Supplementary Materials

Dapper, AL and MJ Wade (2016) The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species.

Supplemental Table 1: The change in frequency of the *A* allele (Δp) when each

female mates with exactly two males $(k = 2)$ for Case 1 (haploid adults).

Supplemental Table 2: The change in frequency of the *A* allele (Δp) when each female mates with exactly two males $(k = 2)$ for Case 2 (diploid adults, gametic expression of sperm proteins).

\textcircled{c} Genotypes	F_i	G_{ij}		p_{ij}	W_{ij}	$W_{\cdot j}$	$\Delta p_i W$	$F_i \Delta p_i$	
AA X AA	p ⁴	$G_{i,AA}$	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	
		$G_{i,Aa}$	$\boldsymbol{0}$	$\overline{}$	$\overline{}$	$\frac{1}{2}$	\blacksquare	$\overline{}$	
		$G_{i,aa}$	$\boldsymbol{0}$	\blacksquare	\blacksquare	\sim	$\overline{}$	\sim	
AA X Aa	$4p^3q$	$G_{i,AA}$	(1/2)	$\mathbf{1}$	$\mathbf{1}$	$1 - (hs/2)$	sh/4	shp^3q/W	
		$G_{i, Aa}$	(1/2)	(1/2)	$1-hs$	$1 - (hs/2)$	$-sh/8$	$-shp3q/2W$	
		$G_{i,aa}$	$\mathbf{0}$	\blacksquare	\blacksquare	\sim	\blacksquare	\sim	
AA X aa	$2p^2q^2$	$G_{i,AA}$	(1/2)	$\mathbf{1}$	$\mathbf{1}$	$1-(s/2)$	s/4	$sp^2q^2/2W$	
		$G_{i,Aa}$	$\mathbf{0}$	\blacksquare	$\overline{}$	\blacksquare	$\overline{}$	$\overline{}$	
		$G_{i,aa}$	(1/2)	$\boldsymbol{0}$	$\overline{}$	$\overline{}$		\blacksquare	
Aa X Aa	$4p^2q^2$	$G_{i,AA}$	$\boldsymbol{0}$	\blacksquare	\blacksquare	\blacksquare	$\overline{}$	$\overline{}$	
		$G_{i, Aa}$	$\mathbf{1}$	(1/2)	$1-hs$	$1-hs$	$\mathbf{0}$	$\boldsymbol{0}$	
		$G_{i,aa}$	$\mathbf{0}$		\blacksquare	$\overline{}$	$\overline{}$	\blacksquare	
Aa X aa	$4pq^3$	$G_{i,AA}$	$\mathbf{0}$		\blacksquare	\blacksquare		\blacksquare	
		$G_{i,Aa}$	(1/2)	(1/2)	$1-hs$	$1-(h+1)(s/2)$	$(1-h)s/8$	$(1-h)$ spq ³ /2W	
		$G_{i,aa}$	(1/2)	$\boldsymbol{0}$	\blacksquare	\blacksquare	$\overline{}$	\blacksquare	
aa X aa	q^4	$G_{i,AA}$	$\mathbf{0}$	\blacksquare	\blacksquare	$\qquad \qquad \blacksquare$	$\overline{}$	\blacksquare	
		$G_{i,Aa}$	$\boldsymbol{0}$	\blacksquare	-	-			
		$G_{i,aa}$	$\mathbf{1}$	$\boldsymbol{0}$	\blacksquare	\blacksquare		\blacksquare	
Total:	$\mathbf{1}$						$spq(ph+q(1-h))/2W$		

Supplemental Table 3: The change in frequency of the *A* allele (Δp) for exactly two males ($k = 2$) for Case 3.

Supplemental Figure 1: Difference in the magnitude of *Δp* x 10-6 between the analytical approximation, which assumes a Hardy-Weinberg distribution of offspring genotypes after selection, and the simulation results of the exact equation without that assumption, ($Δp_{HW} - Δp_{NO_HW}$). The initial conditions assume a constant selection coefficient, *s* = 0.01, and frequency of the favored allele, *p*, of 0.5. For Case 2 (diploid adults, haploid sperm), the difference in *Δp* is shown for two conditions: (1) each female has 1 mate (blue), and (2) each female has two mates (red). For Case 3 (diploid adults, diploid sperm), only the second condition $(k = 2)$ is shown (green), because there is no sperm competition when $k = 1$. The largest difference is \sim 5 x 10⁻⁶, which is of order (s)³, demonstrating that analysis facilitated by the Hardy-Weinberg is excellent for the case of weak selection.

Supplementary Figures

Supplementary Figure 2: Change in Frequency of Beneficial Alleles

Beneficial alleles (*s* = 0.1, *h* = 0.5) take longer to fix when they occur in sex-specific genes (dashed, black) in comparison to constitutively expressed genes (solid, black). If they occur in sex-specific genes that function primarily in sperm competition, the expected time to fixation increases as the harmonic mean number of mates per female (*H*) decreases (*H*=3, blue; *H*=2, red; *H*=1.5, yellow). **(A)** Case 1 – haploid males, **(B)** Case 2 – diploid males, gametic expression of reproductive proteins, and **(C)** Case 3 – diploid males, somatic expression of reproductive proteins.

Supplementary Figure 3: Relative Levels of Gene Diversity

Sex-specific genes are expected to exhibit twice as much gene diversity at the mutation selection balance relative to standard constitutively expressed genes (black, dashed line). In Case 1 and 3, sperm competition genes are expected to exhibit even higher levels of gene diversity relative to constitutively expressed genes (grey, dotted line). In contrast, in Case 2 (diploid adults, gametic expression), sperm competition genes are expected to exhibit reduced levels of gene diversity in comparison to sex-specific genes not involved in sperm competition (grey, solid line). The relative increase in gene diversity is a function of the harmonic mean number of mates per female (*H*) decreases.

Supplementary Figure 4: Probability of Fixation of a New Mutation

(A, C, E) New deleterious mutations (*s* < 0, *h* = 0.5) have a higher probability of fixing in sex-specific gene relative to standard constitutively expressed genes (black, dashed). **(B, D, F)** Conversely, new beneficial mutations (*s* > 0, *h* = 0.5) have a lower probability of fixing in sex-specific gene relative to standard constitutively expressed genes. These effects are exaggerated in sex-specific genes that function primarily in sperm competition. Among sperm competition genes, the relative probability of fixation is a function of the harmonic mean number of mates per female (*H*) (*H*=3, blue; *H*=2, red; *H*=1.5, yellow). **(A, B)** Case 1 – haploid males, **(C, D)** Case 2 – diploid males, haploid expression of reproductive proteins, and **(E, F)** Case 3 – diploid males, diploid expression of reproductive proteins.

Supplementary Figure 5: Expected Ratio of Non-synonymous to Synonymous Substitutions

Sperm competition (grey, dotted/solid lines) and sex-specific genes (black, dashed line) are expected to exhibit elevated ratios of non-synonymous to synonymous substitutions (*dN/dS*) in comparison with standard, constitutively expressed genes (black, solid), given the same average selective effect of new mutations (*Ns* = -1). While sperm competition increases expected *dN/dS* in Case 1 (haploid adults) and 3 (diploid adults, somatic expression) (grey, dotted line), it decreases expected *dN/dS* in Case 2 (diploid adults, gametic expression) (grey, solid line). Among sperm competition genes, the expected *dN/dS* ratio increases with decreasing harmonic mean number of mates per female (*H*).

Supplementary Figure 4. Probability of fixation of a new mutation.

Supplementary Figure 5. Expected ratio of non-synonymous to synonymous substitutions.

