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Computational Details

We model the system by enclosing N = 50 semi-flexible bead-spring polymers formed by M beads in a box with periodic boundary
conditions of linear size L. The monomer density ρ = NM/L3 = 0.1σ−3 is fixed and we vary the length of the polymers and the size
of the box to keep the density constant. The chains are modelled via the Kremer-Grest worm-like chain model [1]. as follows: Let ri
and di,j ≡ rj − ri be respectively the position of the center of the i-th bead and the vector of length di,j between beads i and j, the
connectivity of the chain is treated within the finitely extensible non-linear elastic model with potential energy,
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for di,i+1 < R0 and UFENE(i, i + 1) = ∞, otherwise; here we choose R0 = 1.6 σ and k = 30 ε/σ2 and the thermal energy kBT is
set to ε. The bending rigidity of the chain is captured with a standard Kratky-Porod potential,
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where we set the persistence length lp = 5σ. The steric interaction between beads is taken into account by a truncated and shifted
Lennard-Jones (WCA) potential
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where θ(x) is the Heaviside function.
Denoting by U the total potential energy, the dynamic of the beads forming the rings is described by the following Langevin equation:

mr̈i = −ξṙi −∇U + η (1)

where ξ is the friction coefficient and η is the stochastic delta-correlated noise. The variance of each Cartesian component of the noise,
σ2
η satisfies the usual fluctuation dissipation relationship σ2

η = 2ξkBT .
As customary [1] we set m/ξ = τLJ = τBr, with the LJ time τLJ = σ

√
m/ε and the Brownian time τBr = σ/Db, where

Db = kBT/ξ is the diffusion coefficient of a bead of size σ, is chosen as simulation time step. From the Stokes friction coefficient of
spherical beads of diameters σ we have: ξ = 3πηsolσ where ηsol is the solution viscosity. It is possible to map this to real-time units
by using the nominal water viscosity, ηsol = 1 cP and setting T = 300 K and σ equal, for instance,to the diameter of hydrated B-DNA
(σ = 2.5 nm), for which one has τLJ = τBr = 3πηsolσ

3/ε ' 37 ns. The numerical integration of Eq. (1) is performed by using a
standard velocity-Verlet algorithm with time step ∆t = 0.01τBr and is implemented in the LAMMPS engine.

System Preparation and Equilibration

The systems are prepared by placing the rings randomly in a very large box. The linking number between all pairs of rings is also
checked in order to avoid linked polymers. In addition, the rings are initialised as perfect circles in order to avoid self-knotting. The
desired monomer density is achieved by slowly shrinking the box until the target box size is reached (effectively applying a constant
pressure). At this stage, we checked for unwanted linked rings and found none. After this, we equilibrate the systems by performing
standard runs (with no rings artificially pinned) for at least the time need for the chains to displace their centres of mass of several Rg’s.
We observe that t = 107τBr time-steps are enough to obtain this condition. After the equilibration we performed another run in order
to study the free, i.e. unperturbed, behaviour of the system. The mean square displacement obtained from this run is reported in see
Fig. S4. The simulations in which we artificially pin some of the rings are then started from the late stages of this last run, so that the
initial configuration for these perturbed simulations were un-correlated from the initial system set up. The rings that are artificially
pinned are chosen at random among the N rings. Because the simulations are very computationally expensive, we only perform one
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FIG. S1: (a) Ensemble average of the radius of gyration 〈Rg〉 ≡ 〈R2
g〉1/2 and plotted against rings’ contour length s (main) and total length M (inset)

both in units of the bead size. As reported in the literature, the rings show a collapsed behaviour for large M . (b) Static scattering function S1(q)
plotted against qRg and normalised by the length of the rings M . This quantity indicates a complex arrangement of the rings internal structure, which
does not seem to follow a unique fractal dimension at all lengths.

simulation for each choice of c. For the longest chains reported here (M = 2048 beads) each run up to 2 107 τBr takes up to 4 weeks
when running in parallel over 64 processors. This time-window has to be run for every choice of the fraction of pinned chains c. As we
tested four choices of c, the results reported only for the system with M = 2048 (Fig. 3(e) in main text) take ∼ 4 months of 64 CPUs
time or, equivalently, ∼ 20 years of single CPU time.

The Size and Static Structure of Rings are in Agreement with the Crumpled Globule Behaviour

In agreement with results reported in the literature [2, 3] we observe (Fig. S1) that the radius of gyration of the rings scales as
Rg ∼ Mν with ν ' 1/3 in the limit of large polymerisation index M , while we observe ν ' 2/5 for shorter rings. This is supported
by the measurement of 〈R2

g〉 either for the whole rings or as a function of the contour length s. The values of the exponents are in
agreement with previously reported findings and we refer to previous works[2, 3] for dedicated measurements of ν. Another way of
investigating the conformation of the rings is by measuring the static structure factor. For wave-vectors in the range 1/Rg < q < 1/σ,
one should expect that S1(q) defined as

S1(q) =

〈
1

M

M∑
i,j∈I

eiq(ri(t)−rj(t))

〉
(2)

where the indexes i,j run over ring I , to give S1(q) ∼ q−DF [4], where DF is the fractal dimension of the chain at length scale 1/q
and it is related to the scaling exponent ν as DF = 1/ν. Linear chains in the melt display DF = 2 for a broad range of q’s [1] while
we observe the rings to have a more complex organisation with DF ranging from DF ' 3 to DF ' 1 at large q, in agreement with
previous findings [2] (see Fig. S1).

The Contact Surface of the Coils Grows Extensively with the Length of the Rings

In order to quantify the degree of interaction between coils, we investigate (i) the number of surface monomers, (ii) the number of
contiguous chains and (iii) the number of neighbouring chains.

(i) The number of surface monomers ms is computed by counting the number of beads forming the chains that are in contact
with beads forming any other chains, according to the contact matrix in eq. 3 of the main text, i.e. any two beads are in contact if
their position is closer than d = ρ−1/3, where 1/ρ = 10σ3 is the free volume per bead.

(ii) The number of contiguous chains nc is computed the number of chains that have surface beads that are in contact.

(iii) The number of neighbouring chains nn is instead defined as the number of coils that are closer than 2Rg to any one other
coil.

These quantities are reported in Fig. S2.
The surface monomers show a near extensive dependence to the length of the rings, as already observed in previous works [2], while the
number of contiguous and neighbouring chains show a similar scaling behaviour as a function ofM , although nc is found systematically
larger than nn. This may imply large fluctuations in the rings conformations, which bring distant coils in contact.
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FIG. S2: (a) The number of surface monomers ms shows a scaling ms ∼Mβc with βc ' 0.99 for the longest chains. (b) The number of contiguous
chains nc and number of neighbouring chains nn is shown. While their scaling behaviour is similar, the average number of chains in contact at
any time is systematically larger than the number of chains whose centre of mass is closer than 2Rg . This may imply large fluctuations in the rings
conformations that bring distant chains in contact with one another. In (b) we show two curves with exponents 0.33 and 0.27 as a guide for the eye but
refer to the literature and further studies for more precise estimates.

The Contact Probability Shows a Decay Consistent with the Mean-Field Estimate γ = 1

The contact probability is defined as

Pc(|i− j|) =

〈
1

M

M−1∑
i=1

M∑
j=i+1

Θ(a− |ri(t)− rj(t)|)

〉
(3)

where Θ(x) is the Heaviside function and a is the chosen cut-off. In Fig. S3 we report Pc for two value of a and for different chain
lengths. The behaviour of Pc(m) is expected to follow the crumpled globule scaling

Pc(m) ∼ m−γ (4)

with γ >∼ 1, and for which the mean field value γ = νd is a lower bound. We here observe γ ' 1.02−1.09 (see Fig. S3). The prediction
that fixes the sum of the contact exponent γ and the surface exponent βc equal to 2 in the case of crumpled globules (ν = 1/3), i.e.
βc + γ = 2 [5], is therefore here recovered within errors.

The Pair Correlation Function Suggest that the Coils are Largely Inter-Penetrating

In order to probe the inter-penetration of the coils one can also investigate the pair correlation function g(r) which we here defined
similarly to a recent work [6]

g(r) =
2

N(N − 1)

N−1∑
I=1

N∑
J=N+1

δ[|rCM,I(t)− rCM,J(t)| − r] (5)

where rCM,I indicates the position of the centre of mass of ring I .

This function has been used in a recent work [6] probing the glassy dynamics of polymers under confinement and we here find
well characterising the degree of overlap between coils. The behaviour of g(r) (reported in Fig. S3) in fact shows a distinct peak at
rc ' 1.8Rg for M = 256 and at rc ' 1.4Rg for M ≥ 512. This implies that the coils, although crumpled, are strongly overlapping.

The Mean Squared Displacement of the Unperturbed System is in Agreement with Previous Observations

In Fig. S4 we report the rings centre of mass mean square displacement g3(t) defined as

g3(t) =
〈

[rCM (t)− rCM (0)]
2
〉
, (6)
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FIG. S3: (a) The contact probability function Pc(m) (defined in eq. (3)) shows a scaling behaviour m−γ with γ slightly dependent on the choice of
the cut-off a but compatible with previous findings [2]. (b) Pair correlation function g(r) for the rings centre of mass as defined in eq. (5). The peak
position imply that the coils are largely overlapping. In the inset we report g(r) normalised by the ideal pair distribution function gI(r) = 4πρcr

2,
where ρc ≡ N/L3 is the coils’ density. The coils behave as ultra-soft sphere with large inter-penetrations.

along with the diffusion coefficient DCM ≡ limt→∞ g3(t)/6t and the relaxation time τR defined via the following condition

g3(τR) ≡ R2
g. (7)

As one can notice, the mean square displacement (MSD) of the centre of mass displays an intermediate sub-diffusive regime in which
g3(t) ∼ t3/4 before crossing over to a diffusive regime at large times. This is most evident for longer rings. The scaling of the diffusion
coefficient as a function of the rings length is comparable to the one found in Ref. [3] although slightly smaller, which is in agreement
with the lower monomer density considered in this work. This scales asymptotically as

DCM ∼M−2 (8)

as well as the relaxation time τR for which we find

τR ∼M2.3. (9)

Persistent Contiguous Chains show an Exponentially Slow Uncorrelation Time

In the main text we report the behaviour of the correlation function ϕnc(t), characterising the exchange dynamics of the coils. In
Fig. S5 we report the values of the relaxation time of the exchange dynamics τnc and the value of the stretching exponent βnc used to
fit the data to stretched exponentials of the form

ϕnc = exp

[
−
(

t

τnc

)βnc
]
. (10)

We also report the value of Tnc, which is here defined as

Tnc ≡
∫ ∞

0

ϕnc(t)dt. (11)

Both relaxation times τnc and Tnc are observed to grow exponentially in M . The stretching parameter βnc is found to reach values
close to 1/2 for the longest chains studied in this work. This implies that the exchange time of the rings becomes extremely slow in the
limit of large M and in turn this may suggest the onset of a glassy dynamics (see discussion of Fig. 2 in the main text).

The Overlap Parameter Shows an Arrested Decay Corresponding to Caged Length-Scales

The overlap parametersQmon
s (t) andQcoil

s (t) are useful to characterise the glassy dynamics [7]. We here define them here as follows:

Qmon(t; c) = 〈Θ(w − |ri(t)− ri(0)|)〉 (12)
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FIG. S4: (a) g3(t): Mean square displacement (MSD) of the rings centre of mass. The faint horizontal lines represent the square radius of gyration
〈R2

g(t)〉. (b) g3(t)/R2
g: MSD of the rings centre of mass divided by their squared gyration radius. The solid horizontal line in (b) marks the value

g3(t)/R2
g = 1 at which the rings have, on average, travelled once their own size. (c) and (d) Report the behaviour of the diffusion coefficient of the

centre of mass of the rings and the relaxation time τR (see eq. (7)), respectively. By fitting the last three data-points in order to obtain the asymptotic
values of DCM for large M we obtain −2± 0.1. By considering all data point we obtain a value for the exponent of DCM of around 1.8± 0.1.

FIG. S5: (a) Values of the relaxation times τnc and Tnc for the contiguous correlation function ϕnc(t) reported in Fig. 2 of the main text.We observe
an exponential increase of the typical exchange time for large M . (b) Value of the stretching exponent βnc, ranging from near unity for M = 256 to
around 1/2 for M = 2048.

and

Qcoil(t; c) = 〈Θ(w − |rCM (t)− rCM (0)|)〉 . (13)

Where the average is performed over monomers (coils) and initial times. The window parameter is chosen to be w = 2Rg being the
length-scale at which the glassy dynamics is conjectured to occur. In other words, we aim to average out all the jiggling of the coils
inside cages of size 2Rg and to capture the slowing down of the translational dynamics of the centre of mass of the coils. As shown in
Fig. S6, this two-point correlation function clearly reflects the arrested relaxation when c is increased toward c†. As discussed in the
main text, coils that are completely caged cannot escape and freely diffuse. This means that their centre of mass is confined in a cage
of linear size 2Rg at all times. The coils’ overlap parameter reflects the constraint by arresting its decay and in particular we find that

lim
t→∞

Qcoil(t; c†) ' 1 (14)

at any time.
One can also notice that the dynamics of the beads is less constrained than the dynamics of the centre of mass of the coils when

c→ c†. As observed, at c ' 0 one notices that the two correlation functions match in the limit of large t. On the contrary, at c > 0, their
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FIG. S6: Overlap parameters Qcoil (solid lines) and Qmon (dashed lines) for different values of c and for the 5 values of M considered: (a)M = 256,
(b)M = 512, (c)M = 1024, (d)M = 1512 and (e)M = 2048. In the inset the overlap parameter is plotted in linear scale to highlight the long time
flattening. (f) The value of the overlap parameter fov ≡ Qcoil(t = ti; c) is evaluated and reported at two arbitrary (long) times t1 = 5 106 τBr (solid
lines and data points) and t2 = 107 τBr (dashed lines), showing a consistent increased tendency to display an arrest of the decay at larger values.

FIG. S7: Scattering function Sc(q, t) computed at q = 4/Rg for different chain lengths: (a)M = 256, (b)M = 512, (c)M = 1024, (d)M = 1512
and (e)M = 2048. The last three set of curves are plotted in linear scale to highlight the behaviour at large times. (f) The value of the scattering
function at arbitrary time t̄, fc ≡ Sc(q, t̄) is plotted against c for two chosen values of time t̄: t = 5 106 τBr (solid lines and symbols), t = 107 τBr
(dashed lines) and for the different chain lengths.

difference remains finite at all times and this implies that the relaxation dynamics is decoupled by the topological constraints, which
suppress the degree of freedom of the centre of mass of the coils while leaving shorter segments along the chains relatively unhindered.

Given the fact that the arrested decay of Qcoil(t; c) and Qmon(t; c) ends with an unambiguous flattening at a constant value at long
times only for small chains, we compare the behaviour of this correlation function by choosing two arbitrary (long) times (t1 and
t2)and plotting the value of fov ≡ Qcoil(t = ti; c) at those times in Fig. 6(f). One can clearly notice that by increasing c any system
becomes slower and for larger chains, a small contamination of frozen chains (c) is enough to dramatically arrest the decay of the
overlap function.
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FIG. S8: Scattering function Sc(q, t) computed at q = 2/Rg for different chain lengths: (a)M = 256, (b)M = 512, (c)M = 1024, (d)M = 1512
and (e)M = 2048. The last three set of curves are plotted in linear scale to highlight the behaviour at large times. (f) The value of the scattering
function at arbitrary time t̄, fc ≡ Sc(q, t̄) is plotted against c for two chosen values of time t̄: t1 = 5 106 τBr (solid lines and symbols), t2 = 107

τBr (dashed lines) and for the different chain lengths.

The Scattering Function Indicates Markedly Different Relaxation Times Above and Below the Average Size of a Coil

In this section we discuss the dynamic scattering function

Sc(q, t) =

〈
1

M

M∑
i,j∈I

eiq[ri(0)−rj(t)]

〉
, (15)

calculated for q1 = 4/Rg and q2 = 2/Rg . The latter explores length scales larger than the diameter of the coils (l2 = πRg > 2Rg)
twice as long of the former, which probes length scales shorter than the diameter of the coils (l1 = (π/2)Rg < 2Rg). As one can
notice from Fig. S7 and Fig. S8, these two dynamics are markedly different.

It is clear from Figs. S7 and S8 that length scales larger than 2Rg are much slower than the internal modes, probed by Sc(q = 4/Rg, t).
This is shows by the large-time value attained by Sc(q, t), defined as fc, in the two cases and reported in S7(f) and S8(f). In the figures,
we show fc computed for two arbitrarily long times (solid and dashed lines), as done for the overlap function. The way in which fc
grows steeper and steeper for q = 2/Rg and for increasing chain lengths as a function of c is indicative that the pinning procedure
affects large length scales more severely than shorter ones.

From these findings, as discussed in the main text, we argue that the relaxation of the long wave length modes is strongly hindered
by the pinned rings, while the short wavelength are relatively free to relax. This once again implies that the stronger effect of the
pinning of rings is experienced by the translational degrees of freedom of the rings while it leaves short segments of the rings able to
partially re-arrange their conformations.

The Efficiency of Freezing Grows Exponentially with the Chains’ Length

The freezing procedure described in the main text offers a pathway to generate glassy states by exploiting the topology of the
constituents. We show how the fraction of freely diffusing chains depends on the fraction of (non-)frozen chains in Fig. S9(a). This is
done by tracking the individual MSD of the coils centre of mass and by counting the number of these which have travelled more than
2Rg at the end of the simulation run time and by classifying these as freely diffusing. The dashed line represents the curve followed by
the data points if every non-explicitly frozen chain were free to diffuse. The deviation from this (zero pinning efficiency) line becomes
stronger as the chains become longer and readily show that long chain are very sensitive to a small amount of explicitly frozen chains.

Fig. S9(b) shows the number of caged chains as a function of rings’ length. Once again we identify the caged coils by tracking
the individual MSD of the centre of mass and by identifying as “caged” those which have not travelled more than 2Rg at the end of



FIG. S9: (a)Fraction of freely diffusing rings Φfd = nfd/(1 − c)N against the fraction of non-frozen chains 1 − c. The dotted line marks the case
in which all the non explicitly frozen chains are also freely diffusing. (b) The “efficiency” of the pinning procedure can be quantified by plotting the
number of caged rings per frozen chain as a function of the chains’ length and for the various c used. Here the points plotted mark the result from a
simulation for fixed c and M . Both the most and the least efficient cases (for a given rings length M ) show an exponential growth with M . (c)-(d)
Relaxation time of the systems computed as R2

g/Deff . The divergence of the relaxation as a function of the freezing fraction c is broadly captured by
a VFT function, i.e. τRelax = τ0 exp [Ac/(c0 − c)], where c0 is generally larger than c† defined using Deff (see main text).

the simulation. We repeat this analysis for every choice of c. We observe that not all simulations have the same caging “efficiency”
but, remarkably, we observe that both the least and the most efficient (highest and lowest number of caged rings per frozen one)
scale exponentially with M . This finding strongly encourages further computational and experimental studies of this system, as the
number of chains implicitly caged can become arbitrarily big depending on the choice of M . Because of this exponential increase,
fewer explicitly frozen chains will be needed to significantly slow down the system, raising the possibility that the system might
spontaneously vitrify.

Finally, we study the longest relaxation time of the perturbed systems by computing τRelax ≡ R2
g/Deff and we report the findings

in Figs. S9(c)-(d). The divergence of the relaxation time follows naturally from the fact that Deff is vanishing at c → c†. In addition,
we fitted the values of τRelax with an empirical function inspired to the standard Vogel-Fulcher-Tammann function used to describe the
relaxation of glass-forming systems

τRelax = τ0 exp

[
Dc0
c0 − c

]
. (16)

where here c replaces T . This result can be understood in terms of cooperativity of the chains: as one gets closer to the critical line
c†(M), the activation energy to re-arrange and relax the system becomes higher, as the number of topological constraints becomes
closer to the critical value for which all the translational degrees of freedom of the system are quenched. On the other hand, it is
important to notice that we can track the relaxation time of the chains only up to roughly two orders of magnitude larger than the
unperturbed relaxation time (τ0) and this is far too small a range to draw definite conclusions on the nature of this divergence.
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