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ABSTRACT Strong gap-junctional coupling can synchro-
nize the electrical oscillations of cells, but we show, in a
theoretical model, that weak coupling can phase lock two cells
180° out-of-phase. Antiphase oscillations can exist in parameter
regimes where in-phase oscillations break down. Some conse-
quences are (i) coupling two excitable cells leads to pacemak-
ing, (i{) coupling two pacemaker cells leads to bursting, and (iii)
coupling two bursters increases burst period. The latter shows
that details of the fast spikes can affect macroscopic properties
of the slow bursts. These effects hold in other models for
bursting and may play a role in the collective behavior of
cellular ensembles.

Strong gap-junctional coupling is well-suited for imposing
synchronization on electrically active cells such as neurons
or heart pacemaker cells. Here we demonstrate that weak
coupling can lead to qualitative changes in electrical activity
and can dramatically expand the repertoire of available
behaviors. The core phenomenon is the emergence of action
potentials that are 180° out-of-phase (or antiphase) when two
oscillatory, or excitable nonoscillatory, cells are weakly
coupled. In the context of bursting oscillations, the devel-
opment of antiphase oscillations on the microscale of spike
activity has consequences for the macroscale of the bursts;
weak coupling can significantly increase burst period and
bursting can be induced in tonically spiking cells.

THEORETICAL MODEL

We illustrate with a model that is representative of a class of
models called ‘‘square-wave bursters’’ (1). The model used
here is a simplified version of a biophysically based model for
bursting in pancreatic B cells (2). Other examples include a
model for thalamic neurons (3) and another based on a model
for barnacle muscle fibers (4). A typical square burster time
course is shown in Fig. 3A.
The equations are

dv
T Z = —Iipn(V) = Iou(V, n) — g S(V - Vg) +1 (1]

dn
[2]

1; = A(nw — n).

Eq. 1 is the current balance equation for the membrane
potential V. The V-dependent ionic currents include a fast
inward (Na* or Ca?*) current and an outward (delayed
rectifier K*) current with its fractional activation, n, varying
on a 20-ms time scale. The g, term in Eq. 1 is a slow outward
current that varies on a time scale of seconds. For example,
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S could be intracellular Ca?* that slowly accumulates and
activates a K* current (2), a voltage-independent ATP-
blockable K* conductance (5), or a slow inactivation com-
ponent of Ca?* current (6). For neurons, another possibility
is recurrent inhibition onto a slow synapse. Initially, we
consider § to be constant, but later, to produce bursting, we
make S a slow variable by adding feedback dynamics.
Gap-junction coupling is represented by adding one more
term to Eq. 1 that represents junctional current: [; = —g(V
— V), where V is the membrane potential of the nelghbormg
cell.

Solutions for Figs. 1 and 2 were computed on an IBM PS/2
model 80 with the program PHASEPLANE (7), a commercial
package for numerical integration and analysis that requires
a minimum of programming. The integration method was set
to the Gear algorithm (8) with an error tolerance of 10~7. For
the bursting solutions of Figs. 3 and 4, it was convenient to
use a FORTRAN-callable Gear solver on a faster machine, an
IBM AIX/370 mainframe. All calculations were carried out
in double precision.

RESULTS

We demonstrate first the basic phenomenon of antiphase
spiking by considering nonbursting cells (i.e., we hold S fixed
in Eq. 1). For § = 0.15, an isolated model cell is a sponta-
neously spiking pacemaker. If two such identical oscillating
cells are coupled electrically and are precisely in-phase, no
current will flow between them. Their time courses will
remain in-phase and will satisfy the single cell equations. If
the coupling is weak, however, this in-phase solution may be
unstable and the slightest perturbation will destroy the syn-
chrony, leading to a new spike pattern with the cells 180°
out-of-phase (Fig. 1).

The antiphase action potentials are of smaller amplitude
because each cell receives hyperpolarizing input at its peak
and depolarizing input at its minimum. The minimum is
affected more than the maximum since g, is larger compared
to the other conductances when the membrane potential is
more negative. The reduction in amplitude is accompanied by
areduction in period (from =190 to 120 ms) primarily because
the spikes are initiated from a depolarized level where the
time constant is smaller.

The process is reversible; if coupling is removed the cells
will revert to their individual oscillation (although they will be
out-of-phase). Alternatively, increasing g. sufficiently will
destabilize the antiphase solution, restabilize the single-cell
solution, and synchronize the cells. (Fig. 1, right arrow).
(Smaller increases in g. can lead to other complex behavior
that is neither phase locked nor periodic.) Desynchronization
is necessarily a slow process because g. is small; for very
weak coupling, the approach to the antiphase oscillation is
exponential with a time constant that varies inversely with g..
In the case of Fig. 1, =20 spikes are needed to converge to
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Fic.1. Weakly coupled cells can oscillate antiphase. Solution of
Eqgs. 1and 2 with S = 0.15 and A = 0.8. Two cells, initially uncoupled,
are started at identical phases. Membrane potential versus time for
one cell is shown solid, and for the other is dashed. At ¢ = 0.5 s the
junctional-coupling conductance, g, is raised to 0.08, and a small
symmetry-breaking perturbation (0.3 mV) is applied to one of the
cells. This destabilizes the single-cell oscillation and leads to an
antiphase oscillation. Atz = 5.5 s the single-cell behavior is restored
by increasing g to 0.24; alternatively, one could set g. to 0, but then
the two cells would not be in-phase. In Eq. 1, Iin(V) = gcam
(V = Vca), Iou(V) = ggkn(V — Vk). m is assumed to be fast so m =
ms (V), while n satisfies Eq. 2. xo(V) = 1/[1 + exp((Vx — V)/6)));
x = m,n. Parameters (mV): V, = =20, 0, =12, V, = —17,0, = 5.6,
Vea = 25, Vx = —75. The effective time constant, 7, for Eq. 1 is 20
ms; the time constant for Eq. 2 is 7/A, A = 0.8 or 0.9 as noted. The
maximal conductances gc, = 3.6, gk = 10, and g; = 4 have been
scaled by a typical instantaneous conductance in order to define rand
so are dimensionless; values of coupling conductance, g, in the text
are then relative to a typical conductance. / is the nondimensional
applied current (Fig. 2 only).

the antiphase solution. Resynchronization is much faster
because g. has been increased by a factor of 3.

If an isolated cell is hyperpolarized by fixing S at a large
enough value, it is no longer self-oscillatory, but it remains
excitable. When a stimulating current is applied, the cell fires
repetitively; firing ceases once the stimulus is withdrawn
(Fig. 2). After two identical such cells are coupled and the
stimulus to one cell is repeated, the cells enter an antiphase
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Fi1G. 2. Weak coupling can convert excitable cells into spikers.
The cells are the same as in Fig. 1, but with § = 0.177. Again,
membrane potential time course for one cell is solid, and for the other
is dashed. Cells are initially uncoupled and at rest, but one cell (solid
line) has a current of strength 1.0 injected for 0.5 s, resulting in two
spikes. Spiking ends when the current stimulus is removed. The
unstimulated cell (dashed line) remains at rest. Atz = 2 s, g is
increased to 0.04. This does not prevent the stimulated cell from
remaining at rest, but the system is now bistable and the rest state
coexists with an antiphase oscillation. A second identical current

stimulus draws both cells near enough to the oscillatory solution so
that they continue to oscillate after the stimulus terminates.
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oscillation that persists indefinitely after the applied current
is removed. Unlike the first example (Fig. 1), where coupling
converted one type of oscillation (in-phase) into another
(antiphase), now coupling allows spiking where an unstimu-
lated, isolated cell cannot oscillate at all. Coupling has
extended the range of S values for which oscillations exist by
making the cells bistable: they can sit at a fixed voltage or
oscillate antiphase. The second stimulus raises the cells
above threshold for antiphase spiking. (Current could be
applied to both cells, but without, say, 10% asymmetry there
may be insufficient time to go antiphase before falling below
threshold.) The pair of cells can be reset to rest by increasing
or eliminating g., or, because of bistability, by a hyperpo-
larizing or depolarizing current.

Next we consider cells with endogenous bursting proper-
ties. Now S is a slow dynamic variable, satisfying

dsSV S 3
Tsdt—m() ’ []

with 7, >> 7, and the model has three variables. In models in
which S represents free intracellular Ca*, the S equation is
a Ca?*-balance equation (2). In general, Eq. 3 has the
property that S slowly increases when the cell is depolarized
and slowly decreases when the cell is hyperpolarized. With
A = 0.9, an isolated cell alternates periodically between a
depolarized spiking phase and a hyperpolarized silent phase
(Fig. 3A). This square wave burst pattern reflects bistability
of the spike-generating subsystem. Over the range of values
swept (up and down) by S in one period, Egs. 1 and 2 have
two coexistent stable modes of behavior: a depolarized state
of repetitive spiking and a steady ‘‘resting’’ state of hyper-
polarization.

When two identical bursters are coupled with g. = 0.06 and
started in-phase, they initially follow the single-cell bursting
solution (Fig. 3B). This behavior is unstable, however, and a
new stable burst pattern emerges during the second burst
with smaller amplitude, higher frequency, antiphase spikes
(Fig. 3C). The amplitude of S, and consequently the burst
period, are substantially increased. As shown in Fig. 2,
coupling has extended the range of S over which the cells are
bistable and oscillatory by creating a new depolarized state of
antiphase spiking. As for the cases shown in Figs. 1 and 2,
reducing g. to 0 or raising it sufficiently restores the single-
cell behavior.

If A is made very large (=10), Egs. 1 and 2 are no longer
oscillatory but bistable with high- and low-voltage resting
states. When combined with Eq. 3, the result is not bursting
but a slow wave or relaxation oscillation. When two such
oscillators are weakly coupled there is no period extension as
in Fig. 3; if the cells differ slightly, the period can even
decrease. This is significant because one often assumes for
simplicity that the fast time scale phenomena can be averaged
out or ignored when studying bursting (9). While that ap-
proach is often justified, the properties of oscillators can
depend on the existence of spikes as opposed to a simple
plateau.

For our final example, we consider a case in which
coupling converts tonic spiking cells to bursters. In an
isolated cell, reducing A increases the spike amplitude, and
bursting may give way to large-amplitude spiking, which can
be viewed as bursts with one spike (Fig. 4, left arrow). This
beating solution is similar to the early spikes of Fig. 1, except
there § is constant, while in Fig. 4 S undergoes a small-
amplitude oscillation. When two cells are coupled with g. =
0.04, bursting is restored, and the amplitude of S is increased
8-fold. Again, the spikes are antiphase.
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F1G. 3. Weak coupling can increase the period of bursting. (A)
Solution of Egs. 1-3 (V, Upper; S, Lower) for an uncoupled bursting
cell. S is now a slow variable (7 = 35 s) that increases during the
active phase and decreases during the silent phase. Note the long
time scale compared to Figs. 1 and 2. Parameters are the same as in
Figs. 1 and 2, except A = 0.9, which reduces spike amplitude and
makes Eqgs. 1 and 2 bistable over the range of § traversed during
bursting. S»(V) has the form of x»(V) (see Fig. 1) with Vg = =38 mV
and 6; = 10 mV. (B) Two bursters (only one shown) are coupled with
gc = 0.06 and started with identical initial conditions. No perturba-
tion is applied; accumulated numerical errors are enough to desta-
bilize the single-cell solution and lead to a new solution with the burst
period doubled and S amplitude tripled. The time courses of the two
cells are almost identical on the bursting time scale, but an expanded
view (C) of both cells (one shown as solid line, and one shown as
dashed line) during the interval corresponding to the long ticks in B
shows that the spikes undergo a transition from in-phase to antiphase
spiking. Antiphase spiking persists in the second and succeeding
bursts (data not shown), with the lead alternating between the two
cells.

DISCUSSION

Summarizing, we see that weak gap-junctional coupling can
give rise to antiphase oscillations (Fig. 1), which extend the
parameter ranges for oscillatory behavior beyond those of
isolated or strongly coupled cells (Figs. 2 and 3). Modulation
of coupling conductance can then switch the behavior of the
two cells between silent and oscillatory (Fig. 2) or between
simple oscillations and bursting (Fig. 4).

The idea that electrotonic coupling can lead to antiphase
oscillations is counterintuitive. Rather, one often thinks of
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F16. 4. Weak coupling can convert spikers to bursters. Param-
eters are the same as in Fig. 3, except A = 0.8, resulting in repetitive
spiking (beating) instead of bursting. Oscillations in S are nearly
abolished. Two identical cells are started with identical initial con-
ditions (only one shown for clarity). At ¢t = 20 s, g is increased to
0.04 (right arrow) and a small symmetry-breaking perturbation (0.3
mV) is applied to one cell. After a brief transient, the two cells begin
to burst in-phase but with antiphase spikes, as in Fig. 3.

reciprocal activity as resulting from mutual inhibition through
the mechanism of postinhibitory rebound (10, 11). Indeed,
because gap-junctional current is hyperpolarizing when the
neighboring cell has a more negative potential and depolar-
izing when the neighbor has a higher potential, one expects
coupling to equalize the cells’ potentials. This is the case
when coupling is strong, but it need not be so when coupling
is weak. One way to predict the effect of weak coupling
between oscillators is to examine the average coupling cur-
rent over a period (12). When the average coupling is in a
certain sense ‘‘mutually inhibitory,’’ the oscillators will tend
to repel each other. Then the stable situation is for the phases
to be as far apart as possible—i.e., 180° apart. We carried out
numerical perturbation calculations (unpublished data, but a
technique described in ref. 13 was used) to verify that the
averaged coupling current for our examples is such as to
result in antiphase solutions.

Our intuition, and indeed our ability to find parameter
values to illustrate the phenomena, is primarily based on such
calculations and also our understanding of the geometry of
solutions in parameter space. (For the case of an isolated cell,
see ref. 14; the extension to two cells is unpublished.) Given
the existence of antiphase oscillations, however, one can
interpret biophysically the period extension when two burst-
ers are coupled. In the bursting regime, the membrane is
bistable with a depolarized oscillatory state and a hyperpo-
larized steady state separated by a threshold. During the
active phase, S slowly increases, making the membrane less
excitable by raising the threshold. The spike minima also
hyperpolarize slightly, and the burst ends when the two meet.
When the cells are coupled and spike out-of-phase, the spike
minima are depolarized (Figs. 1 and 3) and are farther above
the threshold, which is unaffected. Thus, a larger value of S
is required to terminate the burst, and the active phase
duration increases. The silent phase duration also increases
since it takes longer for S to decay sufficiently to allow
spiking to resume.

For several reasons, we believe that the results seen here
for a particular, idealized model have a broader application.
Our illustrative model uses ionic currents found ubiquitously
in neurons, secretory cells, and other electrically active cells.
All the square-wave burster models tested (2-4) show both
antiphase oscillations and the macroscopic consequences
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seen here. Moreover, examples of antiphase oscillations can
be found in neuroscience (15) and chemistry (16), and math-
ematical analysis indicates that they are a likely consequence
of weak diffusional coupling under certain conditions (17, 18).
Finally, although we have only shown results here for cell
pairs, we have seen period extension in large ensembles of
electrically coupled bursters (19), including cases in which
substantial channel noise is present (20). Indeed, since it is
harder to synchronize large ensembles, the period-extension
effect persists for much larger values of coupling conduc-
tance. With many deterministic cells, the spikes are not
antiphase; rather, the phase relations drift in a complicated,
possibly chaotic way (compare to ref. 21).

We conclude with some speculations about possible ap-
plications of the rhythmogenic phenomena discussed here to
neuronal networks.

If two neurons provide synaptic input to one target cell,
antiphase oscillations would yield a smoother signal than
in-phase oscillations. Lewis (15) has explored antiphase
spiking in an electronic motoneuron model as a way to obtain
coordinated, but not perfectly synchronous, signals and thus
avoid jerkiness of muscular response.

Two neurons with the properties shown in Fig. 2 could
have interesting switching behavior if their gap junctions
were modifiable (say, by cAMP). When the junctions were
open, brief synaptic input to one cell could evoke a steady
oscillatory output from the pair, but only a transient response
would be possible when they were closed.

An important question is how much of the detailed bio-
physical properties of neurons are important for understand-
ing neural networks, especially in view of recent interest in
theoretical networks composed of very simplified units.
Rather than give an answer here, we offer our examples as
provocative instances where the details do make a difference
in gross behavior. One may consider whether such enhance-
ments of the collective behavior of cells have implications for
information processing at the network level.
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