Supplementary Information

Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

By Arvinder Singh, Amreesh Chandra*

[*] Dr. A. Chandra

Department of Physics,

Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India

E-mail: achandra@phy.iitkgp.ernet.in

Fig. S1. Theoretically conceptualized scheme showing the steps in the synthesis of MWZ and MWW composite materials

Fig. S2. XRD patterns observed for (a) MWCNTs, ZrO₂ and MWZ, (b) MWCNTs, WO₃ and

MWW samples

Fig. S3. Focused ion beam (FIB) elemental maps for (a) MWZ and (b) MWW composite,

respectively

Fig. S4. Thermogravimetric analysis (TGA) curves for MWCNTs, MWZ and MWW samples

Fig. S5. Three electrode CV curves observed with Ag/AgCl (sat. KCl) as reference and Pt as counter electrode at a scan rate of 50 mV/sec for (a) MWCNTs, ZrO₂ and MWZ, (b) MWCNTs, WO₃ and MWW samples; CVs at different scan rates for (c) MWZ and (d) MWW composite material in aq. 1M Li₂SO₄ electrolyte

Fig. S6. (a) Two electrode CV curves observed at different scan rates (b) Galvanostatic chargedischarge curves for ASCs assembled in pure 1M Li₂SO₄ aq. electrolyte

Fig. S7. Two electrode charge-discharge curves observed at different specific currents for ASCs assembled in (a) 7.5 mmol (b) 15 mmol (c) 30 mmol (d) 45 mmol and (e) 75 mmol KI added aq.
IM Li₂SO₄ electrolyte; (f) variation of specific capacitance at various specific currents for

different KI concentrations

Fig. S8. Two electrode galvanostatic charge-discharge curves observed at different specific currents for ASCs with higher mass loading assembled in (a) pure and (b) 7.5 mmol KI added electrolyte systems.

Electrolyte	R _s	R _{ct}	Wo	СРЕ
1M Li ₂ SO ₄	0.341 ohm	0.017 ohm	0.38	Q = 0.00078
7.5 mmol KI addition	0.336 ohm	0.023 ohm	0.57	Q = 0.00097

0.027 ohm

0.62

Q = 0.00126

0.295 ohm

15 mmol KI addition

Table S1: Various fitting parameters obtained from the equivalent circuit of Nyquist plots

ASCs structure	Electrolyte used	Operating Voltage [V]	Specific energy [Wh/kg]	Specific power [W/kg]	Cycles and capacitance fade	Reference no
Graphene/MnO ₂ /fFWCNTs// activated carbon/fFWCNTs	Na_2SO_4	2.0	27	130	2000; ~5%	7
Graphene/MnO ₂ //Graphene	Na ₂ SO ₄	2.0	30.4	100	1000, 21%	10
Graphene/Ni(OH)2//Graphene/RuO2	КОН	1.5	48.0	230	5000; 8%	12
3D Porous graphene/MnO ₂ // Graphene/Ag	Na_2SO_4	1.8	50.8	101.5	-	15
Graphene/MnO ₂ //Graphene/MoO ₃	Na ₂ SO ₄	2.0	42.6	276	1000; -	17
CoO/Polypyrrole//Activated carbon	NaOH	1.8	43.5	87.5	20000; 8.5%	47
Ni(OH) ₂ /Graphene//Graphene	КОН	1.6	77.8	174.7	3000; 5.7%	48
NiMoO ₄ //Activated carbon	КОН	1.7	60.9	850	10000; 4.3%	49
NiCoAl-LDH//Activated carbon	КОН	1.6	58.9	400	10000; 3%	50
CNTs/Ni(OH)2//rGO	КОН	1.8	35	1800	-	51
ZrO ₂ /MWCNT//WO ₃ /MWCNT	Li ₂ SO ₄	2.2	~65	~950	1000; ~7%	Present
ZrO ₂ /MWCNT//WO ₃ /MWCNT	Li ₂ SO ₄ +KI	2.2	~133	~898	1000; ~10%	Present

Table S2: Performance comparison of our ASCs with previously reported aqueous ASCs