamantine (41). Following general procedure B with SI-57 (33 mg, 

0.1 mmol), Ni(acac)2 (5.1 mg, 0.02 mmol), 6,6’-dimethylbipyridine (3.4 mg, 0.02 mmol) 

in MeCN (1 mL) at 80 ºC. Purification by PTLC (silica gel, 10:1 hexanes:EtOAc) 

furnished the desired product 41 (11 mg, 58% yield) as a colorless oil. 

Rf = 0.79 (silica gel, hexanes); 

1
H NMR (600 MHz, CDCl3): δ 5.85 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.02 (ddt, J = 

17.1, 2.2, 1.6 Hz, 1H), 4.93 (ddt, J = 10.2, 2.4, 1.3 Hz, 1H), 2.06 – 1.99 (m, 2H), 1.97 (t, 

J = 3.1 Hz, 3H), 1.76 – 1.62 (m, 6H), 1.50 (d, J = 2.8 Hz, 6H), 1.21 – 1.14 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 139.7, 113.1, 43.4, 42.0, 36.8, 31.8, 28.3, 26.6 ppm; 

MS (GCMS, EI): m/z = 190 (12%), 148 (34%), 135 (100%), 93 (30%), 79 (35%). 
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1-(3-(Benzyloxy)propyl)adamantine (42). Following general procedure B with SI-57 

(33 mg, 0.1 mmol), Ni(acac)2 (10.2 mg, 0.04 mmol), 6,6’-dimethylbipyridine (7.4 mg, 

0.04 mmol) in MeCN (1 mL) at 80 ºC. Purification by PTLC (silica gel, 10:1 

hexanes:EtOAc) furnished the desired product 42 (19 mg, 66% yield) as a colorless oil. 

Rf = 0.86 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (400 MHz, CDCl3): δ 7.53 – 7.13 (m, 5H), 4.53 (s, 2H), 3.46 (t, J = 6.9 Hz, 

2H), 1.97 (s, 3H), 1.78 – 1.56 (m, 8H), 1.50 (s, 6H), 1.17 – 1.07 (m, 2H) ppm; 

13
C NMR (101 MHz, CDCl3): δ 138.7, 128.3, 127.6, 127.5, 72.9, 71.6, 42.4, 40.7, 37.3, 

32.0, 28.8, 22.9 ppm; 

HRMS (ESI-TOF, m/z): calcd for C20H29O [M+H]
+
 285.2213; found 285.2209. 

 

 

 

Methyl 4-(3-(benzyloxy)propyl)bicyclo[2.2.2]octane-1-carboxylate (43).  

Following general procedure B with SI-30 (35 mg, 0.1 mmol), Ni(acac)2 (10.2 mg, 0.04 

mmol), 6,6’-dimethylbipyridine (7.4 mg, 0.04 mmol) in MeCN (1 mL) at 80 ºC. 

Purification by PTLC (silica gel, 4:1 hexanes:EtOAc) furnished the desired product 43 

(16 mg, 51% yield) as a colorless oil. 

Rf = 0.31 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.56 – 7.09 (m, 5H), 4.51 (s, 2H), 3.66 (s, 3H), 3.45 (t, J 

= 6.7 Hz, 2H), 1.82 – 1.69 (m, 6H), 1.59 – 1.50 (m, 2H), 1.47 – 1.35 (m, 6H), 1.21 – 1.15 

(m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 178.7, 138.6, 128.4, 127.6, 127.5, 72.9, 71.3, 51.6, 38.9, 

37.5, 30.4, 30.3, 28.6, 24.2 ppm; 

HRMS (ESI-TOF, m/z): calcd for C20H29O3
  [M+H]

+
317.2111; found 317.2114. 
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(1S,2R,4R)-1-isopropyl-4-methyl-2-(pent-4-en-1-yloxy)cyclohexane (45).  

On 0.1 mmol scale, SI-31 was used following general procedure B. The reaction was 

quenched with 1M HCl, and purification by PTLC (silica gel, 10:1 hexanes:EtOAc) 

furnished coupling product 45 as a colorless oil (14.0 mg, 62%). 

Rf = 0.68 (silica gel, 6:1 hexanes:Et2O); 

1
H NMR (600 MHz, CDCl3): δ 5.82 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.02 (ddt, J = 

17.1, 2.1, 1.6 Hz, 1H), 4.95 (ddt, J = 10.2, 2.1, 1.3 Hz, 1H), 3.62 (dt, J = 9.1, 6.2 Hz, 1H), 

3.27 (ddd, J = 9.1, 7.1, 6.4 Hz, 1H), 2.99 (td, J = 10.6, 4.1 Hz, 1H), 2.22 (pd, J = 7.0, 2.8 

Hz, 1H), 2.16 – 2.05 (m, 3H), 1.72 – 1.58 (m, 4H), 1.39 – 1.29 (m, 1H), 1.24 – 1.18 (m, 

1H), 0.98 – 0.94 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 7.1 Hz, 3H), 0.88 – 0.82 

(m, 2H), 0.77 (d, J = 6.9 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.7, 114.7, 79.3, 67.9, 48.5, 40.7, 34.8, 31.7, 30.6, 

29.7, 25.7, 23.5, 22.5, 21.1 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H29O [M+H]
+
 225.2213; found 225.2214; 

[α]D
20

 = -65.7 ° (c= 1.0, CH2Cl2). 

 

 

((pentyloxy)methyl)benzene (46).  

On 0.1 mmol scale, SI-32 was used following general procedure B. The reaction was 

quenched with 1M HCl, and purification by PTLC (silica gel, 10:1 hexanes:Et2O) 

furnished coupling product 46 as a colorless oil (11.3 mg, 63 %). 

Rf = 0.64 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.36 – 7.33 (m, 4H), 7.30 – 7.27 (m, 1H), 4.51 (s, 2H), 

3.47 (t, J = 6.5 Hz, 2H), 1.69 – 1.59 (m, 2H), 1.39 – 1.30 (m, 4H), 0.90 (t, J = 6.7 Hz, 

3H) ppm; 
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13
C NMR (151 MHz, CDCl3): δ 138.9, 128.5, 127.8, 127.6, 73.0, 70.7, 29.6, 28.5, 22.7, 

14.2 ppm. 

The NMR data matches the previous reported synthetic sample. (60)  

 

 

1-(pent-4-en-1-yloxy)adamantane (47).  

On 0.1 mmol scale, SI-33 was used following general procedure B. Purification by PTLC 

(silica gel, 10:1 hexanes:Et2O) furnished the desired product 47 (16.9 mg, 77% yield) as a 

colorless oil.  

Rf = 0.68 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.82 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.02 (dq, J = 17.1, 

1.7 Hz, 1H), 4.95 (dq, J = 10.2, 1.5 Hz, 1H), 3.40 (t, J = 6.6 Hz, 2H), 2.17 – 2.08 (m, 

5H), 1.74 (d, J = 2.9 Hz, 6H), 1.68 – 1.55 (m, 8H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.8, 114.6, 71.9, 59.2, 41.8, 36.7, 30.7, 30.6, 30.0 

ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H25O [M+H]
+
 221.1900; found 221.1901. 

 

 

 

tert-butyl 4-(pent-4-en-1-yloxy)piperidine-1-carboxylate (48).  

On 0.1 mmol scale, SI-34 was used following general procedure B. The reaction was 

quenched with 1M HCl and purification by PTLC (silica gel, 6:1 hexanes:EtOAc) 

furnished coupling product 48 as a colorless oil (14.2 mg, 54%) 

Rf = 0.61 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.81 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.02 (dd, J = 17.2, 

1.8 Hz, 1H), 4.96 (dd, J = 10.2, 1.2 Hz, 1H), 3.75 (s, 2H), 3.44 (t, J = 6.5 Hz, 2H), 3.41 

(tt, J = 8.0, 3.7 Hz, 1H), 3.07 (ddd, J = 13.1, 9.1, 3.5 Hz, 2H), 2.17 – 2.09 (m, 2H), 1.79 
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(d, J = 8.1 Hz, 2H), 1.66 (dt, J = 14.7, 6.7 Hz, 2H), 1.54 – 1.48 (m, 2H), 1.45 (s, 9H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 154.4, 137.8, 114.3, 78.9, 74.0, 66.8, 40.7 (br), 30.7, 

29.9, 28.7, 28.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C15H28NO3 [M+H]
+
 270.2064; found 270.2056. 

 

 
 

tert-butyl 4-(hex-5-en-2-yloxy)piperidine-1-carboxylate (49).  

On 0.1 mmol scale, SI-35 was used following general procedure B at 60 °C.  Purification 

by PTLC (silica gel, 6:1 hexanes:EtOAc) furnished the desired product 49 (11.9 mg, 42 

% yield) as a colorless oil.  

Rf = 0.54 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 5.81 (ddt, J = 16.9, 10.2, 6.5 Hz, 1H), 5.01 (dq, J = 17.5, 

2.0 Hz, 1H), 4.95 (ddq, J = 10.3, 2.3, 1.2 Hz, 1H), 3.77 (s, 2H), 3.49 (ddt, J = 20.4, 8.1, 

4.7 Hz, 2H), 3.06 (dddd, J = 13.1, 9.9, 7.2, 3.4 Hz, 2H), 2.21 – 2.12 (m, 1H), 2.12 – 2.01 

(m, 1H), 1.76 (d, J = 8.1 Hz, 2H), 1.67 – 1.54 (m, 2H), 1.50 – 1.46 (m, 2H), 1.45 (d, J = 

0.9 Hz, 9H), 1.13 (dd, J = 6.2, 0.9 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 155.0, 138.8, 114.6, 79.5, 72.3, 72.1, 41.3 (br, weak), 

36.6, 32.6, 31.5, 30.2, 28.6, 20.8 ppm; Note: 
13

C resonances 32.6 and 31.5 belong to the 

same carbon atom, as verified by HSQC. 

HRMS (ESI-TOF, m/z): calcd for C16H30NO3 [M+H]
+
 284.2220; found 284.2220. 

 

 

 

(2S,3R)-2-octyl-3-(undec-10-en-1-yl)oxirane (50) 

On 0.1 mmol scale, general procedure B was followed with SI-36. Purification by PTLC 

(97.5:2.5 hexanes:EtOAc) afforded 50 as a colorless oil (0.013 g, 42%). 
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Rf = 0.76 (silica gel, PhMe); 

1
H NMR (600 MHz, CDCl3): δ 5.81 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.01 – 4.96 (m, 

1H), 4.93 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 2.66 – 2.62 (m, 2H), 2.06 – 2.01 (m, 2H), 1.61 

– 1.20 (m, 30H), 0.90 – 0.86 (t, J = 7.2 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 139.4, 114.2, 59.1 (2C), 34.0, 32.3, 32.0, 29.7, 29.69, 

29.64, 29.61, 29. 59, 29.4, 29.3, 29.1, 26.2, 22.8, 14.3 ppm; 

Note: Some 
13

C resonances cannot be clearly observed due to overlapping peaks. 

HRMS (ESI-TOF, m/z): calcd for C21H41O [M+H]
+
 309.3152; found 309.3151. 

 

 

2,4-dichloro-1-(pent-4-en-1-yloxy)benzene (51).  

On 0.1 mmol scale, SI-37 was used following general procedure B.  Purification by 

PTLC (silica gel, 10:1 hexanes:Et2O) furnished the desired product 51 (13.6 mg, 59 % 

yield) as a colorless oil.  

Rf = 0.68 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.38 (d, J = 2.6 Hz, 1H), 7.18 (dd, J = 8.8, 2.6 Hz, 1H), 

6.85 (d, J = 8.8 Hz, 1H), 5.88 (ddt, J = 17.0, 10.1, 6.7 Hz, 1H), 5.10 (dq, J = 17.1, 1.7 Hz, 

1H), 5.03 (ddt, J = 10.2, 2.2, 1.3 Hz, 1H), 4.03 (t, J = 6.4 Hz, 2H), 2.35 – 2.25 (m, 2H), 

2.00 – 1.90 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 153.5, 137.7, 130.1, 127.6, 125.7, 123.9, 115.6, 114.2, 

68.7, 30.1, 28.3 ppm; 

HRMS (ESI-TOF, m/z): calcd for C11H13Cl2O [M+H]
+
 231.0338; found 231.0338. 

 

 

tert-butyl (R)-(6-(benzyloxy)-2-isobutylhexyl)carbamate (52). On 0.1 mmol scale, SI-38 

was used following general procedure B. Purification by PTLC (silica gel, 4:1 

hexanes:EtOAc) furnished the desired product 52 (22 mg, 61% yield) as a yellow oil. 
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Rf = 0.49 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.44 – 7.22 (m, 5H), 4.53 (s, 2H), 3.49 (t, J = 6.6 Hz, 

2H), 3.07 (q, J = 6.3 Hz, 1H), 1.71 – 1.55 (m, 6H), 1.47 (s, 9H), 1.48 – 1.43 (m, 2H), 1.32 

– 1.22 (m, 2H), 1.11 (t, J = 7.0 Hz, 2H), 0.89 (dd, J = 7.5, 6.6 Hz, 6H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 155.7, 138.2, 127.9, 127.2, 127.0, 72.5, 69.8, 43.4, 41.0, 

35.4, 31.4, 29.6, 28.0, 24.8, 22.7, 22.5, 22.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C22H38NO3 [M+H]
+
 364.2846; found 364.2854; 

[]D
20

 = –1.1º (c = 2.2, CHCl3). 

 

 

1-(2-((4R,6S)-6-(4-(Benzyloxy)butyl)-2,2-dimethyl-1,3-dioxan-4-yl)ethyl)-5-(4-

fluorophenyl)-2-isopropyl-N,4-diphenyl-1H-pyrrole-3-carboxamide (53).  

On 0.1 mmol scale, SI-39 was used following general procedure B. Purification by PTLC 

(silica gel, 4:1 hexanes:EtOAc) furnished the desired product 53 (4.1 mg, 53% yield) as a 

thin white film. 

Rf = 0.24 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, Acetone-d6): δ 8.31 (bs, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.39 – 7.26 

(m, 8H), 7.25 – 7.19 (m, 2H), 7.17 – 7.11 (m, 6H), 7.10 – 7.06 (m, 1H), 6.99 (tt, J = 7.4, 

1.2 Hz, 1H), 4.50 (s, 2H), 4.11 (ddd, J = 15.4, 10.8, 5.0 Hz, 1H), 3.92 (ddd, J = 14.6, 

10.7, 5.7 Hz, 1H), 3.85 – 3.73 (m, 2H), 3.48 (t, J = 6.4 Hz, 2H), 3.44 (p, J = 7.1 Hz, 1H), 

1.82 – 1.53 (m, 4H), 1.49 (d, J = 2.3 Hz, 3H), 1.48 (d, J = 2.3 Hz, 3H), 1.47 – 1.28 (m, 

5H), 1.36 (s, 3H), 1.25 (s, 3H) ppm; 

13
C NMR (151 MHz, Acetone-d6): δ 165.0, 161.8 (d, J = 245.4 Hz), 139.2, 138.8, 138.0, 

134.8, 133.1 (d, J = 8.6 Hz), 129.5, 128.6 (d, J = 3.3 Hz), 127.9, 127.6, 127.3, 126.9, 

126.7, 125.3, 122.4, 121.1, 118.8, 116.6, 114.6 (d, J = 21.4 Hz), 97.5, 71.8, 69.4, 67.8, 

66.0, 39.9, 37.9, 36.0, 35.6, 29.2, 29.1, 29.0, 25.6, 21.09, 21.08, 20.9, 18.8 ppm; 
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19
F NMR (376 MHz, CDCl3) δ -113.76 ppm; 

HRMS (ESI-TOF, m/z): calcd for C45H52FN2O4 [M+H]
+
 703.3906; found 703.3909; 

 []
20

 D = + 7.3º (c = 0.12, Acetone-d6). 

 

 

(3aS,4S,6aR)-4-(oct-7-en-1-yl)tetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one (54). 

On 0.1 mmol scale, D-biotin was used following general procedure C. Purification by 

reverse-phase HPLC (H2O:MeCN, 15% B to 20 % B over 5 min, then 20 % B to 85 % B 

over 35 min; 208 nm) and lyophilization afforded the desired product 54 (6.8 mg, 27% 

yield) as a fluffy amorphous white solid. 

Rf = 0.43 (silica gel, 10:1 CH2Cl2:MeOH); 

1
H NMR (600 MHz, Methanol-d4): δ 5.83 (ddt, J = 16.9, 9.8, 6.8 Hz, 1H), 5.01 (dt, J = 

17.1, 2.0 Hz, 1H), 4.96 – 4.90 (m, 1H), 4.51 (dd, J = 7.8, 5.1 Hz, 1H), 4.32 (dd, J = 7.9, 

4.6 Hz, 1H), 3.22 (dt, J = 9.7, 5.1 Hz, 1H), 2.95 (dd, J = 12.7, 5.0 Hz, 1H), 2.72 (d, J = 

12.7 Hz, 1H), 2.11 – 2.02 (m, 2H), 1.79 – 1.69 (m, 1H), 1.64 – 1.53 (m, 1H), 1.48 – 1.33 

(m, 8H) ppm; 

13
C NMR (151 MHz, Methanol-d4): δ 166.2, 140.1, 114.7, 63.5, 61.6, 57.3, 41.0, 34.9, 

30.5, 30.3, 30.1 (2C), 29.8 ppm; 

HRMS (ESI-TOF, m/z): calcd for C13H23N2SO [M+H]
+
 255.1526; found 255.1527; 

[]D
20

 = +47.0º (c = 0.3, MeOH). 
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(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-17-((R)-7-(benzyloxy)heptan-2-yl)-10,13-

dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7,12-triyl triacetate (55). 

On 0.1 mmol scale, general procedure B was followed with SI-40. Purification by PTLC 

(19:1 CH2Cl2:EtOAc) afforded 55 as a colorless oil (0.045 g, 70%). 

Rf = 0.25 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.36 – 7.26 (m, 5H), 5.09 (t, J = 3.1 Hz, 1H), 4.90 (q, J 

= 3.2 Hz, 1H), 4.57 (tt, J = 11.4, 4.3 Hz, 1H), 4.49 (s, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.12 

(s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.04 – 1.98 (m, 2H), 1.94 (ddd, J = 15.4, 5.5, 3.5 Hz, 

1H), 1.89 – 1.70 (m, 4H), 1.70 – 1.55 (m, 8H), 1.56 – 1.45 (m, 2H), 1.45 – 1.20 (m, 8H), 

1.20 – 0.93 (m, 4H), 0.91 (s, 3H), 0.79 (d, J = 6.6 Hz, 3H), 0.72 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 170.69, 170.65, 170.5, 138.8, 128.5, 127.7, 127.6, 75.7, 

74.3, 73.0, 70.9, 70.6, 47.9, 45.2, 43.5, 41.1, 37.9, 35.8, 35.2, 34.9, 34.8, 34.5, 31.4, 30.0, 

29.1, 27.5, 27.1, 26.7, 26.0, 25.7, 23.0, 22.7, 21.8, 21.64, 21.58, 18.0, 12.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C39H59O7 [M+H]
+
 639.4255; found 639.4248. 

D
20

 = 54.4 º (c = 1.0, CH2Cl2). 

 

 

(5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-oct-7-en-2-yl)dodecahydro-3H-

cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (56).  

On 0.1 mmol scale, SI-41 was used following general procedure B. Purification by PTLC 

(silica gel, 10:1 hexanes:EtOAc) furnished the desired product 56 (30 mg, 73% yield) as 

a yellow solid. 

mp: >200 ºC; 
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Rf = 0.32 (silica gel, 6:4 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3) δ 5.83 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.02 (dq, J = 17.1, 

1.7 Hz, 1H), 4.95 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 2.99 – 2.77 (m, 3H), 2.42 – 2.20 (m, 

6H), 2.20 – 2.12 (m, 1H), 2.12 – 1.95 (m, 6H), 1.87 (td, J = 11.2, 7.0 Hz, 1H), 1.64 (td, J 

= 14.5, 4.6 Hz, 1H), 1.47 – 1.20 (m, 9H), 1.42 (s, 3H), 1.14 (m, 1H), 1.09 (s, 3H), 0.86 

(d, J = 6.6 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3) δ 211.6, 208.6, 208.3, 138.7, 113.7, 56.5, 51.4, 48.6, 46.4, 

45.4, 45.1, 44.5, 42.4, 38.2, 36.0 (2C), 35.6, 34.9, 34.8, 33.4, 28.9, 27.4, 25.6, 24.8, 21.5, 

18.6, 11.4 ppm; 

HRMS (ESI-TOF, m/z): calcd for C27H41O3 [M+H]
+
; 413.3050, found 413.3051; 

[]D
20

 = + 15.7 º(c =0.9, CHCl3). 

 

 

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl (10Z,12Z)-octadeca-10,12-dienoate (57). 

On 0.1 mmol scale, general procedure B was followed with SI-42. Purification by PTLC 

(PhMe) afforded 57 as a colorless oil (0.025 g, 65%). 

Rf = 0.28 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.34 (d, J = 4.4 Hz, 4H), 7.30 – 7.26 (m, 1H), 5.41 – 

5.31 (m, 4H), 4.50 (s, 2H), 3.46 (t, J = 6.7 Hz, 2H), 2.80 – 2.74 (m, 2H), 2.08 – 2.02 (m, 

4H), 1.65 – 1.57 (m, 2H), 1.40 – 1.23 (m, 20H), 0.89 (t, J = 7.0 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.9, 130.3, 128.5, 128.1, 127.8, 127.6, 73.0, 70.7, 

31.7, 29.9, 29.84, 29.75, 29.73, 29.69, 29.65, 29.51, 29.48, 27.40, 27.36, 26.4, 25.8, 22.7, 

14.2 ppm; 

Note: Some 
13

C resonances cannot be clearly observed due to overlapping peaks. 

HRMS (ESI-TOF, m/z): calcd for C27H45O [M+H]
+
 385.3465; found 385.3474. 
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(E)-((icos-11-en-1-yloxy)methyl)benzene (58). 

On 0.1 mmol scale, general procedure B was followed with SI-43. Purification by PTLC 

(PhMe) afforded 58 as a colorless oil (0.025 g, 65%). 

Rf = 0.14 (silica gel, 19:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.36 – 7.26 (m, 5H), 5.40 – 5.38 (m, 2H), 4.50 (s, 2H), 

3.46 (t, J = 6.7 Hz, 2H), 1.99 – 1.93 (m, 4H), 1.64 – 1.59 (m, 2H), 1.40 – 1.19 (m, 26H), 

0.88 (t, J = 7.0 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 138.9, 130.52, 130.50, 128.5, 127.8, 127.6, 73.0, 70.7, 

32.8, 32.1, 30.0, 29.82, 29.76, 29.74, 29.67, 29.65, 29.48, 29.34, 29.32, 26.4, 22.9, 14.3. 

Note: Some 
13

C resonances cannot be clearly observed due to overlapping peaks. 

HRMS (ESI-TOF, m/z): calcd for C27H47O [M+H]
+
 387.3621; found 387.3619. 

 

 

1-((4-chlorophenyl)(phenyl)methyl)-4-(2-(pent-4-en-1-yloxy)ethyl)piperazine (diTFA 

salt) (59) 

On 0.05 mmol scale, cetirizine was used following general procedure C. Purification by 

reverse-phase HPLC (H2O:MeCN, 50% B for 5 min, then 50 to 100 % B over 30 min; 

230 nm) and lyophilization afforded the desired product 59 (18.4 mg, 59% yield) as a 

colorless oil. 

1
H NMR (600 MHz, CDCl3): δ 7.52 – 7.46 (m, 4H), 7.38 – 7.28 (m, 5H), 5.76 (ddt, J = 

17.0, 10.2, 6.7 Hz, 1H), 4.99 (dq, J = 17.2, 1.7 Hz, 1H), 4.96 (dq, J = 10.2, 1.4 Hz, 1H), 
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4.61 (s, 1H), 3.81 – 3.74 (m, 2H), 3.54 (m, 4H), 3.42 (t, J = 6.6 Hz, 2H), 3.33 – 3.26 (m, 

2H), 3.10 (s, 4H), 2.06 (dtd, J = 8.0, 6.7, 1.4 Hz, 2H), 1.66 – 1.59 (m, 2H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 137.8, 137.6, 136.6, 134.7, 129.7, 129.6, 129.4, 129.0, 

127.9, 115.2, 75.6, 71.1, 65.2, 56.8, 51.7, 48.8, 30.2, 28.6 ppm; 

19
F NMR (376 MHz, CDCl3) δ -76.0 ppm; 

HRMS (ESI-TOF, m/z): calcd for C24H32ClON2 [M+H]
+
 399.2198; found 399.2195. 

 

 

benzyl 4,4-dimethyl-2-phenylpentanoate (66). 

Following the General Procedure D with SI-58 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 66 (26.0 mg, 88% yield) 

as a white solid.  

m.p. = 38 ºC; 

Rf = 0.59 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.34 (m, 10H), 5.07 (dd, J = 57.6, 12.6 Hz, 2H), 

3.71 (dd, J = 9.2, 3.8 Hz, 1H), 2.34 (dd, J = 14.0, 9.2 Hz, 1H), 1.60 (dd, J = 14.0, 3.8 Hz, 

1H), 0.88 (s, 9H) ppm; 

13
C NMR (151 MHz, CDCl3): δ174.7, 141.0, 136.0, 128.8, 128.6, 128.2, 128.2, 128.0, 

127.2, 66.7, 48.4, 47.4, 31.2, 29.6 ppm; 

HRMS (ESI-TOF): calc’d for C20H25O2 [M+H]
+
 297.1849; found 297.1851. 

 

 

benzyl 4,4-dimethyl-2-phenylhexanoate (67). 

Following the General Procedure D with SI-44 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 67 (26.9 mg, 87% yield) 

as a colorless oil.  

OBn
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Rf = 0.58 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.22-7.34 (m, 10H), 5.07 (dd, J = 64.8, 12.0 Hz, 2H), 

3.69 (dd, J = 9.0, 3.6 Hz, 1H), 2.31 (dd, J = 14.4, 9.0 Hz, 1H), 1.59 (dd, J = 14.4, 3.6 Hz, 

1H), 1.24 (q, J = 7.2 Hz, 2H), 0.82 (s, 3H), 0.81 (s, 3H), 0.78 (t, J = 7.8 Hz, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.8, 141.1, 136.0, 128.7, 128.6, 128.2 (2C), 128.0, 

127.1, 66.7, 47.9, 45.2, 34.5, 33.7, 26.7, 26.5, 8.5 ppm; 

HRMS (ESI-TOF): calc’d for C21H27O2 [M+H]
+
 311.2006; found 311.2006. 

 

 
benzyl 3-adamantan-1-yl-2-phenylpropanoate (68). 

Following the General Procedure D with SI-57 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 68 (34.6 mg, 92% yield) 

as a white solid.  

m.p.= 64-66 ºC; 

Rf = 0.66 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.21-7.32 (m, 10H), 5.08 (dd, J = 86.4 Hz, 12 Hz, 2H), 

3.75 (dd, J = 9.6, 3.5 Hz, 1H), 2.20 (dd, J = 14.1, 9.6 Hz, 1H), 1.88 (s, br, 3H), 1.61 (dd, 

J = 12.0, 53 Hz, 6H), 1.43 (dd, J = 12.0, 65 Hz, 6H), 1.43 (dd, J = 3.6, 14.4 Hz, 1H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.7, 141.1, 136.0, 128.7, 128.5, 128.3, 128.2, 128.0, 

127.1, 66.6, 48.2, 46.4, 42.4, 37.1, 33.0, 28.7 ppm; 

HRMS (ESI-TOF): calc’d for C26H31O2 [M+H]
+
 375.2319; found 375.2318. 

 

 

benzyl 3-(1-methylcyclohexyl)-2-phenylpropanoate (69). 

Following the General Procedure D with SI-59 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 69 (31.5 mg, 94% yield) 

as a colorless oil.  
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Rf = 0.46 (silica gel, 10:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.36 (m, 10H), 5.08 (dd, J = 74.4, 12.6 Hz, 2H), 

3.74 (dd, J = 9.0, 3.6 Hz, 1H), 2.35 (dd, J = 13.8, 9.0 Hz, 1H), 1.64 (dd, J = 13.8, 3.6 Hz, 

1H), 1.35-1.46 (m, 5H), 1.19-1.30 (m, 5H), 0.86 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.8, 141.2, 136.0, 128.7, 128.5, 128.2, 128.2, 128.0, 

127.1, 66.7, 46.3, 38.0 (2C), 37.8, 33.6, 26.5, 22.0 ppm; 

HRMS (ESI-TOF): calc’d for C23H29O2 [M+H]
+
 337.2162; found 337.2163. 

 

 

benzyl 3-(1-ethylcyclobutyl)-2-phenylpropanoate (70). 

Following the General Procedure D with SI-45 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 70 (22 mg, 68% yield) as 

a colorless oil.  

Rf = 0.58 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.24-7.38 (m, 10H), 5.08 (dd, J = 56.4, 12.6 Hz, 2H), 

3.61 (dd, J = 8.4, 5.4 Hz, 1H), 2.41 (dd, J = 13.8, 8.4 Hz, 1H), 1.87 (dd, J = 13.8, 4.2 Hz, 

1H), 1.74-1.82 (m, 3H), 1.63-1.69 (m, 1H), 1.47-1.59 (m, 4H), 0.76 (t, J = 7.2 Hz, 3H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.5, 140.5, 136.0, 128.7, 128.6, 128.2 (2C), 127.2, 

66.7, 48.0, 42.0, 41.9, 31.7, 31.4, 30.1, 15.4, 8.2 ppm; 

HRMS (ESI-TOF): calc’d for C22H27O2 [M+H]
+
 323.2006; found 323.2006. 

 

 

benzyl 5-((tert-butyldimethylsilyl)oxy)-4,4-dimethyl-2-phenylpentanoate (71). 

Following the General Procedure D with SI-46 (0.1 mmol), purification by flash column 

chromatography (5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 71 (35.7 

mg, 84% yield) as a colorless oil.  
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Rf = 0.59 (Hexanes:Ethyl acetate 8:1); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.35 (m, 10H), 5.08 (dd, J = 64.8, 12.0 Hz, 2H), 

3.79 (dd, J = 9.0, 4.2 Hz, 1H), 3.25 (dd, J = 23.4, 9.6 Hz, 2H), 2.29 (dd, J = 13.8, 8.4 Hz, 

1H), 1.75 (dd, J = 13.8, 4.2 Hz, 1H), 0.88 (s, 9H), 0.82 (s, 3H), 0.81 (s, 3H), 0.02 (s, 3H), 

0.01 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.7, 140.9, 136.0, 128.7, 128.6, 128.2, 128.1 (2C), 

127.1, 71.8, 66.6, 47.8, 42.3, 36.0, 26.0, 24.7, 23.8, 18.4, -5.4 (2C). 

HRMS (ESI-TOF): calc’d for C26H39O3Si [M+H]
+
 427.2663; found 427.2662. 

 

 
benzyl 5-(methoxymethoxy)-4,4-dimethyl-2-phenylpentanoate (72). 

Following the General Procedure D with SI-47 (0.1 mmol), purification by flash column 

(5%-7% EtOAc/Hexane) and PTLC (12% EtOAc/Hexane) afforded 72 (33.1 mg, 93% 

yield) as a colorless oil.  

Rf = 0.33 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.22-7.34 (m, 10H), 5.07 (dd, J = 49.2, 12.0 Hz, 2H), 

4.52 (dd, J = 16.8, 6.6 Hz, 2H), 3.77 (dd, J = 9.0, 4.2 Hz, 1H), 3.31 (s, 3H), 3.19 (s, 2H), 

2.37 (dd, J = 13.8, 9.0 Hz, 1H), 1.76 (dd, J = 13.8, 3.6 Hz, 1H), 0.90 (s, 3H), 0.88 (s, 3H) 

ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.6, 140.8, 136.0, 128.7, 128.6, 128.2, 128.1, 128.0, 

127.2, 96.7, 76.7, 66.7, 55.2, 47.8, 42.7, 34.9, 24.8, 24.6 ppm; 

HRMS (ESI-TOF): calc’d for C22H29O4 [M+H]
+
 357.2060; found 357.2065. 

 

 

benzyl 3-(4-methyl-1-tosylpiperidin-4-yl)-2-phenylpropanoate (73). 
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Following the General Procedure D with SI-48 (0.1 mmol), purification by flash column 

(5%-10% EtOAc/Hexane) and PTLC (15% EtOAc/Hexane) afforded 73 (35.2 mg, 72% 

yield) as a white solid.  

m.p.= 134-136 ºC; 

Rf = 0.52 (silica gel, 4:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.61 (d, J = 13.8, 9.0 Hz, 2H), 7.19-7.32 (m, 12H), 5.04 

(dd, J = 73.2, 12.6 Hz, 2H), 3.65 (dd, J = 9.0, 4.2 Hz, 1H), 3.12-3.22 (m, 2H), 2.69-2.64 

(m, 2H), 2.44 (s, 3H), 2.26 (dd, J = 14.4, 9.0 Hz, 1H), 1.58 (dd, J = 14.4, 4.2 Hz, 1H), 

1.48-1.52 (m, 1H), 1.39-1.44 (m, 1H), 1.29-1.34 (m, 2H), 0.77 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.2, 143.5, 140.3, 135.7, 133.6, 129.7, 128.9, 128.6, 

128.3 (2C), 127.9, 127.8, 127.4, 66.9, 47.1, 45.4, 42.1, 36.4, 36.2, 31.6, 22.9, 21.7 ppm; 

HRMS (ESI-TOF): calc’d for C29H34NO4S [M+H]
+
 492.2203; found 492.2203. 

 

 

benzyl 4-methyl-4-(methylthio)-2-phenylpentanoate (74). 

Following the General Procedure D with SI-49 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 74 (25.9 mg, 79% yield) 

as a colorless oil.  

Rf = 0.61 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.34 (m, 10H), 5.08 (dd, J = 66.0, 12.6 Hz, 2H), 

3.95 (dd, J = 9.0, 3.0 Hz, 1H), 2.65 (dd, J = 14.4, 9.0 Hz, 1H), 1.91 (s, 3H), 1.80 (dd, J = 

15.0, 3.6 Hz, 1H), 1.23 (s, 3H), 1.21 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.3, 140.6, 136.0, 128.8, 128.5, 128.2, 128.2, 128.0, 

127.3, 66.8, 48.3, 44.4, 44.3, 28.7, 28.2, 11.2. 

HRMS (ESI-TOF): calc’d for C20H25O2S [M+H]
+
 329.1570; found 329.1573. 
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benzyl 4-methoxy-4-methyl-2-phenylpentanoate (75). 

Following the General Procedure D with SI-50 (0.1 mmol), purification by flash column 

(5%-7% EtOAc/Hexane) and PTLC (10% EtOAc/Hexane) afforded 75 (23.7 mg, 76% 

yield) as a white solid.  

m.p.= 38-40 ºC; 

Rf = 0.59 (silica gel, 6:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.36 (m, 10H), 5.08 (dd, J = 70.2, 12.6 Hz, 2H), 

3.84 (dd, J = 9.6, 3.0 Hz, 1H), 3.10 (s, 3H), 2.60 (dd, J = 14.4, 9.0 Hz, 1H), 1.81 (dd, J = 

14.4, 3.6 Hz, 1H), 1.15 (s, 3H), 1.12 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.5, 140.6, 136.2, 128.8, 128.5, 128.1 (2C), 128.0, 

127.2, 74.3, 66.7, 49.5, 47.1, 43.6, 25.5, 25.0 ppm; 

HRMS (ESI-TOF): calc’d for C20H25O3 [M+H]
+
 313.1798; found 313.1802. 

 

 

benzyl 4-((tert-butoxycarbonyl)(methyl)amino)-4-methyl-2-phenylpentanoate (76). 

Following the General Procedure D with SI-51 (2.8 mmol), purification by flash column 

(5%-7% EtOAc/Hexane) afforded 76 (844 mg, 74% yield) as a colorless oil.  

Rf = 0.41 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.21-7.33 (m, 10H), 5.07 (dd, J = 55.8, 12.6 Hz, 2H), 

3.67 (dd, J = 7.8, 4.2 Hz, 1H), 2.79 (s, 3H), 2.72 (dd, J = 14.4, 8.4 Hz, 1H), 2.40 (dd, J = 

14.4, 4.8 Hz, 1H), 1.39 (s, 9H), 1.28 (s, 3H), 1.22 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.4, 156.0, 140.3, 136.0, 128.7, 128.5, 128.2 (2C), 

128.2, 127.2, 79.7, 66.7, 57.6, 48.2, 44.1, 32.1, 28.6, 28.2 (2C) ppm; 

HRMS (ESI-TOF): calc’d for C25H34NO4 [M+H]
+
 412.2482; found 412.2487. 
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methyl 4-(3-(benzyloxy)-3-oxo-2-phenylpropyl)bicyclo[2.2.2]octane-1-carboxylate 

(77). 

Following the General Procedure D with SI-30 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (10% EtOAc/Hexane) afforded 77 (29.7 mg, 73% yield) 

as a white solid.  

m.p.= 108-110 ºC; 

Rf = 0.27 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.23-7.33 (m, 10H), 5.07 (dd, J = 81.0, 12.0 Hz, 2H), 

3.68 (dd, J = 9.0, 3.6 Hz, 1H), 3.62 (s, 3H), 2.23 (dd, J = 13.8, 9.0 Hz, 1H), 1.71 (t, J = 

7.8 Hz, 6H), 1.51 (dd, J = 14.4, 4.2 Hz, 1H), 1.37-1.43 (m, 3H), 1.28-1.34 (m, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 178.5, 174.5, 140.7, 135.9, 128.8, 128.6, 128.3 (2C), 

127.9, 127.3, 66.8, 51.8, 47.4, 44.9, 38.9, 31.2, 30.4, 28.5 ppm; 

HRMS (ESI-TOF): calc’d for C26H31O4 [M+H]
+
 407.2217; found 407.2218. 

 

 
benzyl 4-(4-chlorophenoxy)-4-methyl-2-phenylpentanoate (78). 

Following the General Procedure D with SI-52 (0.1 mmol), purification by flash column 

(5% EtOAc/Hexane) and PTLC (5% EtOAc/Hexane) afforded 78 (20 mg, 49% yield) as 

a colorless oil.  

Rf = 0.62 (silica gel, 8:1 hexanes:EtOAc); 

1
H NMR (600 MHz, CDCl3): δ 7.16-7.39 (m, 12H), 6.85 (d, J = 9.0 Hz, 2H), 5.06 (dd, J 

= 55, 12.6 Hz, 2H), 4.05 (dd, J = 10.2, 3.0 Hz, 1H), 2.81 (dd, J = 14.4, 9.6 Hz, 1H), 1.99 

(dd, J = 14.4, 3.6 Hz, 1H), 1.23 (s, 3H), 1.22 (s, 3H) ppm; 

13
C NMR (151 MHz, CDCl3): δ 174.3, 153.7, 140.1, 136.0, 129.1, 128.9, 128.8, 128.5, 

128.2 (2C), 128.1, 127.4, 125.4, 80.2, 66.8, 47.5, 46.0, 27.0, 26.4. 

HRMS (ESI-TOF): calc’d for C25H26ClO3 [M+H]
+
 409.1565; found 409.1565. 
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X-ray crystallographic data for compound 11. 

 

 

 

 

Table SI-3.  Crystal data and structure refinement for 11. 

Identification code  CCDC 1457710 

Empirical formula  C17 H23 N O2 S 

Molecular formula  C17 H23 N O2 S 

Formula weight  305.42 

Temperature  100.0 K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 8.3294(5) Å = 90°. 

 b = 8.3397(4) Å = 90°. 

 c = 23.1298(13) Å  = 90°. 

Volume 1606.70(15) Å3 

Z 4 

Density (calculated) 1.263 Mg/m3 

Absorption coefficient 0.206 mm-1 

F(000) 656 

Crystal size 0.24 x 0.125 x 0.1 mm3 

Crystal color, habit colourless block 

Theta range for data collection 1.761 to 26.408°. 

Index ranges -10<=h<=10, -10<=k<=10, -28<=l<=28 

Reflections collected 15368 
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Independent reflections 3305 [R(int) = 0.0439] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.4908 and 0.4567 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3305 / 0 / 192 

Goodness-of-fit on F2 1.024 

Final R indices [I>2sigma(I)] R1 = 0.0319, wR2 = 0.0768 

R indices (all data) R1 = 0.0348, wR2 = 0.0790 

Absolute structure parameter 0.01(3) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.232 and -0.210 e.Å-3 



 

 

S176 

 

 Table SI-4.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for Baran565.  U(eq) is defined as one third of  the trace of the orthogonalized U ij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

S(1) 11919(1) 354(1) 8872(1) 22(1) 

O(1) 11484(2) -1005(2) 9217(1) 30(1) 

O(2) 13422(2) 363(2) 8570(1) 28(1) 

N(1) 10507(2) 569(2) 8385(1) 21(1) 

C(1) 1687(3) 469(3) 6027(1) 33(1) 

C(2) 2917(3) 888(3) 6458(1) 26(1) 

C(3) 3864(3) 1265(3) 6814(1) 25(1) 

C(4) 5006(3) 1727(3) 7271(1) 28(1) 

C(5) 6754(3) 1338(3) 7131(1) 22(1) 

C(6) 7885(3) 1640(3) 7642(1) 20(1) 

C(7) 9631(3) 1600(3) 7444(1) 21(1) 

C(8) 10788(3) 1827(3) 7943(1) 21(1) 

C(9) 8847(3) 606(3) 8612(1) 23(1) 

C(10) 7651(3) 406(3) 8124(1) 23(1) 

C(11) 11842(3) 2077(3) 9313(1) 21(1) 

C(12) 12589(3) 3481(3) 9132(1) 24(1) 

C(13) 12400(3) 4871(3) 9451(1) 27(1) 

C(14) 11490(3) 4875(3) 9958(1) 26(1) 

C(15) 10808(3) 3443(3) 10140(1) 26(1) 

C(16) 10948(3) 2050(3) 9821(1) 24(1) 

C(17) 11219(4) 6405(3) 10290(1) 37(1) 

________________________________________________________________________________  
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X-ray crystallographic data for compound 73. 

 
Table SI-5.  Crystal data and structure refinement for 73. 

Identification code  CCDC 1457711 

Empirical formula  C29 H33 N O4 S 

Molecular formula  C29 H33 N O4 S 

Formula weight  491.62 

Temperature  100.0 K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  C 1 c 1 

Unit cell dimensions a = 6.0487(2) Å = 90°. 

 b = 28.2917(10) Å = 99.794(2)°. 

 c = 14.8950(5) Å  = 90°. 

Volume 2511.80(15) Å3 

Z 4 

Density (calculated) 1.300 Mg/m3 

Absorption coefficient 1.431 mm-1 

F(000) 1048 

Crystal size 0.2 x 0.04 x 0.04 mm3 

Crystal color, habit colorless needle 

Theta range for data collection 3.124 to 68.554°. 

Index ranges -7<=h<=7, -34<=k<=34, -17<=l<=17 

Reflections collected 19040 

Independent reflections 4157 [R(int) = 0.0414] 

Completeness to theta = 67.500° 99.7 %  

Absorption correction Semi-empirical from equivalents 
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Max. and min. transmission 0.5210 and 0.4363 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4157 / 2 / 318 

Goodness-of-fit on F2 1.059 

Final R indices [I>2sigma(I)] R1 = 0.0271, wR2 = 0.0630 

R indices (all data) R1 = 0.0305, wR2 = 0.0645 

Absolute structure parameter 0.031(9) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.195 and -0.190 e.Å-3 
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 Table SI-6.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for Baran575.  U(eq) is defined as one third of  the trace of the orthogonalized U ij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
S(1) 9861(1) 10570(1) 2521(1) 17(1) 

O(1) 2054(3) 8445(1) 1305(1) 20(1) 

O(2) 5746(3) 8282(1) 1597(1) 22(1) 

O(3) 12220(3) 10593(1) 2497(1) 22(1) 

O(4) 9090(3) 10521(1) 3374(1) 23(1) 

N(1) 8870(3) 10118(1) 1889(2) 16(1) 

C(1) 3964(5) 8586(1) 3523(2) 25(1) 

C(2) 4074(5) 8896(1) 4249(2) 27(1) 

C(3) 2197(5) 9142(1) 4386(2) 30(1) 

C(4) 181(5) 9080(1) 3802(2) 36(1) 

C(5) 54(5) 8766(1) 3080(2) 27(1) 

C(6) 1942(4) 8521(1) 2929(2) 19(1) 

C(7) 1741(5) 8191(1) 2127(2) 22(1) 

C(8) 4157(4) 8456(1) 1118(2) 17(1) 

C(9) 4201(4) 8693(1) 207(2) 16(1) 

C(10) 3664(4) 8304(1) -510(2) 16(1) 

C(11) 1590(4) 8284(1) -1063(2) 19(1) 

C(12) 1067(5) 7921(1) -1689(2) 22(1) 

C(13) 2635(5) 7570(1) -1766(2) 22(1) 

C(14) 4729(5) 7592(1) -1216(2) 24(1) 

C(15) 5249(5) 7955(1) -594(2) 22(1) 

C(16) 6476(4) 8938(1) 188(2) 17(1) 

C(17) 6639(4) 9458(1) 495(2) 16(1) 

C(18) 5214(4) 9761(1) -239(2) 21(1) 

C(19) 5914(4) 9527(1) 1429(2) 18(1) 

C(20) 6447(4) 10020(1) 1826(2) 18(1) 

C(21) 9129(4) 9596(1) 603(2) 16(1) 

C(22) 9622(4) 10088(1) 996(2) 17(1) 

C(23) 8592(4) 11082(1) 1975(2) 18(1) 

C(24) 9579(4) 11306(1) 1312(2) 20(1) 

C(25) 8530(5) 11692(1) 861(2) 26(1) 

C(26) 6501(5) 11863(1) 1057(2) 25(1) 

C(27) 5561(5) 11636(1) 1734(2) 24(1) 

C(28) 6576(4) 11246(1) 2194(2) 20(1) 

C(29) 5303(6) 12269(1) 527(2) 36(1) 

________________________________________________________________________________ 
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