Supplementary Materials

Dapper, AL and MJ Wade (2016) The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species.

Supplemental Table 1: The change in frequency of the *A* allele (Δp) when each

d Genotypes	F _i	p i	q i	$\Delta p_i W$	$F_i \Delta p_i$
A X A	<i>p</i> ²	1	0	0	0
A X a	2pq	(1/2)	(1/2)	s/4	spq/2W
а Х а	q^2	0	1	0	0
Total:	1				spq/2W

female mates with exactly two males (k = 2) for Case 1 (haploid adults).

Supplemental Table 2: The change in frequency of the *A* allele (Δp) when each female mates with exactly two males (k = 2) for Case 2 (diploid adults, gametic expression of sperm proteins).

d Genotypes	F _i	p i	q i	$\Delta p_i W$	$F_i \Delta p_i$
AA X AA	p^4	1	0	0	0
AA X Aa	4 <i>p</i> ³ <i>q</i>	(3/4)	(1/4)	(3/16)s	$(3/4)sp^{3}q/W$
AA X aa	$2p^2q^2$	(1/2)	(1/2)	(1/4) <i>s</i>	$(1/2)sp^2q^2/W$
Aa X Aa	$4p^2q^2$	(1/2)	(1/2)	(1/4) <i>s</i>	sp^2q^2/W
Aa X aa	4 <i>pq</i> ³	(1/4)	(3/4)	(3/16)s	(3/4) <i>spq</i> ³ /W
аа Х аа	q^4	0	1	0	0
Total:	1				(3/4) <i>spq/W</i>

d Genotypes	F _i	Gij		pij	Wij	<i>W.</i> _j	$\Delta p_i W$	$F_i \Delta p_i$		
AA X AA	p^4	G _{i,AA}	1	1	1	1	0	0		
		G _{i,Aa}	0	-	-	-	-	-		
		Gi,aa	0	-	-	-	-	-		
AA X Aa	$4p^3q$	$G_{i,AA}$	(1/2)	1	1	1-(<i>hs</i> /2)	sh/4	shp³q/W		
		G _{i,Aa}	(1/2)	(1/2)	1 <i>-hs</i>	1-(<i>hs</i> /2)	- <i>sh</i> /8	-shp³q/2W		
		G _{i,aa}	0	-	-	-	-	-		
AA X aa	$2p^2q^2$	$G_{i,AA}$	(1/2)	1	1	1-(<i>s</i> /2)	s/4	$sp^2q^2/2W$		
		G _{i,Aa}	0	-	-	-	-	-		
		G _{i,aa}	(1/2)	0	-	-	-	-		
Aa X Aa	$4p^{2}q^{2}$	$G_{i,AA}$	0	-	-	-	-	-		
		G _{i,Aa}	1	(1/2)	1 <i>-hs</i>	1 <i>-hs</i>	0	0		
		G _{i,aa}	0	-	-	-	-	-		
Aa X aa	4 <i>pq</i> ³	$G_{i,AA}$	0	-	-	-	-	-		
		G _{i,Aa}	(1/2)	(1/2)	1 <i>-hs</i>	1-(h+1)(s/2)	(1-h)s/8	(1- <i>h</i>) <i>spq</i> ³ /2W		
		G _{i,aa}	(1/2)	0	-	-	-	-		
аа Х аа	q^4	$G_{i,AA}$	0	-	-	-	-	-		
		G _{i,Aa}	0	-	-	-	-	-		
		G _{i,aa}	1	0	-	-	-	-		
Total:	1						spq(ph +	<i>spq(ph</i> + <i>q</i> (1- <i>h</i>))/2W		

Supplemental Table 3: The change in frequency of the *A* allele (Δp) for exactly two males (*k* = 2) for Case 3.

Supplemental Figure 1: Difference in the magnitude of $\Delta p \ge 10^{-6}$ between the analytical approximation, which assumes a Hardy-Weinberg distribution of offspring genotypes after selection, and the simulation results of the exact equation without that assumption, ($\Delta p_{HW} - \Delta p_{NO_-HW}$). The initial conditions assume a constant selection coefficient, s = 0.01, and frequency of the favored allele, p, of 0.5. For Case 2 (diploid adults, haploid sperm), the difference in Δp is shown for two conditions: (1) each female has 1 mate (blue), and (2) each female has two mates (red). For Case 3 (diploid adults, diploid sperm), only the second condition (k = 2) is shown (green), because there is no sperm competition when k = 1. The largest difference is ~5 x 10⁻⁶, which is of order (s)³, demonstrating that analysis facilitated by the Hardy-Weinberg is excellent for the case of weak selection.

Supplementary Figures

Supplementary Figure 2: Change in Frequency of Beneficial Alleles

Beneficial alleles (s = 0.1, h = 0.5) take longer to fix when they occur in sex-specific genes (dashed, black) in comparison to constitutively expressed genes (solid, black). If they occur in sex-specific genes that function primarily in sperm competition, the expected time to fixation increases as the harmonic mean number of mates per female (*H*) decreases (*H*=3, blue; *H*=2, red; *H*=1.5, yellow). (A) Case 1 – haploid males, (B) Case 2 – diploid males, gametic expression of reproductive proteins, and (C) Case 3 – diploid males, somatic expression of reproductive proteins.

Supplementary Figure 3: Relative Levels of Gene Diversity

Sex-specific genes are expected to exhibit twice as much gene diversity at the mutation selection balance relative to standard constitutively expressed genes (black, dashed line). In Case 1 and 3, sperm competition genes are expected to exhibit even higher levels of gene diversity relative to constitutively expressed genes (grey, dotted line). In contrast, in Case 2 (diploid adults, gametic expression), sperm competition genes are expected to exhibit reduced levels of gene diversity in comparison to sex-specific genes not involved in sperm competition (grey, solid line). The relative increase in gene diversity is a function of the harmonic mean number of mates per female (*H*) decreases.

Supplementary Figure 4: Probability of Fixation of a New Mutation

(A, C, E) New deleterious mutations (s < 0, h = 0.5) have a higher probability of fixing in sex-specific gene relative to standard constitutively expressed genes (black, dashed). (B, D, F) Conversely, new beneficial mutations (s > 0, h = 0.5) have a lower probability of fixing in sex-specific gene relative to standard constitutively expressed genes. These effects are exaggerated in sex-specific genes that function primarily in sperm competition. Among sperm competition genes, the relative probability of fixation is a function of the harmonic mean number of mates per female (H) (H=3, blue; H=2, red; H=1.5, yellow). (A, B) Case 1 – haploid males, (C, D) Case 2 – diploid males, haploid expression of reproductive proteins, and (E, F) Case 3 – diploid males, diploid expression of reproductive proteins.

Supplementary Figure 5: Expected Ratio of Non-synonymous to Synonymous Substitutions

Sperm competition (grey, dotted/solid lines) and sex-specific genes (black, dashed line) are expected to exhibit elevated ratios of non-synonymous to synonymous substitutions (dN/dS) in comparison with standard, constitutively expressed genes (black, solid), given the same average selective effect of new mutations (Ns = -1). While sperm competition increases expected dN/dS in Case 1 (haploid adults) and 3 (diploid adults, somatic expression) (grey, dotted line), it decreases expected dN/dS in Case 2 (diploid adults, gametic expression) (grey, solid line). Among sperm competition genes, the expected dN/dS ratio increases with decreasing harmonic mean number of mates per female (H).

Supplementary Figure 4. Probability of fixation of a new mutation.

Supplementary Figure 5. Expected ratio of non-synonymous to synonymous substitutions.

