

Supplemental Figure 1: The TACI^{*} transitional subset in BAFF-Tg mice are derived from transitional B cells (A) Total splenic B cells and B cell developmental subsets in WT, *Taci^{-/-}*, BAFF-Tg and *Taci^{-/-}*.BAFF-Tg mice. ****, P<0.0001, by one-way ANOVA, followed by Tukey's multiple comparison test. (B) sTACI on splenic B cell subsets from wild-type (blue) and BAFF-Tg (red) mice. (C) AA4.1 is downregulated on a subset of recent BM emigrant T1 B cells. GFP⁺ T1 B cells from Rag2-GFP⁺ mouse were subdivided into GFP^{hi} and GFP^{mid} subsets that GFP^{mid} T1 B cells have undergone ~50% GFP dilution). Left panel: Rag2-GFP expression (gated on GFP⁺ T1 B cells) showing GFP^{mid} and gating strategy. Overlaid histograms showing AA4.1 (middle panel) and sTACI (right panel) expression in Rag2-GFP^{mid} T1 (red), Rag2-GFP^{hi} T1 (such that GFP^{min} GFP^h (blue) and FM (grey) B cells. Notably, AA4.1 staining was lower and sTACI expression higher on GFP^{mid} T1 relative to GFP^{hi} T1 B cells, consistent with reciprocal regulation of AA4.1 and sTACI within the transitional compartment. (D) TACI⁺ T1 B cells from BAFF-Tg mice are not peritoneal B1 B cells. (iiv) Overlaid histograms showing surface phenotype of BAFF-Tg TACl^b (red) and TACl^b (blue) T1 B cells compared with BAFF-Tg peritoneal B1a (black) and B1b (green) B cells. (i) While TACl^b T1 are larger than TACl^b T1, the TACl^{bi} subset is smaller than both B1a and B1b B cells. (ii) T1 B cells lack surface expression of CD11b, a marker of peritoneal B1 B cells (1). (iii) CD21 expression is higher on B1b cells (hypothesized to contribute to BAFF-Tg autoimmunity (2)) relative to BAFF-Tg TACI^{hi} and TACI^b T1 B cells. (iv) Although CD80 is upregulated on activated TACI^{hi} T1 B cells from BAFF-Tg mice, surface CD80 expression is significantly higher on peritoneal B1 B cells. (i-iv) Peritoneal B1 cells were gated as CD19^{hi} IgM^{hi} CD11b(Mac-1)⁺ and further subdivided as CD5^{pos} B1a and CD5^{neg} B1b. (E) <u>BAFF-Tg TAC1⁺ T1 B cells develop prior to systemic autoimmunity</u>. (i) Serum anti-Sm/RNP IgG autoantibodies in WT (white) and BAFF-Tg (black) mice at indicated ages. Error bars, SEM; **, P<0.01; ****, P<0.001, by two-tailed Student's t-test. (ii) T1 and FM gates in 4-week-old BAFF-Tg mouse. (iii) AA4.1 expression on BAFF-Tg FM and T1 B cells; gate indicates AA4.1⁺ cells. (iv, v) Representative histograms of sTACI expression on BAFF-Tg CD21^{lo}CD24^{hi} T1 B cells (iv); as well as AA4.1⁺ T1 B cells (v). Number indicates % within gate. Although AA4.1 expression was decreased on T1 B cells from young BAFF-Tg mice, we still noted a distinct subpopulation of TACI⁺ B cells when gated on AA4.1⁺ T1 B cells (in keeping with a transitional origin for this novel subset). (vi) Cell size (by forward (FSC) and side (SSC) scatter); and surface activation markers in BAFF-Tg FM (grey), TACI[®] (blue) and TACI[™] (red) T1 B cells demonstrating identical surface phenotype of TACI⁺ T1 B cells in BAFF-Tg mice prior to the onset of autoimmunity. (F) TACI^{hi} T1 B cells from WT and *Baffr^{2/}* mice exhibit activated surface phenotype. Cell size (by forward (FSC) and side (SSC) scatter; upper); and representative histograms of CD44 (middle), CD80 (lower) in WT (left) and *Baffr^{2/}* (right) TACI^{hi} T1 (red), Baffr^{-/-} TACl¹⁰ T1 (blue) and WT FM (grey) B cells.

B Location of heavy chain mutations

Supplemental Figure 2: Immunoglobulin mutations in cycling BAFF-Tg transitional cells exhibit characteristics of AlD-mediated somatic hypermutation (SHM). (A) Summary of nucleotide substitution patterns in mutated sequences from cloned GFP^{Io} BCRs sorted from Rag2-GFP.BAFF-Tg mice (numbers indicate percentage of each specific type of substitution among cloned BCRs exhibiting evidence for SHM), demonstrating bias for G to A and C to T transitions (3). (B) Location of heavy chain mutations in cloned GFP^{Io} BCRs from sorted T1/T2 Rag2-GFP.BAFF-Tg transitional B cells. Mutations are targeted to complementary determining regions (CDR1-2), consistent with AID-dependent somatic hypermutation (4). CDRs shaded in grey.

Supplemental References:

- 1. Ghosn, E.E., Y. Yang, J. Tung, L.A. Herzenberg, and L.A. Herzenberg. 2008. CD11b expression distinguishes sequential stages of peritoneal B-1 development. *Proc Natl Acad Sci U S A* 105:5195-5200.
- 2. Fairfax, K.A., E. Tsantikos, W.A. Figgett, F.B. Vincent, P.S. Quah, M. LePage, M.L. Hibbs, and F. Mackay. 2015. BAFF-driven autoimmunity requires CD19 expression. *J Autoimmun* 62:1-10.
- Rada, C., G.T. Williams, H. Nilsen, D.E. Barnes, T. Lindahl, and M.S. Neuberger. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. *Curr Biol* 12:1748-1755.
- 4. Jolly, C.J., S.D. Wagner, C. Rada, N. Klix, C. Milstein, and M.S. Neuberger. 1996. The targeting of somatic hypermutation. *Semin Immunol* 8:159-168.