


Figure S1.

The responses of  $C_i$  (a) and stomatal conductance (b) in F. pringlei, F. floridana, F. brownii and F. bidentis to changes in atmospheric  $pO_2$ . Results correspond to the same measurements as Fig. 1a. Values represent averages and standard error of 4 replicates.

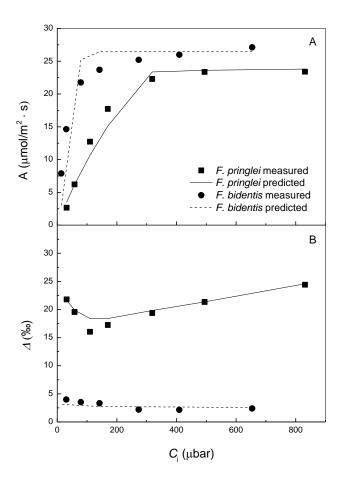



Figure S2.

Models of  $CO_2$  response of assimilation rate and carbon isotope discrimination in the  $C_3$  and  $C_4$  species. (a) Measured  $CO_2$  response of A in F. pringlei and F. bidentis, compared with the predicted responses. (b) Measured  $CO_2$  response of  $\Delta$  in F. pringlei and F. bidentis, compared with the predicted responses. Parameters used for modelling are presented in Table 1.

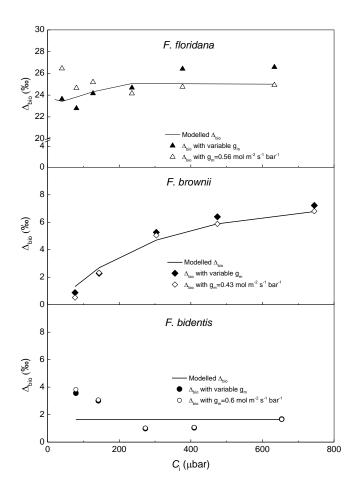



Figure S3.

The effect of assuming constant or variable  $g_m$  in the calculation of the biochemical fractionation ( $\Delta_{bio}$ ) in *F. floridana*, *F. brownii* and *F. bidentis*.  $\Delta_{bio}$  was calculated from eq. 12 using gas exchange and  $\Delta$  measurements, and assuming constant (open symbols) or variable  $g_m$  (solid symbols). The variable  $g_m$  values applied are shown in Fig. 6. Constant  $g_m$  is the average of the variable values obtained for each species. Modelled  $\Delta_{bio}$  (solid lines) was calculated from eq. 14 using the photosynthesis model with the parameters given in Table 1. F. *bidentis* is considered a strict C<sub>4</sub>, thus modelled  $\Delta_{bio}$  is constant and independent from  $C_i$  and  $g_m$ .