CINOEDV: a co-information based method for detecting and visualizing *n*-order epistatic interactions – Supplementary file

Junliang Shang^{1,2,*}, Yingxia Sun¹, Jin-Xing Liu¹, Junfeng Xia³, Junying Zhang⁴, Chun-Hou Zheng⁵

¹School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China, ²Institute of Network Computing, Qufu Normal University, Rizhao 276826, China, ³Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China, ⁴School of Computer Science and Technology, Xidian University, Xi'an 710071, China, ⁵College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230039, China

*To whom correspondence should be addressed.

NOTE 1. EVALUATION MEASURES (DETECTION POWER AND COMPUTATIONAL COMPLEXITY).

In the study, detection power and computational complexity are applied to evaluate the performance of CINOEDV.

Various forms of detection power have been proposed depending on what is desired to measure [1-9], and three types of them are introduced with constraints from conservative to modest.

Power1 is defined as the proportion of data sets in which all ground-truth SNPs are identified with no false positives where ground-truth SNPs refer to the causative SNPs that truly associated with the phenotype, in other words, the SNPs in models added into the simulation data sets. Power1 can be written as

$$Power1 = \frac{1}{D} \sum_{i=1}^{D} x_i ,$$

where *D* is the number of simulation data sets with the same parameter settings, and $x_i \in \{0,1\}$ is the detection tag, i.e., if all ground-truth SNPs in data set *i* are detected with no false positives, $x_i = 1$, otherwise, $x_i = 0$. Though Power1 seems not practical since false positives are inevitable for any statistical tests and fewer false positives result in larger false negatives, we still introduce it because it is advantageous in practical applications, and might interest biologists due to false positives implying wasted experimental effort to validate the results.

Sometimes, allowing some small type-I error is more reasonable, thus Power2 and Power3 are introduced. Power2 and Power3 are defined as an average proportion of ground-truth SNPs in the top L_i detected SNPs, and can be respectively written as

Power2 =
$$\frac{1}{D} \sum_{i=1}^{D} \frac{y_i}{L_i}$$
,
Power3 = $\frac{1}{D} \sum_{i=1}^{D} \frac{z_i}{L_i}$,

where y_i and z_i are the numbers of ground-truth SNPs appearing in the top L_i SNPs identified in data set *i*. For Power2, L_i is equal to the number of ground-truth SNPs in data set *i*. For Power3, L_i is normally set to a value larger than that in Power2. In our experiments, L_i is set to 4.

Computational complexity is also considered. Running time in the same computational environment is measured to assess realistic applicability of compared methods.

Figure S1. GAIN RESULTS OF COMPARED DATA SETS.

Figure S3. VISEN RESULTS OF COMPARED DATA SETS.

Figure S4. EINVIS RESULTS OF COMPARED DATA SETS.

Table S1. TOP 20 SNPS WITH HIGH MAIN EFFECTS.

For the columns "Index" in Table S2, Table S3 and Table S4, bold and underlined numbers represent that their corresponding epistatic interactions are the top 20 ones with the high *CCI* values. For the columns "SNP" in Table S2, and "Epistatic Interactions" in Table S3 and Table S4, bold SNPs are those in the largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper, and underlined SNPs are those in the second largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper.

Index	SNP	Gene	Chromosome	NCI Value
1	rs380390	CFH	Chr1	0.06472
2	rs1329428	CFH	Chr1	0.05857
3	rs3775652	INPP4B	Chr4	0.05696
4	rs1930022	N/A	Chr9	0.04858
5	rs1394608	SGCD	Chr5	0.04562
6	rs725518	RRM1	Chr11	0.04496
7	rs10511467	N/A	Chr9	0.04485
8	rs1740752	N/A	Chr10	0.04434
9	rs10507949	N/A	Chr13	0.04345
10	rs9294603	N/A	Chr6	0.04184
11	rs6967345	N/A	Chr7	0.04181
12	rs3913094	N/A	Chr12	0.04076
13	rs7006908	N/A	Chr8	0.04025
14	rs10254116	BBS9	Chr7	0.04019
15	rs3914244	N/A	Chr12	0.04018
16	rs7104698	N/A	Chr11	0.03961
17	rs10501439	TENM4	Chr11	0.03958
18	rs7863587	N/A	Chr9	0.03882
19	rs10512174	ISCA1	Chr9	0.03870
20	rs1363688	N/A	Chr5	0.03867

Table S2. TOP 20 EPISTATIC INTERACTIONS WITH HIGH 2-ORDER INTERACTION EFFECTS.

For the columns "Index" in Table S2, Table S3 and Table S4, bold and underlined numbers represent that their corresponding epistatic interactions are the top 20 ones with the high *CCI* values. For the columns "SNP" in Table S2, and "Epistatic Interactions" in Table S3 and Table S4, bold SNPs are those in the largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper, and underlined SNPs are those in the second largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper.

Index	Epistatic Interaction	Gene	Chromosome	NCI Value	
<u>1</u>	rs994542	N/A	Chr6	0.25762	
	rs9298846	N/A	Chr9	0.25762	
<u>2</u>	rs2359907	N/A	Chr1	0.22561	
	rs9326913	N/A	Chr5	0.22561	
<u>3</u>	rs2957935	SKAP1	Chr17	0 22267	
	rs10519745	N/A	Chr5	0.22207	
4	rs10231824	PLXNA4	Chr7	0 20242	
	rs571361	N/A	Chr1	0.20243	
5	rs4856145	N/A	Chr3	0 10740	
2	rs3828057	RORC	Chr1	0.19749	
6	rs1436532	N/A	Chr4	0.10140	
<u>U</u>	rs10507601	N/A	Chr13	0.19140	
7	rs305728	N/A	Chr5	0 10057	
<u></u>	rs10497071	N/A	Chr2	0.19057	
Q	rs2298809	N/A	Chr11	0.10070	
<u>o</u>	rs7688514	VEGFC	Chr4	0.18900	
0	rs2278031	AP1G1	Chr16	0 19154	
2	rs446815	N/A	Chr11	0.10154	
10	rs756308	N/A	Chr10	0 18122	
<u>10</u>	rs2011542	N/A	Chr7	0.16122	
11	rs10516495	SLC9B1	Chr4	0.18122	
	rs2011542	N/A	Chr7		
12	rs339884	N/A	Chr18	0 18110	
12	rs195937	N/A	Chr4	0.18119	
12	rs1408120	PTPRD	Chr9	0.17685	
15	rs10506115	N/A	Chr12		
14	rs595113	N/A	Chr1	0 16072	
14	<u>rs9300104</u>	RNF141	Chr11	0.10772	
15	rs10518739	MAP2K5	Chr15	0.16603	
<u>15</u>	rs931210	N/A	Chr5		
<u>16</u>	rs2386906	N/A	Chr10	0.16543	
	rs9313446	SLIT3	Chr5		
<u>17</u>	rs9313446	SLIT3	Chr5	0 163/19	
	rs293379	ABHD2	Chr15	0.10349	
18	rs1458402	N/A	Chr6	0 15851	
	rs4901408	N/A	Chr14	0.15051	
19	rs6483628	NAV2	Chr11	0.15589	
	rs10504003	N/A	Chr8		
20	rs3844556	PKD2L1	Chr10	0 15405	
20	rs10521129	ZZEF1	Chr17	0.15405	

Table S3. TOP 20 EPISTATIC INTERACTIONS WITH HIGH 3-ORDER INTERACTION EFFECTS.

For the columns "Index" in Table S2, Table S3 and Table S4, bold and underlined numbers represent that their corresponding epistatic interactions are the top 20 ones with the high *CCI* values. For the columns "SNP" in Table S2, and "Epistatic Interactions" in Table S3 and Table S4, bold SNPs are those in the largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper, and underlined SNPs are those in the second largest maximal connected subgraph of epistasis hypergraph Figure S1 of main paper.

Index	Epistatic Interaction	Gene	Chromosome	NCI Value
1	rs4723261	PTHB1	Chr7	
	rs1036995	PCDH9	Chr13	0.17507
	rs2298809	N/A	Chr11	
2	rs595113	N/A	Chr1	
	<u>rs2031175</u>	ANKRD15	Chr9	0.16096
	<u>rs9300104</u>	RNF141	Chr11	
	rs10517546	N/A	Chr4	
<u>3</u>	rs10500875	N/A	Chr11	0.15934
	rs10505107	ANGPT1	Chr8	
	rs2386906	N/A	Chr10	
4	rs1476623	NXPH1	Chr7	0.14875
	rs10518739	MAP2K5	Chr15	
	rs293379	ABHD2	Chr15	
5	rs1476623	NXPH1	Chr7	0.14681
	rs10518739	MAP2K5	Chr15	
	<u>rs1436532</u>	N/A	Chr4	
6	rs9294603	N/A	Chr6	0.14445
	<u>rs595113</u>	N/A	Chr1	
	rs1394608	SGCD	Chr5	
7	rs9323782	N/A	Chr14	0.14439
	rs931210	N/A	Chr5	
	<u>rs1374431</u>	N/A	Chr2	
8	<u>rs1436532</u>	N/A	Chr4	0.14414
	<u>rs1978419</u>	N/A	Chr5	
	rs3922799	N/A	Chr2	
9	rs10517546	N/A	Chr4	0.13967
	rs10500875	N/A	Chr11	
	rs994542	N/A	Chr6	
10	rs3781868	NPAT	Chr11	0.13863
	rs2207768	NRG3	Chr10	
	rs1394608	SGCD	Chr5	
11	rs1408120	PTPRD	Chr9	0.13813
	rs10495668	SMC6	Chr2	
12	rs1926489	GPC5	Chr13	
	rs1408120	PTPRD	Chr9	0.13730
	rs718309	PCDH15	Chr10	
13	rs10486519	PTHB1	Chr7	
	rs1978419	N/A	Chr5	0.13669
	rs10507601	N/A	Chr13	
14	rs7006908	N/A	Chr8	
	rs10518739	MAP2K5	Chr15	0.13636
	rs10495668	SMC6	Chr2	
15	rs293379	ARHD?	Chr15	
	19473317	DCC7		0 13526
	rsy28/251	KGS/	Chr1	0.13320
	rs446815	N/A	ChrII	
16	rs2182277	N/A	Chr6	0.13441
10	rs1036995	PCDH9	Chr13	

	rs2207768	NRG3	Chr10	
	rs3844556	PKD2L1	Chr10	
17	rs1036995	PCDH9	Chr13	0.13419
	rs4880042	PAX5	Chr9	
	rs2386906	N/A	Chr10	
18	rs9287251	RGS7	Chr1	0.13324
	rs446815	N/A	Chr11	
	rs3743175	ZNF291	Chr15	
19	rs9323782	N/A	Chr14	0.13317
	rs4880042	PAX5	Chr9	
	rs2828155	N/A	Chr21	
20	rs9323782	N/A	Chr14	0.13317
	rs4880042	PAX5	Chr9	

Table S4. DETECTED SNPS AND EPISTATIC INTERACTIONS OF OTHER COMPETING METHODS.

In the table, p-values are calculated by the *chi*-squared test. *N*/A means no gene being available. Detected SNPs and epistatic interactions of both BEAM and *epi*MODE are directly cited from their respective papers.

Method	SNP (Epistatic Interaction)	P-value	Gene	Chromosome
	rs10499664	1 000 - 05	N/A	Chr7
	rs10510608	1.0996-05	MGC61571	Chr3
	rs10493240	2 117 05	N/A	Chr1
	rs10512484	3.11/e-05	N/A	Chr17
	rs10485289	3.535e-05	N/A	Chr6
	rs10513713		N/A	Chr3
	rs727113	1 0280 05	N/A	Chr13
	rs9284239	4.0386-03	N/A	Chr13
	rs1331977	4 461- 05	APBA1	Chr9
CNDD ulor	rs10506115	4.4616-05	N/A	Chr12
SINPKUler	rs2135488	4 469 - 05	N/A	Chr13
	rs6772323	4.4086-05	KCNAB1	Chr3
	rs727922	0 6320 05	CAMK4	Chr5
	rs2549513	9.0326-03	N/A	Chr16
	rs4674305	1.012 04	VIL1	Chr2
	rs10513027	1.013e-04	N/A	Chr5
	rs3798425	1 750 - 04	MY06	Chr6
	rs692897	1.7506-04	COP1	Chr11
	rs10487321	2066-04	N/A	Chr7
	rs1331977	2.0008-04	APBA1	Chr9
	rs380390	1.752e-06	CFH	Chr1
	rs10511901	6.829e-04	N/A	Chr9
	rs10488343	1.100e-03	N/A	Chr7
	s10505093	2.800e-03	N/A	Chr8
	rs3844556	1 472 06	PKD2L1	Chr10
	rs10507949	1.473e-06	N/A	Chr13
AntEniCoolton	rs10492225	4.250e-05	N/A	Chr12
Antepiseeker	rs176880		ZNF37A	Chr10
	rs724820	5 001 - 05	C20orf133	Chr20
	rs2143881	5.901e-05	N/A	Chr6
	rs380390	C 500 - 05	CFH	Chr1
	rs944838	6.500e-05	GPC6	Chr13
	rs10484309	0.670.05	N/A	Chr6
	rs10254116	9.0786-05	PTHB1	Chr7
DEAM	rs380390	1.752e-06	CFH	Chr1
BEAM	rs1329428	3.643e-06	CFH	Chr1
	rs3743175	7 200 07	ZNF291	Chr15
	rs1394608	/.398e-0/	SGCD	Chr1
	rs3743175		ZNF291	Chr15
	rs2828155	1.341e-05	N/A	Chr21
<i>epi</i> MODE	rs10507949		N/A	Chr13
	rs1394608		SGCD	Chr1
	rs3886593	3.698e-05	MSI2	Chr17
	rs10491243		N/A	Chr5
	rs1329428		CFH	Chr1
	rs380390		CFH	Chr1
	rs380390	1.752e-06	CFH	Chr1
DOOGT	rs1329428	3.643e-06	CFH	Chr1
BOOST	rs3775652	4.152e-05	INPP4B	Chr4
	rs1394608	8.806e-05	SGCD	Chr1

rs1930022	2.194e-04	N/A	Chr9
rs994542	5 0 (0)	N/A	Chr6
rs9298846	5.0686-09	N/A	Chr9
rs2359907	1.242.06	N/A	Chr1
rs9326913	1.242e-06	N/A	Chr5
rs2957935	1.627e-06	SKAP1	Chr17
rs10519745		N/A	Chr5
rs2386906	1.915e-05 2.017e-05	N/A	Chr10
rs9313446		SLIT3	Chr5
rs293379		ABHD2	Chr15
rs9313446		SLIT3	Chr5

REFERENCES

1. Zhang Y, Liu JS: Bayesian inference of epistatic interactions in case-control studies. *Nature Genetics* 2007, **39**(9):1167-1173.

2. Shang J, Zhang J, Sun Y, Zhang Y: **EpiMiner: A three-stage co-information based method for detecting and visualizing epistatic interactions**. *Digital Signal Processing* 2014, **24**:1-13.

3. Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, Yu W: **BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies**. *American Journal of Human Genetics* 2010, **87**(3):325.

4. Wan X, Yang C, Yang Q, Xue H, Tang NL, Yu W: **Predictive rule inference for epistatic interaction detection in genome-wide association studies**. *Bioinformatics* 2010, **26**(1):30-37.

5. Wang Y, Liu X, Robbins K, Rekaya R: AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm. *BMC Research Notes* 2010, **3**(1):117.

6. Tang W, Wu X, Jiang R, Li Y: Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. *PLoS genetics* 2009, **5**(5):e1000464.

7. Shang J, Zhang J, Sun Y, Liu D, Ye D, Yin Y: **Performance analysis of novel methods for detecting epistasis**. *BMC Bioinformatics* 2011, **12**(1):475.

8. Shang J, Zhang J, Lei X, Zhang Y, Chen B: Incorporating heuristic information into ant colony optimization for epistasis detection. *Genes & Genomics* 2012, **34**(3):321-327.

9. Aflakparast M, Salimi H, Gerami A, Dub é M, Visweswaran S, Masoudi-Nejad A: Cuckoo search epistasis: a new method for exploring significant genetic interactions. *Heredity* 2014, **112**(6):666-674.