

Supporting Information

Synthesis and Evaluation of a 2,11-Cembranoid-Inspired Library

Amanda J Welford,^[a] John J. Caldwell,*^[a] Manjuan Liu,^[a] Meirion Richards,^[a] Nathan Brown,^[a] Cara Lomas,^[a] Graham J. Tizzard,^[b] Mateusz B. Pitak,^[b] Simon J. Coles,^[b] Suzanne A. Eccles,^[a] Florence I. Raynaud,^[a] and Ian Collins^[a]

chem_201505093_sm_miscellaneous_information.pdf

Contents

S2	General experimental
S 5	Experimental procedures
S61	Assay methods
S62	PCA methodolodgy
S64	crystallography data
S68	NCI cytotoxicity screening compounds
S69	References
S70	¹ H and ¹³ C NMR spectra

General experimental

All anhydrous solvents and reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Flash column chromatography was carried out on Merck silica gel 60 (0.040-0.063 mm).

All melting points were determined on a Stanford Research Systems MPA120 EZ-Melt melting point apparatus.

Analytical thin layer chromatography (TLC) was performed on pre-coated aluminium sheets of silica (60 F₂₅₄, Merck) and visualised by short-wave UV light, potassium permanganate vanillin or anisaldehyde dip. Infrared spectra were recorded on a Perkin Elmer Spectrum RX-1 or a Bruker Alpha-P FT-IR spectrometer. Optical rotations were recorded on a Bellingham and Stanley ADP440 Polarimeter.

¹H-nuclear magnetic resonance spectra were recorded at 500 MHz on Bruker Avance 500 spectrometers using an internal deuterium lock. Chemical shifts were measured in parts per million (ppm) relative to tetramethylsilane (δ = 0) using the following internal references for residual protons in the solvent: CDCl₃ (δ 7.26), CD₃OD (δ 3.32), pyridine- $d\delta$ (δ 8.74) and acetone- $d\delta$ (δ 2.05).

¹³C-nuclear magnetic resonance spectra were recorded at 126 MHz on Bruker Avance 500 spectrometers using an internal deuterium lock. All chemical shift values were reported in ppm relative to tetramethylsilane (δ = 0). The following internal references were used: CDCl₃ (δ _C 77.0), CD₃OD (δ 49.0) and Pyridine-*d5* (δ 150.3).

LC-MS analyses were performed on a Micromass LCT / Water's Alliance 2795 HPLC system using the column, flow rates and solvent gradient specified below at a temperature of 22 °C.

UV Detector: Waters 2487 Dual λ Absorbance Detector (detecting at 254nm)

LCT Gradients:

Method A 6min Grad

Flow rate 1 mL/min; Phenomenex Gemini 3u C18 column (3cm x 4.6mm i.d), solvent systemaqueous (0.1% Formic Acid) and methanol

Time / min	% MeOH in MP
0	10
0.3	10
0.6	20
4.5	90
5.4	90
5.7	10
6.0	10

Method B 6min Non-Polar

Flow rate 1mL/min; Phenomenex Gemini 3u C18 column (3cm x 4.6mm i.d), solvent system aqueous (0.1% Formic Acid) & Methanol

Time / min	% MeOH in MP
0	10
0.3	10
0.6	20
3	90
5.4	90
5.7	10
6.0	10

Method C Fast4min

Flow rate 2 mL/min; Merck Chromolith SpeedROD RP-18e 50x4.6mm column, solvents A = MeOH, B = Aqueous (0.1% Formic Acid)

Time / min	A (%)	B(%)
0	10	90
2.25	90	10
3	90	10
3.3	10	90
3.5	10	90

Method D Fast4minLipophilic

Flow: 2 mL/min; Merck Chromolith SpeedROD RP-18e 50x4.6mm column, solvents A = MeOH, B = Aqueous (0.1% Formic Acid)

Time/min	A (%)	B (%)
0	10	90
1.75	90	10
3	90	10
3.3	10	90
3.5	10	90

Method E Fast4minLipophilic II

Flow: 2 mL/min; Merck Chromolith SpeedROD RP-18e 50x4.6mm column, solvents A = MeOH, B = Aqueous (0.1% Formic Acid)

Time/min	A (%)	B (%)
0	10	90
1	100	0
3	100	0

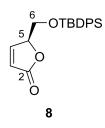
3.3	10	90
3.5	10	90

High resolution mass spectrometry data was collected using an Agilent 6210 Time Of Flight Mass Spectrometer with a Merck Chromolith SpeedROD RP-18e 50x4.6mm column and the solvent gradients as specified below-

Flow: 2 mL/min, Merck Chromolith SpeedROD RP-18e 50x4.6mm column, solvent A = MeOH, B = Aqueous (0.1% Formic Acid)

Time / min	A (%)	B (%)
0	10	90
2.5	90	10
3.5	90	10
3.8	10	90
4	10	90

Reference Masses:

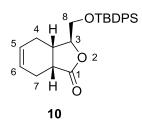

Caffeine $[M+H]^+$ = 195.087652; Reserpine $[M+H]^+$ = 609.280657; (1H,1H,3H-tetrafluoropentoxy)phosphazene $[M+H]^+$ = 922.009798.

UV detection was at 254 nm and ionisation was positive ion electrospray. Molecular weight scan range was 50-1000. Samples were prepared as 1 mg/mL in methanol or DMSO with 3 μ L injected on a partial loop fill.

Microanalysis was carried out by Stephen Boyer, London Metropolitan Elemental Analysis Service. (Stephen Boyer, School of Human Sciences, Science Centre, London Metropolitan University, 29 Hornsey Road, London N7 7DD)

Experimental procedures

(S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)one 8

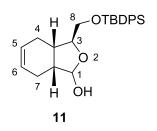


(S)-5-Hydroxymethylfuran-2-(5H)one **9** (1.00 g, 8.76 mmol) was added to a stirred solution of imidazole (660 mg, 9.76 mmol) in DMF (3 mL) and cooled to 0 °C. TBDPSCl (2.61 g, 2.47 mL, 9.76 mmol) was added dropwise and the reaction mixture was stirred for 30 min at 0 °C. The reaction was allowed to warm to RT and stirring continued for 2.5 h. The reaction mixture was quenched with sat. aq. NaHCO₃ (50 mL) and extracted with

EtOAc (2 x 50 mL). The combined organic extracts were washed with water (50 mL) and brine (50 mL), then dried (MgSO₄) and concentrated to yield a clear oil which crystallised on standing. The product was recrystallised from hexane to yield **8** as white crystals (2.38 g, 87%). mp (79-81 °C) [lit.¹ 79-80 °C]; [α] 23 _D -85 (c=1.50, CHCl₃) [lit.² -81.5]; IR (film) 2930, 2857, 1750 (CO), 1428, 1134 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.59 (4H, m, Ph), 7.53-7.34 (7H, m, Ph, H-4), 6.19 (1H, dd, J=2.0, 6.0, H-3), 5.09-5.07 (1H, m, H-5), 3.92 (1H, dd, J=5.0, 11.0, Ha-6), 3.88 (1H, dd, J=5.0, 11.0, Hb-6), 1.06 (9H, s, ¹Bu); ¹³C NMR (125 MHz, CDCl₃) δ 172.8 (C2), 154.0 (C4), 135.6 (2 x Ph), 135.5 (2 x Ph), 132.8 (iPh), 132.5 (iPh), 130.0 (2 x Ph), 127.9 (4 x Ph), 122.7 (C3), 83.2 (C5), 63.4 (C6), 26.7 (tBu), 19.2 (Si-C); LC-MS (ESI†) m/z 375 [M+Na†], Rt 5.43 min [method B]; HRMS [M+Na†] calcd for C₂₁H₂₄O₃SiNa 375.1387; found 375.1390; Found: C, 71.33; H, 6.88%; C₂₁H₂₄O₃Si requires: C, 71.33; H, 6.86%.

(3*S*)-3-((*tert*-Butyldiphenylsilyloxy)methyl)-3a,4,7,7a-tetrahydroisobenzofuran-1-(3*H*)-one 10

Method A^{1,3}

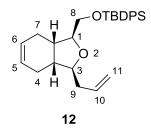

(S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)one **8** (500 mg, 1.42 mmol) was added to a stirring solution of AlCl₃ (50 mg, 0.375 mmol) in CH₂CL₂ (6 mL) in a pressure tube and cooled to 0 °C. A butadiene canister was cooled to 0 °C and butadiene (approx 3.0 mL, 25 equiv) poured into the pressure tube. The tube was sealed and heated to 55 °C for 6 d. The reaction was quenched in ice-cold sat. aq.

NaHCO₃ (50 mL) and extracted with CH_2Cl_2 (25 mL x 2). The organic layers were separated, washed with brine (50 mL x 2) and dried over MgSO₄. The solvent was removed *in vacuo*. The crude mixture was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **10** as a clear oil (227 mg, 40%).

Method B

Carried out in triplicate- Trifluoromethanesulfonamide (465 mg, 3.125 mmol) was dissolved in 3.0 mL CH₂Cl₂ in a pressure tube. 1 M Dimethylaluminium chloride in hexane (6.25 mL, 6.250 mmol) was added slowly dropwise by syringe (ensuring no contact during addition with the vessel wall) under argon (gas evolution) and the solution stirred for 30 minutes. (S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)one 8 (1.00 g, 2.841 mmol) and butadiene (20% w/w in toluene, 9.5 mL, 28.4 mmol) were added, the tube sealed and heated to 60 °C for 2 d. The three reactions were combined for work-up; The vessels was cooled to 0 °C before opening and diluted with Et₂O (300 mL). The mixture was quenched cautiously by dropwise addition of 1M aqueous NaOH (200 mL). Gas was evolved. The aqueous layer was further extracted into Et₂O (60 mL x 2). The combined organics were washed with brine (100 mL) and dried over MgSO₄. The solvent was removed in vacuo. The crude mixture was purified by column chromatography on silica gel (10-20% EtOAc:hexane) to yield 10 as a clear oil (2.82 g, 82%). $[\alpha]^{20}_D$ +13.0 (c=1.00, CHCl₃) [lit.¹ +19.8]; IR (film) 3070, 3046, 2930, 2856, 1778 (CO), 1589 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.67 (4H, m, Ph), 7.50-7.39 (6H, m, Ph), 5.89-5.79 (2H, m, H-6, H-5), 4.17 (1H, dt, J=4.0, 4.0, H-3), 3.89 (1H, dd, J=4.0, 11.5, H-8), 3.79 (1H, dd, J=4.5, 11.5, H-8), 3.01 (1H, ddd, J=4.5, 8.5, 8.5, H-3a), 2.74-2.69 (1H, m, H-7a), 2.48-2.24 (3H, m, H-4, Ha-7), 1.97-1.90 (1H, m, Hb-7), 1.10 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 179.5 (C1), 135.6 (2 x Ph), 135.5 (2 x Ph), 132.9 (Ph), 132.6 (Ph), 129.9 (Ph), 127.9 (2x Ph), 126.4 (C5 or C6), 125.6 (C5 or C6), 84.8 (C3), 64.3 (C8), 37.4 (C7a), 34.1 (C3a), 26.8 (tBu), 25.5 (C7), 22.5 (C4), 19.1 (Si-C); LC-MS (ESI+) m/z 429.18 [M+Na+], Rt 3.08 [method A]; HRMS [M+Na⁺] calcd for C₂₅H₃₀O₃Na 429.1856; found 429.1866. Found: C, 73.97; H, 7.51%, C₂₅H₃₀O₃ requires: C, 73.85; H, 7.44%.

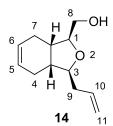
(3*S*,3a*S*,7a*R*)-3-((*tert*-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol 11



(3*S*)-3-((*tert*-Butyldiphenylsilyloxy)methyl)-3a,4,7,7a-tetrahydroisobenzofuran-1-(3*H*)one **10** (150 mg, 0.37 mmol) was dissolved in anhydrous CH_2Cl_2 (1 mL) and cooled to -78 °C under N_2 . DIBAL-H (1.0 M in toluene, 0.40 mL, 0.40 mmol) was added dropwise. The reaction was stirred at -78 °C for 80 min then quenched with EtOAc (4 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (6 mL) was added and the mixture

was stirred for 3 h. The aqueous layer was separated and extracted with CH_2CL_2 (3 x 5 mL). The organic layers were combined, dried over MgSO₄ and solvent removed *in vacuo* to yield **11** as a clear oil (145 mg, 97%). [α]²³_D -9.13 (c=2.43 CH₂Cl₂); IR (film) 3409, 3024, 2929, 2856, 1427 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.70 (4H, m, Ph), 7.51-7.39 (6H, m, Ph), 5.75-5.72 (1H, m, H-6), 5.64-5.58 (1H, m, H-5), 5.09 (1H, d, *J*=6.0, H-3), 3.87-3.82 (2H, m, H-1, Ha-8), 3.63 (1H, dd, *J*=3.0, 10.0, Hb-8), 2.90 (1H, d, *J*=6.0, OH), 2.74 (1H, dd, *J*=7.5, 15.0, H-7a),

2.31-2.16 (3H, m, H-3a, H-7, H-4), 1.88-1.79 (2H, m, H-7, H-4), 1.11 (9H, s, ${}^{t}Bu$); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.6 (2 x Ph), 133.0 (Ph), 132.9 (Ph), 129.8 (${}^{i}Ph$), 129.7 (${}^{i}Ph$), 127.7 (2 x Ph), 127.6 (2 x Ph), 125.0 (C5 or C6), 124.4 (C5 or C6), 103.1 (C3), 83.5 (C1), 64.6 (C8), 41.7 (C3a), 32.2 (C7a), 26.9 (tBu), 23.3 (C7 or C4), 22.8 (C7 or C4), 19.2 (Si-C); LC-MS (ESI+) m/z 431 [M+Na+], Rt 3.19 min [method B], HRMS [M+Na+] calcd for $C_{25}H_{32}O_3SiNa$ 431.2013; found 431.2009.


(((1*S*,3*S*,3a*R*,7a*S*)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methoxy)(*tert*-butyl)diphenylsilane 12

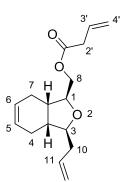
(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol **11** (366 mg, 0.897 mmol) was dissolved in CH_2Cl_2 (4 mL) and cooled to -78 °C. $BF_3.OEt_2$ (0.34 mL, 2.70 mmol) was added by syringe and the solution was stirred for 5 min. Allyltrimethylsilane (0.43 mL, 2.70 mmol) was added by syringe and the reaction then warmed to RT. The reaction was stirred for 18

h before quenching with H₂O (9 mL), and extracting into CH₂Cl₂ (3x9 mL). The combined organic layers were dried over MgSO₄. The solvent was removed *in vacuo* to yield **12** as a clear oil (379 mg, 98%). [α]²²_D -13.1 (c=1.5, MeOH); IR (film) 3071, 3027, 2929, 2857, 1428 cm⁻¹; ¹H NMR (500 MHz, d6-Acetone) δ 7.77-7.74 (4H, m, Ph), 7.49-7.42 (6H, m, Ph), 5.89 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-10), 5.75-5.69 (2H, m, H-5, H-6), 5.06-4.97 (2H, m, H-11), 3.79-3.65 (2H, m, H-8), 3.75-3.68 (1H, m, H-1 or H-3), 3.67-3.62 (1H, m, H-1 or H-3), 2.41-1.89 (8H, m, H-4, H-7, H-3a, H-7a, H-9), 1.05 (9H, s, [†]Bu); ¹³C NMR (125 MHz, d6-Acetone) δ 136.7 (C10), 136.4 (2 x Ph), 136.4 (2 x Ph), 134.6 ([†]Ph), 134.5 ([†]Ph), 130.6 (Ph), 130.6 (Ph), 128.7 (2 x Ph), 128.7 (C5 or C6), 126.6 (C5 or C6), 117.1 (C11), 85.1 (C3), 84.2 (C1), 66.8 (C8), 40.4 (C3a or C7a), 40.3 (C3a or C7a), 37.4 (C9), 27.5 ([†]Bu), 25.6 (C4 or C7), 25.4 (C4 or C7), 19.9 (Si-C).

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol 14

(((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methoxy)(tert-butyl)diphenylsilane **12** (360 mg, 0.83 mmol) was dissolved in THF (4.2 mL). The solution was cooled to 0 °C under N₂, then TBAF (2.49 mL, 1.0 Mol in THF, 1.49 mmol) was added by syringe. The reaction was stirred for 2 h at 0 °C before quenching with Et₂O (30 mL). The reaction mixture was washed with H₂O (30 mL) and extracted into

Et₂O (2 x 30 mL). The combined organic layers were dried with MgSO₄ and solvents were removed *in vacuo* to yield the crude product as a clear oil. This was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **14** as a clear oil (132 mg, 82%).


[α]²²_D+17.6 (c=2.60 CH₂Cl₂); IR (film) 3414, 3075, 3026, 2975, 2841, 1435 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.79 (1H, tdd, J=7.0, 10.0, 17.5, H-10), 5.78-5.73 (2H, m, H-5, H-6), 5.11-5.10 (2H, m, H-11), 3.82-3.75 (3H, m, Ha-8, H-1, H-3), 3.51 (1H, dd, J=6.5, 12.5, Hb-8), 2.39-2.28 (5H, m, Ha-9, H-7a, H-4a, Ha-7, Ha-4), 2.08 (1H, ddd, J=6.0, 6.5, 13.0, Hb-9), 1.97-1.93 (2H, Hb-7, Hb-4); ¹³C NMR (125 MHz, CDCl₃) δ 134.9 (C10), 125.8 (C5 or C6), 125.5 (C6 or C5), 117.1 (C11), 83.9 (C1 or C3), 83.7 (C1 or C3), 63.7 (C8), 39.7 (C4a or C7a), 39.5 (C9), 35.7 (C4a or C7a), 25.0 (C4 or C7), 24.4 (C4 or C7); LC-MS (ESI⁺) m/z 217 [M+Na⁺], R_t 2.38 min [method D]; HRMS [M+Na⁺] calcd for C₁₂H₁₈O₃Na 217.1192; found 217.1197.

But-2'-enoic acid (1*S*, 3*S*, 3a*R*, 7a*S*)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester 15

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14** (40 mg, 0.21 mmol) was dissolved in CH₂Cl₂ (1.0 mL). Pyridine (0.05 mL, 0.63 mmol) and *trans*-crotonyl chloride (26 μ L, 0.27 mmol) were added and the reaction stirred at RT for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (10 mL), and washed with H₂O (2 x 10 mL) and brine (10 mL). The combined aqueous layers were extracted with CH₂Cl₂ (2 x 10

mL). The organic layer was dried with MgSO₄ and solvent was removed *in vacuo*. The resultant crude oil was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **15** as a clear oil (15 mg, 32%). [α]¹⁹_D-1.90 (c=0.8, CH₂Cl₂); IR (film) 3027, 2916, 2843, 1723 (CO), 1443 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.01 (1H, qd, *J*=7.0, 14.0, H-3'), 5.98-5.80 (2H, m, H-2', H-10), 5.79-5.65 (2H, m, H-5, H-6), 5.15-5.04 (2H, m, H-11), 4.25 (1H, dd, *J*=4.0, 11.5, Ha-8), 4.11 (1H, dd, *J*=6.0, 11.5, Hb-8), 3.88 (1H, ddd, *J*=4.5, 6.0, 6.0, H-1), 3.76 (1H, ddd, *J*=6.0, 6.0, 6.0, H-3), 2.32-2.19 (5H, m, H-9, H-7a, H-7, H-4), 2.17-2.09 (1H, m, H-3a), 2.01-1.91 (2H, m, H-4, H-7), 1.89 (3H, dd, *J*=1.5, 7.0, H-4'); ¹³C NMR (125 MHz, CDCl₃) δ 199.4 (C1'), 145.0 (C3'), 134.9 (C2'), 125.7 (C5 or C6), 125.3 (C5 or C6), 122.5 (C10), 117.0 (C11), 83.9 (C3), 81.3 (C1), 65.8 (C8), 39.5 (C9), 39.1 (C3a), 37.0 (C7a), 24.8 (C4 or C7), 24.5 (C4 or C7), 17.9 (C4'); LC-MS (ESI+) *m/z* 285 [M+Na+], R_t 2.83 min [method D]; HRMS [M+Na+] calcd for C₁₆H₂₂O₃Na 285.1461; found 285.1465.

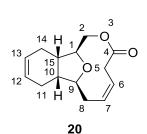
((1*S*,3*S*,3a*R*,7a*S*)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methyl but-3'-enoate

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14** (40 mg, 0.213 mmol) was dissolved in CH₂Cl₂ (1.0 mL). Triethylamine (90 μ L, 0.630 mmol) and *trans*-crotonyl chloride (26 μ L,

0.272 mmol) were added and the reaction left to stir at RT for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (10 mL), and washed with H₂O (10 mL x 2) followed by brine (10 mL). The combined aqueous layers were extracted in to CH₂Cl₂ (10 mL x 2). The organic layer was dried with MgSO₄ and solvents were removed *in vacuo*. The resultant crude oil was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **16** as a clear oil (41 mg, 75%). [α]²²_D -6.06 (c=0.80 CH₂Cl₂); IR (film) 3353, 2906, 1752 (C=O), 1435, 1174 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.95 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-3'), 5.85 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-3'), 5.85 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-11), 5.73-5.69 (2H, m, H-5, H-6), 5.20-5.15 (2H, m H-12), 5.10-5.05 (2H, m, H-4'), 4.23 (1H, dd, *J*= 4.0, 11.5, Ha-8), 4.07 (1H, dd, *J*= 6.0, 11.5, Hb-8), 3.86 (1H, ddd, *J*=4.0, 6.0, 6.5, H-1), 3.76 (1H, ddd, *J*=6.0, 6.0, 6.0 H-3), 3.15 (2H, dd, *J*=1.5, 6.0, H-2'), 2.34-2.23 (5H, m, H-7a, H-10, H-4, H-7) 2.13-2.10 (1H, m, H-3a), 1.99-1.89 (2H, m, H-4, H-7); ¹³C NMR (125 MHz, CDCl₃) 171.5 (C1'), 134.8 (C3'), 130.2 (C11), 125.7 (C6 or C5), 125.3 (C6 or C5), 118.6 (C4'), 117 (C12), 83.9 (C3), 81.2 (C1), 66.3 (C8), 39.5 (C4a or C7a), 39.0 (C2'), 39.0 (C4a or C7a), 37.0 (C10), 24.8 (C4), 24.6 (C7); LC-MS (ESI⁺) *m/z* 285 [M+Na⁺], Rt 2.80 [method D]; HRMS [M+H⁺] calcd for C₁₆H₂₃O₃Si 263.1641; found 263.1645.

Pent-4'enoic acid (1*S*, 3*S*, 3a*R*, 7a*S*)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester 17

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14** (34 mg, 0.175 mmol) was dissolved in CH₂Cl₂ (0.6 mL). Triethylamine (73 μ L, 0.525 mmol) and pentenonyl chloride (25 μ L, 0.223 mmol) was added and the reaction was stirred at RT for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (10 mL), washed with H₂O (10 mL x 2) and brine (10 mL). The

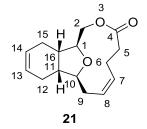

combined aqueous layers were extracted into CH_2Cl_2 (10 mL x 2). The organic layer was dried with MgSO₄ and the solvent was removed *in vacuo*. The resultant crude oil was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **17** as a clear oil (45 mg, 95%). [α]²²_D-7.84 (c=0.30, CH_2Cl_2); IR (film) 2923, 2919, 2854, 1738, 1440 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.91-5.77 (2H, m, H-10, H-4'), 5.75-5.68 (2H, m, H-5, H-6), 5.14-4.98 (4H, m, H-5', H-11), 4.21 (1H, dd, J=4.0, 11.5, Ha-8), 4.03 (1H, dd, J=6.0, 6.0, 6.0, Hb-8), 3.85 (1H, ddd, J=4.0, 6.5, 6.5, H-1), 3.76 (1H, ddd, J=6.0, 6.0, H-3), 2.52-2.35 (4H, m, H-2', H-3'), 2.35-2.16 (5H, m, H-9, H-7a, H-4, H-7), 2.12-2.16 (1H, m, H-3a), 2.01-1.88 (2H, m, H-4, H-7); ¹³C NMR (125 MHz, CDCl₃) δ 173.0 (C1'), 136.6 (C10 or C4'), 134.8 (C10 or C4'), 125.7 (C5 or C6), 125.3 (C5 or C6), 117.1 (C11), 115.5 (C5'), 83.8 (C3), 81.2 (C1), 66.1 (C8), 39.5 (C9), 38.9 (C7a or C3a) 36.9 (C3a or C7a), 33.5 (C3'), 28.1 (C2), 24.8 (C7 or C4), 24.5 (C4 or C7); LC-MS (ESI⁺) m/z 299 [M+Na⁺], Rt 2.97 min [method D]; HRMS [M+Na⁺] calcd for $C_{17}H_{24}O_{3}Na$ 299.1618; found 299.1619.

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methyl hex-5-enoate

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14** (40 mg, 0.206 mmol) was dissolved in pyridine (1.0 mL). Hex-5-enoyl chloride (35 mg, 0.238 mmol) was added and the reaction stirred at RT for 16 h. The reaction mixture was then diluted with CH_2Cl_2 (10 mL) and solvent removed *in vacuo* to yield a brown residue.

The residue was dissolved in CH_2Cl_2 (10 mL), then washed with H_2O (10 mL) and brine (10 mL). The combined aqueous layers were extracted with CH_2Cl_2 (2 x 10 mL). The organic layer was dried with MgSO₄ and solvent was removed *in vacuo*. The resultant crude oil was purified by column chromatography on silica gel (5% EtOAc:hexane) to yield **18** as a clear oil (20 mg, 32%). [α]¹⁹_D -1.9 (c=0.8 CH_2Cl_2); IR (film) 1731 (CO), 1459 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 5.91-5.67 (4H, m, H-5, H-6, H-2", H-7'), 5.15-4.96 (4H, m, H-3", H-8"), 4.21 (1H, dd, J=4.0, 11.5, Ha-1'), 4.03 (1H, dd, J=6.0, 11.5, Hb-1'), 3.86 (1H, ddd, J=4.0, 6.0, 6.0, H-1), 3.76 (1H, ddd, J=6.0, 6.0, 6.0, H-3), 2.36 (2H, t, J=7.5, H-4'), 2.33-2.17 (5H, m, H-7, H-4, H-6', H-3a or H-7a), 2.15-2.07 (2H, m, H-1", H-3a or H-7a), 2.02-1.87 (2H, m, H-7, H-4), 1.75 (2H, tt, J=7.5, 7.5, H-5'); ¹³C NMR (125 MHz, $CDCl_3$) δ 173.6 (C3'), 137.7 (C2" or C7'), 134.8 (C2" or C7'), 125.7 (C5 or C6), 125.3 (C5 or C6), 117.5 (C8'), 115.4 (C3"), 83.9 (C1), 81.2 (C3), 66.0 (C1'), 39.5 (C6'), 39.0 (C3a or C7a), 36.9 (C3a or C7a), 33.5 (C4'), 33.1 (C1"), 24.8 (C4 or C7), 24.5 (C4 or C7), 24.0 (C5'); LC-MS (ESI⁺) m/z 313 [M+Na⁺], R_t 2.55 min [method D]; HRMS [M+Na⁺] calcd for $C_{18}H_{26}O_{3}Na$ 313.1774; found 313.1775.

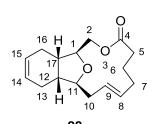
(Z)-(1S, 9S, 10R, 15S)-3, 16-Dioxa-tricyclo[7.6.1.0 10,15]hexadeca-6,12-diene-4-one 20



((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methylbut-3'-enoate **16** (13 mg, 0.05 mmol) was dissolved in CH₂Cl₂ (100 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (4 mg, 0.005 mmol, 5 mol%) was added under argon and the reaction stirred for 16 h. DMSO (~10 μ L) was added and the solution stirred overnight. The solvents were removed *in vacuo* and

the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **20** as a white crystalline solid (2 mg, 10%). mp (79-81 °C); $[\alpha]^{22}_D$ +132.0 (c=0.50 CH₂Cl₂); IR (film) 3020, 2952, 2889, 1731 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.96-5.85 (1H, m, H-7), 5.76 (1H, ddd, J=2.5, 5.0, 10.0, H-12), 5.74-5.67 (1H, m, H-6), 5.67-5.62 (1H, m, H-13), 5.13 (1H, dd, J=3.5, 11.5, Ha-2), 3.89 (1H, dd, J=2.5, 11.5, H-9), 3.78 (1H, dd, J=3.5, 11.5, H-1), 3.59 (1H, dd, J=11.5, Hb-2), 3.23 (1H, ddd, J=2.0, 7.5, 11.5, Ha-5), 2.92 (1H, dd, J=12.0,

9.0, Hb-5), 2.82-2.68 (2H, m, H-15, Ha-8), 2.45-2.33 (1H, m, Ha-14), 2.33-2.20 (1H, m, Ha-11) 2.10-2.06 (1H, m, H-10), 2.05-1.88 (3H, m, Hb-8, Hb-11, Hb-14); 13 C NMR (125 MHz, CDCl₃) δ 172.4 (C4), 131.8 (C13), 125.6 (C6), 124.3 (C12), 123.4 (C7), 85.0 (C9), 80.7 (C1), 61.1 (C2), 39.4 (C10), 34.5 (C15), 34.4 (C8), 33.5 (C5), 26.1 (C11), 22.6 (C14); LC-MS (ESI+) m/z 257 [M+Na+], R_t 2.43 min [method D]; HRMS [M+H+] calcd for C₁₄H₁₈O₃H 235.1329; found 235.1327.


(Z)-(1S,10S,11R,16S)-3,17-Dioxa-tricyclo[8.6.1.011,16]heptadeca-7,13-diene-4-one 21

Pent-4'-enoic acid(1S,3S,3aR,7aS)-allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-8-ylmethyl ester **17** (23 mg, 0.083 mmol) was dissolved in CH_2Cl_2 (166 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (3.5 mg, 0.004 mmol, 5 mol%) was added under argon and the reaction mixture was stirred for 16 h. DMSO (~10 μ L) was added and the solution was stirred overnight. The

solvents were removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **21** as a white crystalline solid (10 mg, 49%). mp (81-86 °C); $[\alpha]^{22}_D$ -114.9 (c=0.10, CH₂Cl₂); IR (film) 3071, 2930, 2855, 1738, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.77-5.69 (1H, m, CH), 5.68-5.60 (1H, m, CH), 5.58-5.49 (2H, m, CH), 5.17 (1H, d, J=11.5, Ha-2), 3.97-3.88 (1H, dd, J=3.0, 11.5, H-10), 3.80 (1H, dd, J=3.0, 11.0, H-1) 3.60-3.47 (1H, d, J=12.0, Hb-2), 3.02-2.79 (1H, m, CH₂), 2.78-2.53 (3H, m, H-11, CH₂), 2.45-2.34 (2H, m, CH₂), 2.33-2.22 (1H, m, CH₂), 2.12-1.99 (3H, m, H-16, CH₂), 1.98-1.81 (2H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) 172.1 (C4), 128.5 (CH), 128.0 (CH), 125.8 (CH), 123.7 (CH), 83.4 (C10), 79.4 (C1), 59.4 (C2), 39.7 (C16), 35.2 (CH₂), 34.1 (CH₂), 33.9 (C11), 26.1 (CH₂), 23.0 (CH₂), 22.6 (CH₂); LC-MS (ESI⁺) m/z 271 [M+Na⁺], R_t 2.55 min [method D]; HRMS [M+Na⁺] calcd for C₁₅H₂₀O₃Na 271.1310; found 271.1301.

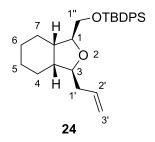
(Z)-(1S,11S,12R,17S)-3,18-Dioxatricyclo[9.6.1.0^{12,17}]octadeca-8,14-dien-4-one 22

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methyl hex-5-enoate **18** (9 mg, 0.030 mmol) was dissolved in CH₂Cl₂ (63 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (3 mg, 0.003 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 16 h. DMSO (10 μ L) was added and the solution was stirred overnight. The solvents were

removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **22** as a white crystalline solid (4 mg, 51%). mp (122-126 °C); $[\alpha]^{19}_D$ -5.0 (c=1.0 CH₂Cl₂); IR (film) 3030, 2938, 2909, 1732 (CO), 1439 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.81-5.70 (2H, m, CH), 5.48-5.35 (2H, m, CH), 5.20 (1H, dd, *J*=3.0, 12.0, Ha-2),

3.78 (1H, ddd, J=3.0, 3.0, 6.0, H-1), 3.75 (1H, ddd, J=1.5, 2.0, 5.0, H-11), 3.51 (1H, dd, J=3.0, 12.0, Hb-2), 2.48-2.22 (7H, m, CH₂), 2.18-2.01 (3H, m, CH₂), 1.97-1.84 (3H, m, CH₂), 1.73-1.65 (1H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C4), 133.8 (CH), 126.7 (CH), 125.7 (CH), 125.5 (CH), 82.9 (C11 or C1), 82.8 (C11 or C1), 62.6 (C2), 37.4 (C12 or C17), 37.2 (C12 or C17), 34.4 (CH₂), 34.1 (CH₂), 33.6 (CH₂), 25.6 (CH₂), 24.4 (CH₂), 22.5 (CH₂); LC-MS (ESI+) m/z 285 [M+Na+], R_t 2.33 min [method D]; HRMS [M+Na+] calcd for C₁₆H₂₂O₃Na 285.1462; found 285.1465.

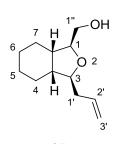
(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)octahydroisobenzofuran-1-ol 23


(3*S*)-3-((*tert*-Butyldiphenylsilyloxy)-methyl)-3a,4,7,7a-tetrahydroisobenzofura n-1(3*H*)-one **10** (317 mg, 0.781 mmol) was

dissolved in EtOAc (8 mL) and Pd/C (16 mg, 5% w/w Pd) was added. The solution was stirred overnight under H₂ (1 atm). The solution was filtered through silica eluted with EtOAc. The solvents were removed *in vacuo* to yield **23a** as a white crystalline solid (318 mg, 100%). mp (95-98 °C); $[\alpha]^{23}_D$ 6.1 (c=1.00 CH₂Cl₂); IR (film) 3070, 2998, 2931, 2856, 1774 (CO) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.63 (4H, m, Ph), 7.43-7.37 (6H, m, Ph), 4.13 (1H, dd, *J*=7.0, 7.0, H-3), 3.83 (1H, dd, *J*=4.5, 11.5, Ha-8), 3.76 (1H, dd, *J*=4.5, 11.5, Hb-8), 2.84 (1H, dd, *J*=7.0, 11.5, H-7a), 2.41-2.50 (1H, m, H-3a), 2.05-1.94 (1H, m, Ha-7), 1.85-1.74 (1H, m, Ha-4), 1.71-1.48 (4H, m, H-5, H-6), 1.38-1.21 (2H, m, Hb-4, Hb-7), 1.06 (9H, s, [†]Bu); ¹³C NMR (125 MHz, CDCl₃) δ 178.6 (C1), 135.6 (2 x Ph), 135.6 (2 x Ph), 132.9 ([†]Ph), 132.7 ([†]Ph), 129.9 (2 x Ph), 127.8 (4 x Ph), 83.1 (C3), 64.1 (C8), 38.7 (C7a), 36.6 (C3a), 27.7 (C4), 26.8 ([†]Bu), 23.2 (C5), 23.1 (C6), 22.8 (C7), 19.2 (Si-C); LC-MS (ESI⁺) *m/z* 431 [M+Na⁺], R_t 3.16 min [method D]; HRMS [M+Na⁺] calcd for C₂₅H₃₂O₃SiNa 431.2012; found 431.2020.

(3*S*,3a*S*,7a*R*)-3-((*tert*-Butyldiphenylsilyloxy)methyl)hexahydroiso-benzofuran-1-(3*H*)one **23a** (240 mg, 0.584 mmol) was dissolved in anhydrous CH₂Cl₂ (4.4 mL) and cooled to 78 °C under N₂. DIBAL-H (1.0 Mol in toluene, 0.97 mL, 0.97 mmol) was added dropwise. The reaction was stirred at 78 °C for 2 h then quenched with EtOAc (10 mL). The solution was warmed to RT and a sat. aq. solution of Rochelle's salt (30 mL) was added and the mixture was stirred for 2 h. The organic layer was separated and washed with brine (30 mL). The aqueous layers were extracted with CH₂CL₂ (3 x 30 mL). The combined organic layers were dried over MgSO₄ and solvent removed *in vacuo* to yield the product as a clear oil (241 mg, 100%).[α]²¹²_D -12.0 (c=0.15 Et₂O); IR (film) 3416, 3070, 2960, 2938, 2857, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77-7.71 (4H, m, Ph), 7.52-5.43 (6H, m, Ph), 5.02 (1H, d, *J*=6.0, H-1), 4.02 (1H, dd, *J*=3.5, 6.0, H-3), 3.83 (1H, dd, *J*=3.0, 11.0, Ha-8), 3.60 (1H, dd, *J*=3.5, 11.0, Hb-8), 2.94 (1H, d, *J*=6.0, OH),

2.63-2.50 (1H, m, H-3a), 2.10 (1H, ddd, J= 6.0, 6.0, 6.0 H-7a), 1.74-1.46 (6H, m, CH₂), 1.29-1.16 (2H, m, CH₂), 1.05 (9H, s, ${}^{t}Bu$); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.7 (2 x Ph), 133.0 (Ph), 132.9 (Ph), 129.8 (Ph), 129.8 (Ph), 127.8 (2 x Ph), 127.8 (2 x Ph), 102.8 (C1), 81.2 (C3), 64.9 (C8), 46.2 (C7a), 34.0 (3a), 26.9 (${}^{t}Bu$), 25.2 (CH₂), 24.0 (CH₂), 23.7 (CH₂), 21.4 (CH₂), 19.2 (Si-C); LC-MS (ESI+) m/z 433 [M+Na+], R_t 3.27 min [method D], HRMS [M + Na+] calcd for C₂₅H₃₄O₃SiNa 433.2169; found 433.2166.


((1S,3S,3aR,7aS)-3-Allyloctahydroisobenzofuran-1-ylmethoxy)tert-butyldiphenylsilane 24

(3*S*,3a*S*,7a*R*)-3-((*tert*-Butyldiphenylsilyloxy)methyl)octahydroisobenzofuran-1-ol **23** (120 mg, 0.618 mmol) was dissolved in CH_2Cl_2 (6 mL) and the solution was cooled to -78 °C. BF₃.OEt₂ (240 μ L, 1.849 mmol) was added by syringe and the solution was stirred for 5 min. Allyltrimethylsilane (300 μ L, 1.85 mmol) was added by syringe and the reaction then warmed to RT over 18 h. The reaction was diluted with 15 mL CH_2Cl_2 (15 mL) and washed with H_2O (7 mL). The aqueous

layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. The solvents were removed *in vacuo* to yield 24 as a clear oil (268 mg, 100%). [α]²²_D 2.11 (c=0.46 CH₂Cl₂); IR (film) 3072, 3050, 2929, 2858, 1472, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.80-7.65 (4H, m, Ph), 7.50-7.35 (6H, m, Ph), 5.86 (1H, tdd, *J*=7.0, 10.0, 17.0, H-2'), 5.10-5.02 (2H, m, H-3'), 3.91-3.83 (2H, m, H-1, H-3), 3.65 (2H, d, *J*=5.0, H-1"), 2.30-2.18 (3H, m, H-1', H-7a), 1.93 (1H, ddd, *J*=6.0, 6.0, 6.0, H-3a), 1.70-1.58 (2H, m, Ha-7, Ha-4), 1.57-1.45 (4H, m, Hb-4, Ha-5, Ha-6, Hb-7), 1.42-1.32 (2H, m, Hb-5, Hb-6), 1.08 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) 135.7 (2 x Ph), 135.6 (2 x Ph), 134.5 (ⁱPh), 134.4 (ⁱPh), 133.8 (Ph), 133.7 (Ph), 130.2 (C2'), 129.6 (Ph), 129.6 (Ph), 127.9 (Ph), 127.6 (Ph), 116.4 (C3'), 82.7 (C1), 81.7 (C3), 65.9 (C1"), 41.8 (C3a), 40.1 (C9), 38.9 (C7a), 26.9 (^tBu), 26.0 (C7 or C4), 25.9 (C4 or C7), 23.4 (C5 or C6), 23.2 (C5 or C6), 19.2 (Si-C).

((1S,3S,3aR,7aS)-3-Allyloctahydr-isobenzofuran-1-yl)methanol 25

((1S,3S,3aR,7aS)-3-Allyloctahydroisobenzofuran-1-ylmethoxy)tert-butyldiphenylsilane **24** (410 mg, 0.945 mmol) was dissolved in THF (9.4 mL). The solution was cooled to 0 °C under N₂ and then TBAF (2.8 mL, 2.8 mmol, 1.0 M in THF) was added by syringe. The reaction was stirred for 2 h at 0 °C before quenching with Et₂O (30 mL). The reaction mixture was washed with H₂O (2 x 30 mL) and the aqueous layers extracted into Et₂O (2 x 30 mL). The combined organic layers were dried over MgSO₄ and the

solvents were removed *in vacuo*. The crude residue was purified by column chromatography on silica gel (50% EtOAc:hexane) to yield **25** as a clear oil (131 mg, 74%). [α]²²_D -9.0 (c=1.26

CH₂Cl₂); IR (film) 3414, 2929, 2856, 1449 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.92-5.74 (1H, dddd, J=7.0, 7.0, 10.0, 17.0, H-2'), 5.19-5.03 (2H, m, H-3'), 3.97-3.79 (2H, m, H-3, H-1), 3.67 (1H, dd, J=3.5, 11.5, H-1"), 3.45 (1H, dd, J=5.5, 11.5, H-1"), 2.33-2.16 (3H, m, H-1'), 2.11 (1H, ddd, J=6.5, 6.5, 12.5, H-7a), 3.50-3.43 (1H, m, H-3a), 1.70-1.69 (2H, m, CH₂), 1.59-1.28 (6H, m, 6 x CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 135.1 (C2'), 117.1 (C3'), 82.2 (C3 or C1), 82.1 (C3 or C1), 64.3 (C1"), 42.2 (C3a), 40.1 (C1'), 37.8 (C7a), 26.4 (CH₂, 25.6 (CH₂), 23.4 (CH₂), 22.8 (CH₂); LC-MS (ESI⁺) m/z 219 [M+Na⁺], R_t 2.47 min [method D]; HRMS [M+Na⁺] calcd for C₁₂H₂₀O₃Na 219.1362; found 219.1363.

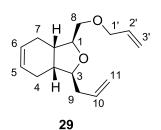
(Z)-(1*S*,10*S*,11*R*,16*S*)-3,17-Dioxatricyclo[8.6.1.0^{11,16}]heptadeca-7-en-4-one 26 and (E)-(1*S*,10*S*,11*R*,16*S*)-3,17-Dioxatricyclo[8.6.1.0^{11,16}]heptadeca-7-en-4-one 27

OH OH
$$\frac{1}{7}$$
 $\frac{1}{1}$ $\frac{2}{0}$ $\frac{3}{3}$ $\frac{4}{5}$ $\frac{6}{5}$ $\frac{15}{7}$ $\frac{1}{12}$ $\frac{15}{10}$ $\frac{1}{12}$ $\frac{15}{10}$ $\frac{1}{12}$ $\frac{1}{10}$ $\frac{1}{10$

((1S,3S,3aR,7aS)-3-Allyloctahydroisobenzofuran-1-yl) methanol 25 (40 mg, 0.203 mmol) was dissolved in CH₂Cl₂ (0.9 mL). Pent-4-enoyl chloride (29 μL, 0.275 mmol) and triethylamine (89 µL, 0.609 mmol) were added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (10 mL x 2) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic layers were dried with MgSO₄ and the solvents removed in vacuo. The crude reaction mixture was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **77** as a clear oil (39 mg, 69%).[α]²⁰_D -1.2 (c=1.0 CHCl₃); IR (CDCl₃ solution cell) 3081, 2932, 1732 (CO), 1641, 1451 cm $^{-1}$; ¹H NMR (500 MHz, CDCl₃) δ 5.93-5.73 (2H, m, H-6', H-2"), 5.17-4.97 (4H, m, H-7', H-3"), 4.14 (1H, dd, *J*=6.5, 14.0, Ha-1'), 4.03-3.93 (2H, m, Hb-1', H-1), 3.86 (1H, dd, *J*=6.0, 11.5, H-3), 2.50-2.35 (4H, m, H-4', H-5'), 2.29-2.17 (2H, m, H-1"), 2.09-2.01 (1H, m, H-7a), 2.00-1.91 (1H, m, H-3a), 1.70-1.59 (2H, m, CH₂), 1.58-1.28 (6H, m, CH₂); 13 C NMR (125 MHz, CDCl₃) δ 173.1 (C3'), 136.7 (C6' or C2"), 135.0 (C6' or C2"), 116.9 (C7' or C3"), 115.5 (C7' or C3"), 82.4 (C3), 79.8 (C1), 66.6 (C1'), 41.6 (C3a), 40.0 (C1"), 39.1 (C7a), 33.5 (C4"), 28.8 (C5"), 26.2 (CH₂), 25.8 (CH₂), 23.2 (CH₂), 22.9 (CH₂); LC-MS (ESI⁺) m/z 301 [M+Na⁺], R_t 2.93 min [method D]; HRMS [M+Na⁺] calcd for C₁₇H₂₆O₃ Na 301.1774 found 301.1765.

((1S,3S,3aR,7aS)-3-Allyloctahydroisobenzofuran-1-yl)methyl pent-4-enoate **77** (23 mg, 0.083 mmol) was dissolved in CH_2Cl_2 (165 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (7 mg, 0.008 mmol, 10 mol%) was added under argon and the reaction

mixture was stirred for 16 h. DMSO (10 µL) was added and the solution was stirred overnight. The solvents were removed in vacuo and the resultant mixture purified by column chromatography on silica gel (10% EtOAc:hexane) to yield 26 and 27 as a white crystalline solid (13 mg, 65%) and a clear oil (4 mg, 20%) respectively. 26: mp (141-143 °C); $[\alpha]^{19}_D$ -1.9 (c=0.36 CH₂Cl₂); IR (film) 2980, 1732 (CO), 1551 cm⁻¹; ¹H NMR (500 MHz, Pyr-d5) δ 5.53-5.38 (2H, m, H-8, H-7), 5.25 (1H, d, J=11.5 Ha-2), 3.92 (1H, d, J=11.0, H-1), 3.71 (1H, d, J=11.5, H-10), 3.39 (1H, d, J=11.5, Hb-2), 2.85-2.81 (1H, m, Ha-6), 2.61-2.46 (2H, m, Ha-5, Ha-9), 2.43-2.27 (2H, m, H-16, Hb-5), 1.83-1.79 (1H, m, Hb-6), 1.75-1.61 (2H, m, Ha-9, H-11), 1.59-1.48 (4H, m, Ha-12, Ha-14, H-15), 1.38-1.36 (1H, m, Ha-13), 1.21-0.89 (3H, m, Hb-14, Hb-13, Hb-12)); ¹³C NMR (125 MHz, CDCl₃) δ 172.2 (C4), 129.7 (C8), 128.8 (C7), 83.5 (C10), 77.6 (C1), 60.3 (C2), 45.2 (C11), 36.7 (C16), 35.9 (C14), 35.0 (C9), 28.2 (C5), 25.6 (C12), 23.7 (C15), 23.5 (C13 or C14), 21.7 (C13 or C14); LC-MS (ESI⁺) m/z 273 [M+Na⁺], Rt 2.30 min [method D]; HRMS [M+H⁺] calcd for $C_{15}H_{23}O_3$ 251.1642; found 251.1634. **27**: $[\alpha]^{19}D_ -49.1$ (c=0.24 CH₂Cl₂); IR (film) 2925, 1735 (CO) cm⁻¹; ¹H NMR (500 MHz, Pyr-d5) δ 5.57-5.50 (1H, m, H-8), 5.48-5.40 (1H, m, H-7), 4.92-4.68 (1H, m, Ha-2), 4.02-3.95 (1H, m, H-10), 3.77-3.74 (2H, m, Hb-2, H-1), 2.49-2.46 (1H, m, Ha-9), 2.39-2.30 (2H, m, Ha-5, Ha-6), 2.26-2.19 (3H, m Hb-5, Hb-6, H-11), 2.11-2.09 (1H, m, H-16), 1.95-1.91 (1H, m, Hb-9), 1.49-1.40 (2H, m, Ha-13, Ha-12), 1.39-1.35 (2H, m, Hb-12, Ha-15), 1.34-1.30 (3H, m, H-14, Hb-15), 1.22-1.17 (1H, m, Hb-13); ¹³C NMR (125 MHz, CDCl₃) δ 173.5 (C4), 131.2 (C7), 127.9 (C8), 82.2 (C1), 80.5 (C10), 64.9 (C2), 40.0 (C16), 38.8 (C11), 36.1 (C5), 34.2 (C9), 29.5 (C6), 27.3 (C15), 25.1 (C12), 23.9 (C13), 22.3 (C14); LC-MS (ESI⁺) m/z 273 [M+Na⁺], R_t 2.27 min [method D]; HRMS [M+H⁺] calcd for C₁₅H₂₃O₃ 251.1642; found 251.1636.


(Z)-(1S,11S,12R,17S)-3,18-Dioxatricyclo[9.6.1.0^{12,17}]octadec-8-en-4-one 28

((1*S*,3*S*,3a*R*,7a*S*)-3-Allyloctahydroisobenzofuran-1-yl)methanol **25** (35 mg, 0.178 mmol) was dissolved in CH₂Cl₂ (0.9 mL). Freshly prepared hex-5-enoyl chloride (30 mg, 0.267 mmol) and triethylamine (77 μL, 0.534 mmol) were added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic layers were dried with MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (5% EtOAc:hexane) to yield **78** as a clear oil (27 mg, 57%). [α]¹⁹_D -9.0 (c=1.0 CH₂Cl₂); IR (CDCl₃ solution cell) 3080, 2932, 1731 (CO), 1641, 1451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.89-5.71 (2H, m, H-2", H-7'), 5.13-4.95 (4H, m, H-3", H-8'), 4.14 (1H, dd, *J*=6.5, 6.5, Ha-1'), 4.05-3.94

(2H, m, Hb-1', H-1), 3.87 (1H, dd, J=6.0, 11.5, H-3), 2.38 (2H, t, J=7.0, H-4'), 2.31-2.17 (2H, m, H-1''), 2.14-2.00 (3H, m, H-6', H-7a), 2.00-1.92 (1H, m, H-3a), 1.75 (2H, tt, J=7.5, 7.5, H-5'), 1.70-1.58 (2H, m, CH₂), 1.57-1.23 (6H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 173.7 (C3'), 137.7 (C7' or C2''), 135.1 (C7' or C2''), 116.9 (C3'' or C8'), 115.4 (C3'' or C8'), 82.5 (C1), 79.4 (C3), 66.5 (C8), 41.6 (C3a), 40.0 (C1''), 39.2 (C7a), 33.5 (C4'), 33.1 (C6'), 26.2 (CH₂), 25.7 (CH₂), 24.0 (C5'), 23.3 (CH₂), 22.9 (CH₂); LC-MS (ESI+) m/z 315 [M+Na+], R_t 2.63 min [method D]; HRMS [M+Na+] calcd for C₁₈H₂₈O₃Na 315.1930; found 315.1935.

((1S,3S,3aR,7aS)-3-Allyloctahydroisobenzofuran-1-yl)methyl hex-5-enoate **78** (25 mg, 0.080 mmol) was dissolved in CH₂Cl₂ (100 mL, 0.0008 M). Argon was bubbled though the solution for 5 min. Grubbs II (7 mg, 0.008 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 16 h. DMSO (10 μL) was added and the solution was stirred overnight. The solvents were removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **28** as a white crystalline solid (10 mg, 51%). mp (141-143 °C); [α]²⁵_D -33.4 (c=1.0 CHCl₃); IR (film) 3081, 2931, 2858, 1731, 1642, 1451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.39-5.35 (2H, m, H-8, H-9), 5.16 (1H, d, J=11.0, Ha-2), 3.95-3.91 (1H, m, H-11), 3.81-3.78 (1H, m, H-1), 3.47 (1H, d, J=11.0, Hb-2), 2.45-2.28 (3H, m, 3 x CH₂), 2.26-2.18 (1H, m, H-17), 2.17-1.97 (4H, m, 4 x CH₂), 1.95-1.85 (1H, m, CH₂), 1.73-1.61 (4H, m, CH₂), 1.57-1.29 (5H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C4), 133.5 (C8 or C9), 125.8 (C8 or C9), 81.2 (C1), 80.3 (C11), 63.0 (C2), 39.8 (C17), 39.1 (C12), 34.7 (CH₂), 34.0 (CH₂), 33.7 (CH₂), 27.1 (CH₂), 25.5 (CH₂), 23.9 (CH₂), 22.9 (CH₂), 22.5 (CH₂); LC-MS (ESI⁺) m/z 287 [M+Na⁺], R_t 2.50 min [method D]; HRMS [M+H⁺] calcd for C₁₆H₂₅O₃ 265.1798 found 265.1796.

(1S,3S,3aS,7aR)-1-Allyl-3-(allyloxymethyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran 29

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14** (48 mg, 0.247 mmol) was dissolved in DMF (1 mL). NaH (24 mg, 0.618 mmol, 60% dispersion in mineral oil) was then added to the solution followed by allyl bromide (25 μ L, 0.296 mmol) by syringe. The reaction was stirred overnight at RT. The reaction was then quenched with H₂O (2 mL) and extracted with Et₂O (5 x 10

mL) and the organic layers subsequently washed with H_2O (5 x 20 mL). The organic layer was dried with MgSO₄ and solvents removed *in vacuo*. The resultant crude oil was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **29** as a clear oil (28 mg, 49%). [α]¹⁹_D-9.8 (c=2.20, CH₂Cl₂); IR (film) 3076, 3025, 2900, 2843, 1641, 1437 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.01-5.76 (2H, m, H-2', H-10), 5.79-5.66 (2H, m, H-5, H-6), 5.33-5.32 (1H, m, Ha-3'), 5.23-5.13 (1H, m, Hb-3'), 5.13-5.02 (2H, m, H-11), 4.10-4.00 (2H, m, H-1'), 3.81 (1H, ddd, J=5.5, 5.5, 5.5, H-1), 3.73 (1H, dd, J=6.0, 6.0, 6.0, H-3), 3.52-3.44 (2H, m, H-8), 2.38-2.16 (5H, m, H-9, H-7a, Ha-4, Ha-7), 2.11 (1H, ddd, J=6.5, 6.5, 13.0, H-3a), 2.01-1.87 (2H, m,

Hb-7, Hb-4); 13 C NMR (125 MHz, CDCl₃) δ 135.2 (C2'), 134.9 (C10), 125.8 (C5 or C6), 125.7 (C5 or C6), 116.7 (C3' or C11), 116.7 (C3' or C11), 83.6 (C3), 82.7 (C1), 72.5 (C8 or C1'), 72.4 (C8 or C1'), 39.5 (C9), 39.3 (C3a), 37.3 (C7a), 24.8 (C7), 24.8 (C4); LC-MS (ESI⁺) m/z 257 [M+Na⁺], R_t 2.90 min [method D]; HRMS [M+Na⁺] calcd for C₁₅H₂₂O₂Na 257.1512; found 257.1513.

(3aR,4aR,7S,7aS,8aS)-7-(*tert*-Butyldiphenylsilanyloxymethyl)-2,2-dimethyl-hexahydro-furo[3',4':4,5]benzo[1,2-d][1,3]dioxol-5-one 31

(3S)-3-((tert-Butyldiphenylsilyloxy)methyl)-3a,4,7,7a-tetrahydroisobenzofuran-1-(3H)-one **10** (1.30 g, 3.21 mmol) was dissolved in acetone:water (10:1, 32 mL). NMO (114 mg, 4.82 mmol) was added followed by Os EnCat (500 mg, 0.25 mmol/g, 0.125 mmol). The resulting solution was stirred at RT for 3 d. The Os Encat was removed by vacuum filtration, and

washed with acetone (100 mL). Sat. aq Na₂S₂O₅ was added (100 mL) and stirred for 2 h. The acetone was removed in vacuo. The crude aqueous layer was extracted in the EtOAc (3 x 100 mL). The combined organic layers were dried over MgSO₄ and solvent removed in vacuo to yield a light brown oil. The oil was redissolved in CH₂Cl₂ (30 mL). 2,2-Dimethoxypropane (7.9 mL, 64.2 mmol) and pyridinium p-toluenesulfonate (241 mg, 1.08 mmol) were added and the reaction stirred at RT for 18 h. The reaction was then diluted in CH2Cl2 (100 mL) and washed with H₂O (50 mL) and sat aq NH₄Cl (50 mL). The aqueous layers were re-extracted into CH₂Cl₂ (100 mL) and the combined organic layers dried over MgSO₄. The solvent was removed in vacuo. The crude residue was recrystallised from Et2O to yield 31 as a white crystalline solid (781 mg, 52%). mp (105-109 °C); $[\alpha]^{22}$ _D -16.2 (c=1.0 CHCl₃); IR (film) 3071, 2931, 1770 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.63 (4H, m, Ph), 7.49-7.39 (6H, m, Ph), 4.51 (1H, ddd, J=2.5, 2.5, 8.0, H-3a), 4.42 (1H, ddd, J=2.5, 2.5, 8.0, H-8a), 4.20-4.17 (1H, m, H-7), 3.88 (1H, dd, J=2.5, 11.0, Ha-9), 3.69 (1H, dd, J=2.5, 11.0, Hb-9), 3.13 (1H, ddd, J=7.5, 11.0, 11.0, H-4a), 2.94-2.87 (1H, m, H-7a), 2.43 (1H, ddd, J=3.0, 7.5, 15.0, Ha-4), 1.97 (1H, ddd, J=2.5, 4.5, 14.0, Ha-8), 1.59-1.44 (2H, m, Hb-4, Hb-8), 1.52 (3H, s, H-1'), 1.38 (3H, m, H-1'), 1.09 (9H, s, ^tBu); ¹³C NMR (125 MHz, CDCl₃) δ 180.2 (C5), 135.6 (2 x Ph), 135.5 (2 x Ph), 132.8 (iPh), 132.5 (iPh), 129.9 (2 x Ph), 127.9 (4 x Ph), 107.4 (C2), 82.8 (C7), 71.5 (C8a or C3a), 71.3 (C8a or C3a), 65.4 (C9), 34.4 (C4a), 30.2 (C7a), 29.6 (C8), 26.7 ([†]Bu), 25.9 (C1'), 25.0 (C4), 23.8 (C1'), 19.2 (Si-C); LC-MS (ESI⁺) m/z 503 [M+Na⁺], R_t 2.58 min [method D]; HRMS [M+Na⁺] calcd for C₂₈H₃₆O₅SiNa 503.2224 found 503.2221.

(3aR,4aR,7S,7aS,8aS)-7-(*tert*-Butyldiphenylsilanyloxymethyl)-2,2-dimethyloctahydrofuro [3',4':4,5]benzo[1,2-d][1,3]dioxol-5-ol 32

(3aR,4aR,7S,7aS,8aS)-7-(tert-Butyldiphenylsilanyloxymethyl)-2,2-dimethyl-hexahydro-furo[3',4':4,5]benzo[1,2-d][1,3]dioxol-5-one **31** (96 mg, 0.200 mmol) was dissolved in anhydrous CH_2Cl_2 (2.0 mL) and cooled to -78 °C under N_2 .

DIBAL-H (1.0 M in toluene, 0.22 mL, 0.22 mmol) was added dropwise. The reaction was stirred at -78 $^{\circ}$ C for 4 h then

quenched with EtOAc (10 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (6 mL) was added and the mixture stirred overnight. The aqueous layer was separated and extracted with CH₂Cl₂ (20 mL x 3). The organic layers were combined, dried over MgSO₄ and the solvent removed in vacuo. TLC analysis showed the presence of starting material, therefore the crude mixture was resubmitted to the above conditions for 5 h. The same work-up conditions were employed which yielded a clear oil 32 (89 mg, 92%) as an inseparable mixture of anomers. IR (film) 3418, 2930, 1113, 1040 cm⁻¹; Major Anomer ¹H NMR (500 MHz, CDCl₃) δ 7.72-7.67 (4H, m, Ph), 7.49-7.36 (6H, m, Ph), 5.10 (1H, d, J= 9.0, H-5), 4.41-4.37 (2H, m, H-3a, H-8a), 4.15-4.10 (1H, m, OH), 3.92 (1H, dd, *J*=4.0, 4.0, H-7), 3.82 (1H, dd, J=3.0, 11.0, Ha-9), 3.60 (1H, dd, J=3.5, 11.0, Hb-9), 2.73-2.63 (1H, m, H-7a), 2.55-2.46 (1H, m, H-4a), 2.03 (1H, ddd, J=2.5, 5.0, 14.5, Ha-4), 1.96 (1H, ddd, J=3.0, 6.0, 14.5, Ha-8), 1.50 (3H, s, H-1'), 1.36 (3H, s, H-1'), 1.37-1.28 (1H, m, Hb-8), 1.39-1.31 (1H, m, Hb-4), 1.09 (9H, s, tBu); 13 C NMR (125 MHz, CDCl₃) δ 135.8 (2 x Ph), 135.6 (2 x Ph), 132.4 (iPh), 132.3 (iPh), 130.1 (Ph), 130.0 (Ph), 127.9 (2 x Ph), 127.9 (2 x Ph), 107.1 (C2), 105.1 (C5), 87.6 (C7), 72.0 (C8a or C3a), 71.7 (C8a or C3a), 66.9 (C9), 41.5 (C4a), 32.0 (C7a), 29.0 (C8), 27.5 (C4), 26.8 (t Bu), 26.0 (C1'), 23.8 (C1'), 19.2 (Si-C); **Minor Anomer** 1 H NMR (500 MHz, CDCl₃) δ 7.72-7.67 (4H, m, Ph), 7.49-7.36 (6H, m, Ph), 5.53 (1H, dd, *J*= 2.0, 5.5, H-5), 4.52 (1H, dd, *J*= 3.0, 3.0, H-3a or H-8a), 4.51 (1H, dd, J= 3.0, 3.0, H-3a or H-8a) 4.15-4.10 (1H, m, OH), 3.96 (1H, ddd, *J*=4.5, 4.5, 7.0, H-7), 3.75 (2H, d, *J*= 4.5, H-9), 2.36-2.26 (1H, m, H-7a), 1.95-1.91 (1H, m, H-4a), 1.80 (1H, ddd, J=2.0, 5.0, 14.5, Ha-4), 1.74 (1H, ddd, J=2.5, 12.0, 14.5, Ha-8), 1.45 (3H, s, H-1'), 1.35 (3H, s, H-1'), 1.44-1.40 (1H, m, Hb-8), 1.27-1.23 (1H, m, Hb-4), 1.06 (9H, s, ^tBu); ¹³C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.2 (2 x Ph), 133.6 (iPh), 133.5 (iPh), 129.6 (2 x Ph), 127.9 (2 x Ph), 127.9 (2 x Ph), 106.8 (C2), 99.4 (C5), 84.0 (C7), 72.7 (C8a or C3a), 71.5 (C8a or C3a), 65.5 (C9), 36.8 (C4a), 31.7 (C7a), 29.8 (C8 or C4), 26.8 (^tBu), 26.0 (C1'), 23.8 (C1'), 22.9 (C8 or C4) 19.3 (Si-C); LC-MS (ESI⁺) m/z 505 [M+Na⁺], R_t 2.60 min [method D]; C, 70.07; H, 7.53%; C₂₈H₃₈O₅Si requires: C, 69.97; H, 7.55%.

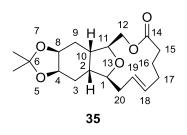
((3aS,4aS,5S,7S,7aR,8aR)-7-allyl-2,2-dimethyloctahydroisobenzofuro[5,6-d][1,3]dioxol-5-yl)methanol 33

(3aR,4aR,7S,7aS,8aS)-7-(tert-Butyldiphenylsilanyloxymethyl)-2,2-dimethyloctahydrofuro [3',4':4,5]benzo[1,2-d][1,3]dioxol-5-ol **32** (95 mg, 0.197 mmol) was dissolved in CH₂Cl₂ (2.0 mL) and cooled to -78 °C. BF₃.OEt₂ (0.027 mL, 0.217 mmol) was added by syringe and the solution stirred for 5 min. Allyltrimethylsilane (0.096 mL, 0.519 mmol) was added by syringe and the reaction warmed to RT over 18 h. The reaction was quenched with H2O (6 mL) and extracted into CH₂Cl₂ (6 mL x 3). The combined organic layers were dried over MgSO₄. The solvent was removed in vacuo to yield a clear oil. Partial acetal deprotection had occurred. The oil was dissolved in CH₂Cl₂ (2.0 mL). 2,2-Dimethoxypropane (0.5 mL, 3.94 mmol) and pyridinium p-toluenesulfonate (12 mg, 0.059 mmol) were added and the reaction stirred as RT overnight. The reaction was then diluted with CH₂CL₂ (50 mL), washed with H₂O (50 mL) and sat. aqueous NH₄Cl (50 mL). The aqueous layers were extracted with CH₂CL₂ (50 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed in vacuo to yield **33a** a clear oil (79 mg, 79%). $[\alpha]^{20}$ D +0.64 (c=2.0 CHCl₃); IR (film) 3049, 2931, 1472, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.69 (4H, m, Ph), 7.44-7.36 (6H, m, Ph), 5.89 (1H, dddd, J=7.5, 7.5, 10.0, 17.5, H-2"), 5.15-5.05 (2H, m, H-3"), 4.45-4.38 (2H, m, H-3a, H-8a), 3.79 (1H, dd, J=5.0, 10.5, Ha-9), 3.74 (1H, dd, J=5.0, 10.5, Hb-9), 3.57 (1H, ddd, J=4.5, 4.5, 7.5, H-7), 3.50 (1H, ddd, J=5.5, 5.5, 14.5, H-5), 2.39-2.35 (3H, m, H-7a, H-1"), 2.14-2.05 (1H, m, H-4a), 1.97 (1H, ddd, *J*=2.5, 6.0, 14.5, Ha-4 or Ha-8), 1.90 (1H, ddd, *J*=2.5, 5.5, 14.5, Ha-4 or Ha-8), 1.47 (3H, s, H-1'), 1.34 (3H, s, H-1'), 1.32-1.20 (2H, m, Hb-4, Hb-8), 1.07 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.7 (2 x Ph), 135.0 (C2"), 133.7 (2 x iPh), 129.5 (Ph), 129.5 (Ph), 127.6 (2 x Ph), 127.5 (2 x Ph), 116.8 (C3'), 107.1 (C2), 85.5 (C5 or C7), 85.0 (C5 or C7), 72.6 (C3a or C8a), 72.4 (C3a or C8a), 65.8 (C9), 38.9 (C1"), 37.1 (C4a), 34.1 (C7a), 28.8 (C4 or C8), 27.7 (C4 or C8), 26.8 (tBu), 26.0 (C1'), 23.8 (C1'), 19.2 (Si-C); LC-MS (ESI⁺) m/z 529 [M+Na⁺], R_t 2.47 min [method E]; HRMS [M+Na⁺] calcd for C₃₁H₄₂O₄SiNa 529.2755 found 529.2744; Found: C, 73.58; H, 8.40%; C₃₁H₄₂O₄Si requires: C, 73.47; H, 8.35%.

(((3aS,4aS,5S,7S,7aR,8aR)-7-allyl-2,2-dimethyloctahydroisobenzofuro[5,6-d][1,3]dioxol-5-yl)methoxy)(tert-butyl)diphenylsilane **33a** (506 mg, 1.09 mmol) was dissolved in THF (10

mL). The solution was cooled to 0 °C under N₂ and TBAF (3.26 mL, 3.26 mmol, 1.0 M in THF) was added by syringe. The reaction was stirred for 3 h at 0 °C before diluted with Et₂O (50 mL). The reaction mixture was washed with H₂O (50 mL x 3) and extracted into Et₂O (50 mL x 2). The combined organic layers were washed with brine (50 mL) and dried over MgSO₄. The solvent was removed in vacuo to give the crude product. This was purified by column chromatography on silica gel (5% MeOH:CH₂Cl₂) to yield **33** as a clear oil (193 mg, 66%). [α]²³_D +6.9 (c=1.0, CHCl₃); IR (film) 3448, 2931, 1381, 1042 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.86 (1H, dddd, *J*=7.0, 7.0, 10.5, 17.0, H-2"), 5.16-5.06 (2H, m, H-3"), 4.45-4.40 (2H, m, H-3a, H-8a), 3.79 (1H, dd, J=2.5, 12.0, Ha-9), 3.63-3.51 (3H, m, Hb-9, H-7, H-5), 2.41-2.36 (2H, m, H-1"), 2.27-2.19 (1H, m, H-7a), 2.13-2.05 (1H, m, H-4a), 1.95-1.89 (2H, m, Ha-4, Ha-8), 1.46 (3H, s, H-1'), 1.33 (3H, s, H-1'), 1.32-1.21 (2H, m, Hb-4, Hb-8); 13 C NMR (125 MHz, CDCl₃) δ 134.5 (C2"), 177.2 (C3"), 107.2 (C2), 85.7 (C5 or C7), 85.0 (C5 or C7), 72.3 (C8a or C3a), 72.3 (C8a or C3a), 64.0 (C9), 38.7 (C1"), 37.0 (C4a), 33.0 (C7a), 28.1 (C4 or C8), 27.9 (C4 or C8), 26.0 (C1'), 23.7 (C1'); LC-MS (ESI⁺) m/z 291 [M+Na⁺], R_t 2.12 min [method D]; HRMS [M+Na⁺] calcd for C₁₅H₂₄O₄ Na 291.1567 found 291.1575; Found: C, 67.21; H, 9.02%; C₁₅H₂₄O₄ requires: C, 67.14; H, 9.01%.

((3aS,4aS,5S,7S,7aR,8aR)-7-allyl-2,2-dimethyloctahydroisobenzofuro[5,6-d][1,3]dioxol-5-yl)methyl hex-5-enoate 34

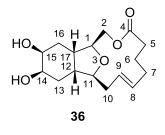

((3aS,4aS,5S,7S,7aR,8aR)-7-Allyl-2,2-

dimethyloctahydroisobenzofuro[5,6-d][1,3]dioxol-5-yl)methanol **33** (92 mg, 0.343 mmol) was dissolved in CH₂Cl₂ (3.4 mL). Hex-5-enoyl chloride (136 mg, 1.029 mmol) and triethylamine (148 μ L, 1.029 mmol) were added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with sat. aqueous NaHCO₃ (15 mL) and H₂O

(15 mL x 2). The aqueous layers were combined and extracted with CH_2CI_2 (10 mL x 2). The combined organic layers were dried over MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **34** as a clear oil (116 mg, 93%). The compound was observed to decomposed on RT storage over several weeks. [α]²³_D +10.5 (c=1.0 CHCl₃); IR (film) 2937, 1732, 1381, 1163, 1040 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.90-5.74 (2H, m, H-2', H-5'''), 5.16-4.97 (4H, m, H-3", H-6"''), 4.45-4.40 (2H, m, H-3a, H-8a), 4.28 (1H, dd, J=3.5, 12.0, Ha-9), 4.09 (1H, dd, J=7.0, 12.0, Hb-9), 3.64 (1H, ddd, J=3.5, 7.0, 7.0, H-5), 3.52 (1H, ddd, J=6.0, 6.0, 7.5, H-7), 2.45-2.34 (4H, m, H-2"'', H-1"), 2.20-2.07 (4H, m, H-4"'', H-4a, H-7a), 1.94 (2H, m, Ha-4, Ha-8), 1.76 (1H, dddd, J=7.0, 7.0, 7.0, 7.0, Ha-3"''), 1.75 (1H, dddd, J=7.0, 7.0, 7.0, 7.0, Hb-3"''), 1.46 (3H, s, H-1'), 1.34 (3H, s, H-1'), 1.33-1.20 (2H, m, Hb-4, Hb-8); ¹³C NMR

(125 MHz, CDCl₃) δ 173.5 (C1""), 137.7 (C2' or C5""), 137.5 (C2' or C5""), 177.2, (C3' or C8""), 115.3 (C3' or C8""), 107.2 (C2), 85.2 (C7), 82.7 (C5), 72.3 (C3a or C8a), 72.2 (C3a or C8a), 65.7 (C9), 38.8 (C1"), 36.5 (C7a or C5a), 34.5 (C7a or C5a), 33.4 (C2"" or C4""), 33.0 (C2"" or C4""), 28.0 (C4 or C8), 28.0 (C4 or C8), 26.0 (C1'), 24.0 (C3""), 23.7 (C1'); LC-MS (ESI†) m/z 387 [M+Na†], R_t 2.78 min [method D]; Found: C, 69.17; H, 8.85%; $C_{21}H_{32}O_5Na$ requires: C, 69.20; H, 8.85%.

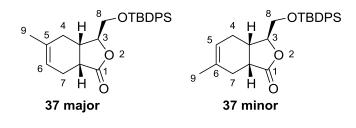
(1S,2R,4R,8S,10S,11S,18E)-6,6-dimethyl-5,7,13,21tetraoxatetracyclo[9.9.1.0^{2,10}.0^{4,8}]henicos-18-en-14-one 35



((3aS,4aS,5S,7S,7aR,8aR)-7-Allyl-2,2-

dimethyloctahydroisobenzofuro[5,6-d][1,3]dioxol-5-yl)methyl hex-5-enoate $\bf 34$ (53 mg, 0.145 mmol) was dissolved in CH₂Cl₂ (100 mL, 0.0014 M). Argon was bubbled though the solution for 5 min. Grubbs II (12 mg, 0.0001 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 5 d. DMSO

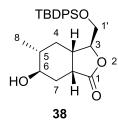
(10 μL) was added and the solution was stirred overnight. The solvents were removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **35** as a purple crystalline solid containing trace ruthenium impurities (35 mg, 51%). 1 H NMR (500 MHz, CDCl₃) δ 5.46-5.36 (2H, m, H-18, H-19), 5.56 (1H, dd, J=2.0, 12.0, Ha-12), 4.47-4.42 (2H, m, H-8, H-4), 3.66-3.61 (2H, m, H-1, H-11), 3.46 (1H, d, J=12.0, Hb-12), 2.55-2.47 (1H, m, H-2 or H-10), 2.78-2.26 (4H, m, Ha-15, Ha-16, Ha-20, H-2 or H-10), 2.13-2.09 (3H, m, Ha-17, Hb-15, Hb-16), 1.97-1.83 (3H, m, Ha-9, Ha-3, Hb-20), 1.68-1.60 (1H, m, Hb-17), 1.53 (3H, s, H-6'), 1.37 (3H, s, H-6'), 1.38-1.21 (2H, m, Hb-9, Hb-3); 13 C NMR (125 MHz, CDCl₃) δ 174.0 (C14), 134.8 (C18), 124.3 (C19), 107.3 (C6), 84.2 (C11 or C1), 83.6 (C11 or C1), 72.5 (C8 or C4), 72.4 (C4 or C8), 61.3 (C12), 34.6 (C17), 34.0 (C16 or C15), 33.6 (C10 or C2), 33.5 (C15 or C16), 33.3 (C10 or C2), 28.4 (C9 or C3), 28.0 (C9 or C3), 26.1 (C6'), 23.9 (C6'), 22.6 (C17); LC-MS (ESI+) m/z 359 [M+Na+], R_t 2.47 min [method D].


(E)-(1S,11S,12R,14R,15S,17S)-14,15-Dihydroxy-3,18-dioxa-tricyclo[9.6.1.0^{12,17}]octadec-8-en-4-one 36

(1S,2R,4R,8S,10S,11S,18E)-6,6-Dimethyl-5,7,13,21-tetraoxatetracyclo[$9.9.1.0^{2,10}.0^{4,8}$]henicos-18-en-14-one **35** (17 mg, 0.051 mmol), was dissolved in THF (0.5 mL). HCl (0.100 mL, 1.00 mmol in H₂O) was added and the solution was stirred overnight at RT. The acid and ruthenium impurities from the previous step were removed by basic ion exchange chromatography to yield **36** as an

oil (13 mg, 88%). [α]²⁴_D -25.6 (c=1.0 CHCl₃); IR (film) 3431, 2929, 1732, 1441 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.42-5.34 (2H, m, H-8, H-9), 5.16 (2H, dd, J=2.0, 12.0, Ha-2), 3.91-3.79 (3H, m, H-11, H-14, H-15), 3.79-3.76 (1H, m, H-1), 3.49 (1H, dd, J=1.0, 12.5, Hb-2), 2.54-2.47 (1H, m, H-17), 2.49-2.31 (4H, m, Ha-5, Ha-6, Ha-10, H-12), 2.17-2.11 (2H, m, Hb-5, Hb-6), 2.12-1.88 (4H, m, Ha-7, Ha-13, Ha-16, Hb-10), 1.72-1.56 (3H, m, Hb-7, Hb-13, Hb-16); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C4), 133.9 (C8), 125.3 (C9), 80.8 (C14 or C15), 80.3 (C14 or C15), 68.9 (C1 or C11), 68.4 (C1 or C11), 62.8 (C2), 37.4 (C12), 36.2 (C17), 34.6 (C5 or C6 or C10), 33.9 (C5 or C6 or C10), 33.6 (C5 or C6 or C10), 30.6 (C7 or C13 or C16), 28.6 (C7 or C13 or C16); LC-MS (ESI⁺) m/z 319 [M+Na⁺], R_t 1.58 min [method D]; HRMS [M+Na⁺] calcd for C₁₆H₂₄O₅Na 319.1521 found 319.1518.

(3S,3aS,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-5-methyl-3a,4,7,7a-tetrahydroisobenzofuran-1(3H)-one (37 major) and (3S,3aS,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-6-methyl-3a,4,7,7a-tetrahydroisobenzofuran-1(3H)-one (37 minor)



Trifluoromethanesulfonamide (465 mg, 3.13 mmol) was dissolved in CH₂Cl₂ (3.0 mL) in a large pressure tube. Dimethylaluminium chloride (6.3 mL, 6.30 mmol) was added slowly under argon and the solution stirred for 30

min. (S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)one 8 (1.00 g, 2.841 mmol) and isoprene (2.84 mL, 28.41 mmol) were added and the tube was sealed and heated to 60 °C for 2 d. The reaction was cooled and diluted with Et₂O (100 mL). The mixture was quenched with NaOH (70 mL, 1M ag soln) and gas was evolved. The aqueous layer was extracted into Et₂O (100 mL x 2) washed with brine (100 mL x 1) and dried over MgSO₄. The solvent was removed in vacuo. The crude mixture was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield an inseparable mixture of products as a clear oil (1.190 g, 100%). $[\alpha]^{24}_D$ +4.5 (c=1.0 CHCl₃); IR (CDCl₃ solution cell) 2929, 1769, 1427, 1113 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.64 (4H, m, Ph), 7.49-7.40 (6H, m, Ph), 5.56-5.51 (0.85H, m, H-6 major), 5.50-5.46 (0.15H, m, H-5 minor), 4.15-4.10 (1H, m, H-3), 3.89-3.84 (1H, m, Ha-8), 3.80-3.75 (1H, m, Hb-8), 3.03 (0.15H, ddd, *J*=4.0, 8.5, 8.5, H-7a minor), 2.93 (0.85H, m, ddd, J=4.0, 8.5, 8.5, H-7a major), 2.77-2.70 (0.85H, m, H-3a major), 2.68-2.63 (0.15H, m, H-3a minor), 2.44-2.37 (1H, m, Ha-7), 2.35-2.27 (1H, m, Hb-7), 2.21-2.17 (0.15H, m, Ha-4 minor), 2.16 (0.85H, dd, *J*=7.5, 16.0, Ha-4 major), 1.95-1.88 (0.15H, m, Hb-4 minor), 1.85 (0.85H, dd, J=6.5, 16.5, Hb-4 major), 1.74 (0.45H, br.s, H-9 minor), 1.71 (2.55H, br.s, H-9 major), 1.09 (1.5H, s, ${}^{t}Bu$), 1.07 (7.5H, s, ${}^{t}Bu$); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 184.5 (C1), 135.6 (Ph), 135.5 (Ph), 134.7, 133.2, 132.9, 132.6, 129.9, 129.6, 127.8, 127.7, 119.8, 119.2, 110.7 (C6 major),

110.2 (C5 minor), 84.7 (C3), 64.4 (C8), 37.2 (C7a), 34.8 (C3a), 30.7 (C4), 26.6 (t Bu major), 26.5 (t Bu minor), 23.7 (C9 major), 23.1 (C7), 22.6 (C9 minor), 14.0 (Si-C); LC-MS (ESI ${}^{+}$) m/z 443 [M+Na ${}^{+}$], R_t 2.70 min [method D].

(3S, 3aS, 5R, 6R, 7aR)-3-(*tert*-Butyldiphenylsilanyloxymethyl)-6-hydroxy-5-methylhexahydroisobenzofuran-1-one 38

(3S,3aS,7aR)-3-(((tert-Butyldiphenylsilyl)oxy)methyl)-5-methyl-3a,4,7,7a-tetrahydroisobenzofuran-1(3H)-one **37** (1.17 g, 2.66 mmol) was dissolved in THF (26 mL), and cooled to -78°C. BH₃.THF (5.3 mL, 5.3 mmol, 1.0 M solution in THF) was added dropwise and stirred at 0°C for 2 h. The reaction was quenched slowly with H₂O (6 mL). NaOH (6 mL, 20% aqueous solution) was then added dropwise, followed by H₂O₂ (6

mL, 30% aqueous solution). The mixture was left to stir for 30 min. Sat. sodium sulphite (40 mL) was then added, and the layers separated. The aqueous layer was extracted with Et₂O (100 mL x 3). The combined organic layers were dried over MgSO₄ and the solvent removed in vacuo to yield the crude product as a clear oil. The crude reaction mixture was purified by column chromatography on silica gel (33% EtOAc:hexane) to yield 38 as a white solid (612 mg, 55%). mp (117-120°C); $[\alpha]^{24}_D$ +8.2 (c=1.0 CHCl₃); IR (film) 3421, 2932, 2859, 1772, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.63 (4H, m, Ph), 7.48-7.39 (6H, m, Ph), 4.05 (1H, dd, J=4.5, 4.5, H-3), 3.81 (1H, dd, J=4.5, 11.0, Ha-1'), 3.75 (1H, dd, J=4.0, 11.5, Hb-1'), 3.15 (1H, ddd, J=5.0, 10.5, 10.5, H-6), 3.09 (1H, dd, J=7.0, 7.0, H-7a), 2.49-2.40 (2H, m, Ha-4, Ha-7), 1.88-1.82 (1H, m, Hb-4), 1.54 (1H, ddd, *J*=7.0, 11.0, 14.0, Hb-7), 1.37 (1H, qddd, *J*=6.5, 3.0, 9.5, 12.5, H-5), 1.11-1.04 (1H, m, H-3a), 1.06 (9H, s, ^tBu), 1.01 (3H, d, *J*=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 177.9 (C1), 135.7 (2 x Ph), 135.6 (2 x Ph), 132.7 (iPh), 132.5 (iPh), 130.0 (2 x Ph), 127.9 (2 x Ph), 127.7 (2 x Ph), 83.3 (C3), 72.5 (C6), 64.4 (C8), 39.3 (C7a), 37.2 (C5), 36.5 (C4), 36.4 (C3a), 31.7 (C7), 26.8 (tBu), 19.1 (Si-C), 17.9 (C8); LC-MS (ESI+) m/z 461 [M+Na $^+$], R_t 2.95 min [method D]; HRMS [M+Na $^+$] calcd for C₂₆H₃₄O₄SiNa 461.2119 found 461.2116; Found: C,71.23; H, 7.75%; C₂₆H₃₄O₄Si requires: C, 71.19; H, 7.81%.

(1S,8E,11S,12R,14R,15R,17S)-14-hydroxy-15-methyl-3,18-dioxatricyclo[9.6.1.0^{12,17}]octadec-8-en-4- one 39

39

87

7aR)-3-(tert-Butyldiphenylsilanyloxymethyl)-6-hydroxy-5-(3S, 3aS, 5R, 6R, methylhexahydroisobenzofuran-1-one 38 (612 mg, 1.397 mmol) was dissolved in anhydrous CH₂Cl₂ (13 mL) and cooled to -78 °C under N₂. DIBAL-H (1.0 M in toluene, 1.53 mL, 1.53 mmol) was added dropwise. The reaction was stirred at -78 °C for 4 h then quenched with EtOAc (40 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (40 mL) was added and the mixture was stirred overnight. The aqueous layer was separated and extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were combined, dried over MgSO₄ and the solvent was removed in vacuo NMR analysis showed only 50% conversion. Complete conversation was observed after a further 3 iterations of the above conditions. The final work up yielded a clear oil 39a (580 mg, 94%) as an inseparable mixture of anomers. IR (film) 3312, 2930, 1428 cm⁻¹; **MAJOR** ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.66 (4H, m, Ph), 7.47-7.37 (6H, m, Ph), 5.21 (1H, dd, *J*=6.0, 7.0, H-1), 3.81-3.78 (1H, m, H-3), 3.73-3.55 (2H, m, H-1'), 3.37-3.31 (1H, m, H-6), 2.83 (1H, d, *J*=7.5, OH), 2.34-2.28 (1H, m, H-7a), 2.15-2.09 (1H, m, HA-7), 1.75-1.66 (1H, m, HA-4), 1.57-1.44 (1H, m, HB-7), 1.44-1.35 (2H, m, H-5, H-3a), 1.11-1.05 (1H, m, HB-4), 1.09 (9H, s, ^tBu), 1.03 (3H, d, *J*=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 135.6 (2 x Ph), 135.6 (2 x Ph), 133.2 (iPh), 133.1 (iPh) 129.9 (2 x Ph), 127.9 (2 x Ph), 127.7 (2 x Ph), 102.1 (C1), 85.2 (C3), 72.7 (C6), 66.0 (C1"), 45.3 (C7a), 38.2 (C5), 37.8 (C3a), 35.3 (C4), 32.1 (C7), 26.8 (tBu), 19.2 (Si-C), 18.4 (C8); **MINOR** ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.66 (4H, m, Ph), 7.47-7.37 (6H, m, Ph), 5.38 (1H, dd, *J*=3.0, 5.0, H-1), 4.00-3.97 (1H, m, H-3), 3.73-3.55 (3H, m, H-1', H-6), 2.61-2.59 (1H, m, OH), 2.46-2.40 (1H, m, H-7a), 2.27-2.21 (1H, m, H-3a), 2.08-2.03 (1H, m, Ha-7), 1.75-1.66 (1H, m, HA-4), 1.57-1.44 (1H, m, Hb-7), 1.44-1.35 (1H, m, H-5), 1.11-1.05 (1H, m, Hb-4), 1.06 (9H, s, tBu), 1.04 (3H, d, *J*=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 135.6 (2 x Ph), 135.6 (2 x Ph), 1.33 (iPh), 133.1 (iPh), 129.9 (2 x Ph), 127.9 (2 x Ph), 127.7 (2 x Ph), 101.1 (C1), 85.8 (C3), 73.5 (C6), 66.0 (C1'), 42.4 (C7a), 39.1 (C3a), 38.1 (C5), 35.3 (C4), 32.1 (C7), 26.8 (tBu), 19.2 (Si-C), 18.4 (C8); LC-MS (ESI+) m/z 463 [M+Na⁺], R_t 3.00 min [method D]; HRMS [M+Na⁺] calcd 463.2275 for C₂₆H₃₆O₄SiNa found 463.2279.

(3S,3aS,5R,6R,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-5-methyloctahydroisobenzofuran-1,6-diol 39a (569 mg, 1.293 mmol) was dissolved in CH₂Cl₂ (13 mL) and cooled to -78 °C. BF₃.OEt₂ (0.50 mL, 3.880 mmol) was added and the solution stirred for 5 min. Allyltrimethylsilane (0.63 mL, 3.880 mmol) was then added and the reaction warmed to RT over 18 h. The reaction was quenched with H₂O (20 mL) and extracted into CH₂Cl₂ (30 mL x 3). The combined organic layers were dried over MgSO₄. The solvent was removed in vacuo to yield **39b** as a clear oil (549 mg, 91%). $[\alpha]^{20}$ D -16.4 (c=1.0 CH₂Cl₂); IR (film) 3384, 2929, 2885 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.63 (4H, m, Ph), 7.48-7.37 (6H, m, Ph), 5.86 (1H, dddd, J=7.0, 7.0, 10.5, 17.5, H-2"), 5.11-5.02 (2H, m, H-3"), 3.85 (1H, ddd, J=4.0, 8.0, 10.5, H-1), 3.75 (1H, dd, J=4.0, 6.5, H-3), 3.60 (1H, dd, J=4.5, 10.5, Ha-1'), 3.50 (1H, dd, J=6.5, 10.5, Hb-1'), 3.28 (1H, dd, J=4.5, 10.5, 10.5, H-6), 2.39-2.32 (1H, m, Ha-1"), 2.24 (1H, ddd, J=6.5, 6.5, 12.5, H-3a), 2.18 (1H, ddd, J=7.0, 7.5, 14.5, Hb-1"), 2.10-2.04 (1H, m, H-7a), 1.93 (1H, ddd, J=2.0, 5.0, 14.0, Ha-7), 1.69 (1H, ddd, J=3.0, 5.5, 12.5, Ha-4), 1.55-1.49 (1H, m, Hb-7), 1.47-1.35 (1H, m, H-5), 1.29 (1H, ddd, *J*=12.5, 12.5, 12.5, Hb-4), 1.07 (9H, s, ^tBu), 1.05 (3H, d, J=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 135.6 (4 x Ph), 135.4 (C2"), 133.7 (iPh), 133.6 (iPh), 129.7 (Ph), 129.6 (Ph), 127.9 (2 x Ph), 127.7 (2 x Ph), 116.8 (C3"), 84.6 (C3), 79.6 (C1), 72.6 (C6), 66.1 (C1'), 42.6 (C7a), 40.6 (C3a), 39.2 (C1"), 39.0 (C5), 36.3 (C4), 32.8 (C7), 26.8 (^tBu), 19.2 (Si-C), 18.2 (C8); LC-MS (ESI⁺) m/z 487 [M+Na⁺], R_t 3.25 min [method D]; HRMS [M+Na⁺] calcd for C₂₉H₄₀O₃SiNa 487.2638 found 487.2647; Found: C, 74.87; H, 8.59%; C₂₉H₄₀O₃Si requires: C, 74.95; H, 8.68%.

(1S,3S,3aR,5R,6R,7aS)-3-Allyl-1-((tertbutyldiphenylsilyloxy)methyl)-6-

methyloctahydroisobenzofuran-5-ol **39b** (549 mg, 1.362 mmol) was dissolved in THF (13 mL). The solution was cooled to 0 °C under N_2 and TBAF (4.00 mL, 4.00 mmol, 1.0 M in THF) was added. The reaction was stirred for 4 h at 0 °C before diluting with Et₂O (50 mL). The reaction mixture was washed with H₂O (3 x 50 mL) and extracted into Et₂O (2 x 50 mL). The combined organic layers were washed with brine (50 mL) and dried over MgSO₄. The solvent was removed *in vacuo* to give the crude product. This was purified by column chromatography on silica gel (5% MeOH:CH₂CL₂) to yield **86** as a clear oil (160 mg, 52%). [α]²⁰_D –30.7 (c=1.0 CH₂Cl₂); IR (film) 3368, 2922, 1456, 1031 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.88 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-2"), 5.15-5.09 (2H, m, H-3"), 3.92 (1H, ddd, *J*=4.0,

7.0, 10.5, H-1), 3.72-3.70 (1H, m, H-3), 3.53 (1H, dd, J=4.0, 11.0, Ha-1'), 3.43 (1H, dd, J=7.0, 11.5, Hb-1'), 3.31 (1H, ddd, J=4.5, 10.0, 10.0, H-6), 2.48-2.42 (1H, m, Ha-1''), 2.24-2.17 (1H, m, Hb-1''), 2.16-2.10 (1H, m, H-7a), 2.04 (1H, ddd, J=6.5, 6.5, 13.0, H-3a), 1.93 (1H, ddd, J=2.5, 4.5, 14.0, Ha-7), 1.72 (1H, ddd, J=3.0, 6.0, 14.0, Ha-4), 1.56 (1H, ddd, J=6.0, 11.0, 14.0, Hb-7), 1.38 (1H, dqdd, J=3.0, 6.5, 10.0, 13.0, H-5), 1.19 (1H, ddd, J=13.0, 13.0, 14.0, Hb-4), 1.04 (3H, d, J=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 134.5 (C2''), 117.5 (C3''), 84.5 (C3), 79.7 (C1), 72.4 (C6), 65.5 (C1'), 42.8 (C3a), 40.5 (C7a), 38.8 (C5), 38.7 (C1''), 36.0 (C4), 32.7 (C7), 18.2 (C8); LC-MS (ESI+) m/z 271 [M+Na+], R_t 2.55 min [method D].

(1S,3S,3aR,5R,6R,7aS)-3-Allyl-1-(hydroxymethyl)-6-methyloctahydroisobenzofuran-5-ol (50 mg, 0.221 mmol) was dissolved in CH₂Cl₂ (1.2 mL). Hex-5-enoyl chloride (32 mg, 0.243 mmol) and triethylamine (95 µL, 0.663 mmol) were added and the reaction mixture was stirred at RT for 18 h. TLC analysis indicated the presence of starting material, therefore a further quantity of hex-5-enoyl chloride (32 mg, 0.243 mmol) was added and the solution was stirred for a further 5 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H2O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic layers were dried over MgSO₄ and the solvents removed in vacuo. Purification by column chromatography (33% EtOAc:hexane) gave **87** (30 mg, 42%) as a clear oil. $[\alpha]^{20}_D$ -25.0 (c=0.5, CH₂Cl₂); IR (film) 3444, 2924, 1438, 1642, 1455 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.87 (1H, dddd, *J*=7.0, 7.0, 10.0, 17.0, H-2"), 5.78 (1H, dddd, J=6.5, 6.5, 10.0, 17.0, H-7'), 5.13-4.98 (4H, m, H-3", H-8'), 4.01 (1H, dd, J=6.0, 11.0, Ha-1'), 3.96 (1H, dd, J=5.5, 11.0, Hb-1'), 3.90 (1H, ddd, J=4.0, 7.0, 10.5, H-1), 3.82 (1H, dd, J=6.0, 6.0, H-3), 3.33 (1H, ddd, J=4.5, 10.5, 10.5, H-6), 2.45-2.39 (1H, m, Ha-1"), 2.39 (2H, t, J=7.5, H-4'), 2.23-2.03 (5H, m, Hb-1", H-6', H-3a, H-7a), 1.96 (1H, ddd, J=2.0, 4.5, 14.0, Ha-7), 1.78-1.69 (3H, m, H-4A, Ha-5'), 1.56 (2H, ddd, J=7.0, 10.5, 14.0, H-7, OH), 1.39 (1H, dqdd, 3.0, 6.5, 9.5, 12.5, H-5), 1.20 (1H, ddd, J=14.0, 14.0, 14.0, HB -4), 1.03 (3H, d, J=6.5, H-8); ¹³C NMR (125 MHz, CDCl₃) δ 173.4 (C3'), 137.6 (C7"), 134.7 (C2"), 117.2 (C3"), 115.4 (C8'), 81.6 (C3), 79.9 (C1), 72.3 (C6), 66.3 (C1'), 42.4 (C3a or C7a), 41.1 (C3a or C7a), 38.9 (C1"), 38.8 (C5), 35.9 (C4), 33.5 (C4'), 33.0 (C6'), 32.7 (C7), 24.0 (C5'), 18.0 (C8); LC-MS (ESI⁺) m/z 345 [M+Na⁺], Rt 2.62 min [method D]; HRMS [M+Na⁺] calcd for C₁₉H₃₀O₄Na 345.2036 found 345.2046; Found: C,70.73; H, 9.35%; C₁₉H₃₀O₄ requires: C, 70.77; H, 9.38%.

((1S,3S,3aR,5R,6R,7aS)-3-Allyl-5-hydroxy-6-methyloctahydroisobenzofuran-1-yl)methyl hex-5-enoate **87** (26 mg, 0.081 mmol) was dissolved in CH_2Cl_2 (160 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (7 mg, 0.008 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 3 d. DMSO (10 μ L) was added and the solution was stirred overnight. The solvents were removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **39** as a clear oil (19 mg, 80%). [α]²⁴D-20.8 (c=1.0 CHCl₃); IR (film) 3432, 2919, 1738, 1446 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.42-5-35 (2H, m, H-8, H-9), 5.13 (1H, dd, *J*=3.0, 12.0, Ha-2), 3.94 (1H, ddd, *J*=3.0, 3.0, 11.0, H-11), 3.69 (1H, m, H-1), 3.42 (1H, d, *J*=12.0, Hb-2), 3.30 (1H, ddd,

J=5.0, 11.0, 11.0, H-14), 2.49-2.34 (4H, m, Ha-7, Ha-10, H-12, Ha-5 or Ha-6), 2.28-2.22 (1H, m, H-17), 2.17-2.03 (3H, m, Hb-7, Hb-10, Ha-5 or Ha-6), 1.95-1.87 (2H, m, Ha-13, Hb-5 or Hb-6), 1.74-1.70 (1H, m, Ha-16), 1.71-1.57 (2H, m, Hb-13, Hb-5 or Hb-6), 1.45-1.38 (1H, m, Ha-15), 1.18 (1H, ddd, J=13.0, 13.0, 13.0, Hb-16), 1.03 (3H, d, J=6.5, H-19); 13 C NMR (125 MHz, CDCl₃) δ 173.9 (C4), 133.1 (C8), 125.8 (C9), 81.9 (C1), 79.2 (C11), 72.5 (C14), 64.4 (C2), 41.5 (C17), 39.3 (C12), 38.9 (C15), 36.8 (C16), 33.8 (C5 or C6), 33.0 (C7), 32.3 (C10 or C13), 32.3 (C10 or C13), 21.8 (C5 or C6), 18.1 (C19); LC-MS (ESI+) m/z 317 [M+Na+], R_t 1.90 min [method D]; HRMS [M+Na+] calcd for C₁₇H₂₆O₄Na 317.1723 found 317.1726.

(1R,2S,3S,10E,13S,14R,15S)-5,20-dioxatetracyclo $[13.2.2.1^{3,13}.0^{2,14}]$ icosa-10,16-dien-6-one 40

Trifluoromethanesulfonamide (465 mg, 3.12 mmol) was dissolved in CH_2Cl_2 (3.0 mL) in a pressure tube. Dimethylaluminium chloride (6.2 mL, 6.2 mmol) was added slowly under argon and the solution stirred for 30 min. *(S)*-5-((*tert*-Butyldiphenylsilyloxy)methyl)furan-2-(5*H*)one **8** (1.00 g, 2.841 mmol) and cyclohexadiene (2.7 mL, 28.4 mmol) were added and the tube was sealed and heated to 60 °C for 2 d. The reaction was cooled and diluted with Et_2O (100 mL), the mixture was quenched with NaOH (70 mL, 1M aq sol) and gas was evolved. The aqueous layer was extracted into Et_2O (100 mL x 2) washed with brine (100 mL x 1) and dried over MgSO₄. The solvent was removed *in vacuo*. The crude mixture was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **40a** a clear oil (930 mg, 75%). [α]^{23.7}_D +10.0 (c=1.0 CHCl₃); IR (film) 2934, 1767 (C=O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.64 (4H, m, Ph), 7.48-7.39 (6H, m, Ph), 6.35-6.31 (1H, m, H-9), 6.27-6.23 (1H, m, H-8), 4.04 (1H, dd, J=3.5, 6.5, H-5), 3.80 (1H, dd, J=4.0, 11.0, Ha-1'), 3.67 (1H, dd, J=3.0, 11.0, Hb-1'), 3.10-3.06 (1H, m, H-1), 2.83 (1H, dd, J=3.5, 10.0, H-2), 2.67-2.63 (1H, m, H-7), 2.58 (1H, ddd, J=3.5, 3.5, 10.0, H-6), 1.62-1.56 (1H, m, Ha-10), 1.52-1.57 (1H, m, Ha-11), 1.35 (1H, dddd, J=3.0, 3.0, 12.0, 12.0, Hb-10), 1.30 (1H, dddd, J=3.0, 3.0, 12.0, 12.0, Hb-110, 1.30 (1H, dddd, J=3.0, 3.0, 12.0, 12.

11), 1.07 (9H, s, ${}^{t}Bu$); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 178.8 (C3), 135.7 (2 x Ph), 135.6 (2 x Ph), 134.2 (C9), 133.2 (iPh), 132.7 (C8), 132.6 (iPh) 129.9 (2 x Ph), 127.8 (2 x Ph), 127.8 (2 x Ph), 84.3 (C5), 65.4 (C1'), 46.3 (C2), 41.0 (C6), 33.3 (C7), 31.7 (C1), 26.7 (${}^{t}Bu$), 23.7 (C10), 23.3 (C11), 19.2 (Si-C); LC-MS (ESI+) m/z 455 [M+Na+], R_t 2.68 min [method D]; HRMS [M+Na+] calcd for $C_{27}H_{32}O_3SiNa$ 455.2013 found 455.2010; Found: C, 74.90; H, 7.42%; $C_{27}H_{32}O_3Si$ requires: C, 74.96; H, 7.49%.

(1S,2R,5S,6S,7R)-5-(*tert*-Butyldiphenylsilanyloxymethyl)-4-oxatricyclo[5.2.2.0^{2,6}]undec-8-en-3-one 40a (481 mg, 1.113 mmol) was dissolved in anhydrous CH₂Cl₂ (5.6 mL) and cooled to -78 °C under N₂. DIBAL-H (1.0 M in toluene, 1.23 mL, 1.23 mmol) was added dropwise. The reaction was stirred at -78 °C for 3 h then quenched with EtOAc (10 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (6 mL) was added and the mixture stirred overnight. The aqueous layer was separated and extracted with CH₂Cl₂ (20 mL x 3). The organic layers were combined, dried over MgSO₄ and the solvent was removed in vacuo The crude mixture was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield a clear oil 40b (530 mg, 86%) as the kinetic anomer which converts to a mixture of anomers overnight in CDCl₃. [α]^{23.7}_D-15.6 (c=1.0 CHCl₃); IR (film) 3411, 2933, 1472, 1427 cm⁻¹ ¹; ¹H NMR (500 MHz, CDCl₃) δ **Anomer A** 7.74-7.66 (4H, m, Ph), 7.49-7.36 (6H, m, Ph), 6.28-6.20 (2H, m, H-9, H-8), 5.01 (1H, s, H-3), 3.82-3.76 (2H, m, H-5, Ha-1'), 3.58 (1H, dd, J=2.0, 10.0, Hb-1'), 2.79-2.75 (1H, m, H-1), 2.53-2.48 (1H, m, H-7), 2.41-2.38 (2H, m, H-2, H-6), 1.56-1.14 (4H, m, H-10, H-11), 1.12 (9H, s, tBu); Anomer B 7.74-7.66 (4H, m, Ph), 7.49-7.36 (6H, m, Ph), 6.25-6.18 (1H, m, H-9 or H-8), 6.11-6.08 (1H, m, H-9 or H-8), 4.80 (1H, d, J=2.0, H-3), 3.74-3.67 (2H, m, H-5, Ha-1'), 3.61-3.52 (1H, m, Hb-1'), 2.57-2.53 (1H, m, H-1 or H-7), 2.44-2.41 (1H, m, H-1 or H-7), 2.34 (1H, ddd, J=3.5, 3.5, 10.0, H-6), 2.14 (1H, ddd, J=2.0, 3.5, 10.0 H-2), 1.56-1.14 (4H, m, H-10, H-11), 1.09 (9H, s, tBu); 13 C NMR (125 MHz, CDCl₃) δ 135.8 (2 x Ph A or B), 135.7 (2 x Ph A or B), 135.6 (2 x Ph A or B), 135.5 (2 x Ph A or B), 133.8 (iPh A or B), 133.8 (iPh A or B), 133.4 (C8 or C9, A or B), 133.2 (C8 or C9, A or B), 133.2 (C8 or C9, A or B), 133.0 (C8 or C9, A or B), 130.0 (Ph A or B), 129.9 (Ph A or B), 129.6 (Ph A or B), 127.8 (Ph A or B), 127.6 (Ph A or B), 127.6 (Ph A or B), 105.7 (C3B), 104.6 (C3A), 86.5 (C5A), 85.6 (C5A), 67.3 (C1' A or B), 67.1 (C1' A or B), 55.5 (C6A or C2A), 52.2 (C6B or C2B), 47.3 (C6B or C2B), 46.1 (C6A or C2A), 33.9 (C1 or C7, A or B), 33.9 (C1 or C7, A or B), 32.3 (C1A or C7A), 31.5 (C1A or C7A), 27.0 (tBu A or B), 26.9 (tBu A or B), 24.5 (C10 or C11, A or B), 24.5 (C10 or C11, A or B), 23.9 (C10 or C11, A or B), 19.3 (Si-C, A or B), 19.2 (Si-C, A or B); LC-MS (ESI+) m/z 457 [M+Na⁺], R_t 2.78 min [method D]; HRMS [M+Na⁺] calcd for C₂₇H₃₄O₃SiNa 457.2169 found 457.2167; Found: C, 74.57; H, 7.92%; C₂₇H₃₄O₃Si requires: C, 74.57; H, 7.92%.

(1S,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanyloxymethyl)-4-oxa-tricyclo[5.2.2.0^{2,6}]undec-8-en-3-ol **40b** (74 mg, 0.734 mmol) was dissolved in CH_2Cl_2 (2.0 mL) and cooled to -78 °C. BF_3 . OEt_2 (0.065 mL, 0.51 mmol) was added by syringe and the solution stirred for 5 min. Allyltrimethylsilane (0.083 mL, 0.51 mmol) was added by syringe and the reaction then warmed to RT over 18 h. The reaction was then quenched with H_2O (6 mL) and extracted

into CH₂Cl₂ (6 mL x 3). The combined organic layers were dried over MgSO₄. The solvent was removed in vacuo to yield **40c** as a clear oil (60 mg, 76%). [α]^{23.7}_D +5.5 (c=1.0 CH₂Cl₂); IR (film) 3046, 2932, 2860, 1472, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.76-7.71 (4H, m, Ph), 7.47-7.38 (6H, m, Ph), 6.22-6.19 (2H, m, H-8, H-9), 5.88 (1H, dddd, J=7.0, 7.0, 10.0, 17.0, H-2'), 5.15-5.05 (2H, m, H-3'), 3.80 (1H, dd, J=5.0, 10.5, Ha-1''), 3.70 (1H, dd, J=5.0, 10.5, Hb-1''), 3.60 (1H, ddd, J=5.0, 5.0, 8.0, H-3), 3.55 (1H, ddd, J=6.0, 6.0, 8.0, H-5), 2.55-2.49 (2H, m, H-1, H-7), 2.41-2.28 (2H, m, H-1''), 2.25 (1H, ddd, J=3.0, 8.0, 11.0, H-2), 2.05 (1H, ddd, J=3.0, 8.0, 11.0, H-6), 1.50-1.42 (2H, m, Ha-10, Ha-11), 1.34-1.26 (2H, m, Hb-10, Hb-11), 1.10 (9H, s, ¹Bu); ¹³C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.7 (2 x Ph), 135.3 (C2'), 134.3 (C8 or C9), 134.1 (C8 or C9), 133.8 (iPh), 133.8 (iPh), 129.5 (2 x Ph), 127.6 (4 x Ph), 116.5 (C3'), 83.6 (C3), 82.9 (C5), 66.3 (C1''), 51.9 (C6), 49.6 (C2), 39.8 (C1'), 32.1 (C1 or C7), 31.9 (C1 or C7), 26.9 (¹Bu), 24.6 (C10 or C11), 24.6 (C10 or C11), 19.3 (Si-C); LC-MS (ESI+) m/z 481 [M+Na+], R_t 3.35 min [method E]; HRMS [M+Na+] calcd for C₃₀H₃₈O₂SiNa 481.2533 found 481.2547; Found: C,78.56; H, 8.29%; C₃₀H₃₈O₂Si requires: C, 78.55; H, 8.35%.

7S)-5-allyl-4-oxatricyclo[5.2.2.0^{2.6}]undec-8-en-3-2S, 3S, ((1R, 5S, 6R, ylmethoxy)tertbutyldiphenylsilane 40c (969 mg, 2.173 mmol) was dissolved in THF (22 mL). The solution was cooled to 0 °C under N₂ and TBAF (6.5 mL, 6.5 mmol, 1.0 M in THF) was added by syringe. The reaction was stirred for 3.5 h at 0 °C before diluting with Et₂O (50 mL). The reaction mixture was washed with H₂O (3 x 50 mL) and extracted into Et₂O (3 x 50 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed in vacuo to give the crude product. This was purified by column chromatography on silica gel (50% EtOAc:hexane) to yield **84** as a clear oil (332 mg, 72%). $[\alpha]^{23.7}$ _D -23.5 (c=1.0 CHCl₃); IR (film) 3431, 2936 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.22-6.16 (2H, m, H-8, H-9), 5.84 (1H, dddd, J=7.0, 7.0, 10.0, 17.0, H-2'), 5.14-5.04 (2H, m, H-3'), 3.79-3.73 (1H, m, Ha-1"), 3.58-3.51 (3H, m, Hb-1", H-3, H-5), 2.52-2.45 (2H, m, H-1, H-7), 2.39-2.27 (3H, m, H-1', OH), 2.25-2.19 (1H, m, H-2), 2.08-1.98 (1H, m, H-6), 1.49-1.38 (2H, m, Ha-10, Ha-11), 1.34-1.24 (2H, m, Hb-10, Hb-11); 13 C NMR (125 MHz, CDCl₃) δ 134.8 (C2'), 134.2 (C8 or C9), 134.1 (C8 or C9), 116.9 (C3'), 83.9 (C3 or C5), 83.0 (C3 or C5), 64.0 (C1"), 52.0 (C6), 47.6 (C2), 39.4 (C1'), 31.8 (C1 or C7), 31.6 (C1 or C7), 24.5 (C10 or C11), 24.5 (C10 or C11); LC-MS (ESI⁺) m/z 243.24 [M+Na⁺], R_t 2.22 min [method D]; HRMS [M+H+] calcd for $C_{14}H_{21}O_2$ 221.1536 found 221.1538; Found: C,76.21; H, 9.15%; C₁₄H₂₀O₂ requires: C, 76.33; H, 9.15%.

((1R, 2S, 3S, 5S, 6R, 7S)-5-Allyl-4-oxatricyclo[5.2.2.0 $^{2.6}$]undec-8-en-3-yl)-methanol **84** (82 mg, 0.372 mmol) was dissolved in CH₂Cl₂ (3.0 mL). Hex-5-enoyl chloride (152 mg, 1.112 mmol) and triethylamine (160 μ L, 1.112 mmol) were added and the reaction mixture was stirred at RT for 36 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (10 mL x 2) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic layers were washed with brine (10 mL), dried with MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **85** as a clear oil (81 mg, 70%).

[α]^{23.7}_D+3.4 (c=1.0 CHCl₂); IR (film) 2938, 2868, 1737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.23-6.18 (2H, m, H-9, H-8), 5.89-5.75 (2H, m, H-2′, H-7″), 5.14-4.94 (4H, m, H-3′, H-8″), 4.25 (1H, dd, J=3.5, 11.5, Ha-1″), 4.03 (1H, dd, J=7.0, 11.5, Hb-1″), 3.66 (1H, ddd, J=3.5, 7.0, 7.0, H-3), 3.55 (1H, ddd, J=6.5, 6.5, 6.5, H-5), 2.55-2.49 (2H, m, H-1, H-7), 2.45-2.34 (2H, m, H-1, H-7), 2.34-2.27 (4H, m, H-1′, H-4″), 2.14-2.04 (4H, m, H-2, H-6, H-6″), 1.78-1.73 (2H, m, H-5″), 1.48-1.43 (2H, m, Ha-10, Ha-11), 1.36-1.25 (2H, m, Hb-10, Hb-11), ¹³C NMR (125 MHz, CDCl₃) δ 173.6 (C2″), 137.2 (C2′ or C7″), 134.7 (C2′ or C7″), 134.5 (C8 or C9), 133.9 (C8 or C9), 116.9 (C8″ or C3′), 115.3 (C8″ or C3′), 83.2 (C5), 80.9 (C3), 66.1 (C1″), 51.4 (C2 or C6), 49.3 (C2 or C6), 39.4 (C1′), 33.5 (C4″), 33.0 (C6″), 31.8 (C1 or C6), 31.6 (C1 or C6), 24.5 (C10 or C11), 24.5 (C10 or C11), 24.0 (C5″); LC-MS (ESI†) m/z 339 [M+Na†], R_t 3.05 min [method D]; HRMS [M+H†] calcd for $C_{20}H_{29}O_3$ 317.2111 found 317.2107.

(1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.2.0^{2,6}]undec-8-en-3-ylmethyl hex-5-enoate **85** (30 mg, 0.095 mmol) was dissolved in CH₂Cl₂ (94 mL, 0.001 M). Argon was bubbled though the solution for 5 min. Grubbs II (8 mg, 0.0095 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 5 d. DMSO (10 µL) was added and the solution was stirred overnight. The solvents were removed in vacuo and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield 40 as a crystalline solid (14 mg, 51%). mp (129-134 °C); $[\alpha]^{24}D$ -60.2 (c=1.0 CHCl₃); IR (film) 2930, 2865, 1738, 1433 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.28-6.14 (2H, m, H-17, H-16), 5.46 (1H, dddd, J=1.5, 4.5, 10.0, 15.0, H-11), 5.37 (1H, dddd, J=1.0, 4.0, 11.0, 15.0, H-10), 5.18 (1H, dd, J=2.0, 11.5, Ha-4), 3.67-3.60 (2H, m, H-3, H-13), 3.44 (1H, d, *J*=11.5, Hb-4), 2.54-2.48 (3H, m, H-2, H-14, H-1 or H-15), 2.45-2.33 (3H, m, Ha-12, Ha-9, Ha-7), 2.29 (1H, ddd, J=3.0, 7.5, 10.5, H-1 or H-15), 2.12-2.01 (3H, m, Ha-8, Hb-7, Hb-12), 1.90-1.81 (1H, m, Hb-9), 1.67-1.60 (1H, m, Hb-8), 1.55-1.47 (2H, m, H-19 or H-18), 1.35-1.29 (2H, m, H-19 or H-18); 13 C NMR (125 MHz, CDCl₃) δ 173.9 (C6), 134.7 (C16 or C17 or C10), 134.6 (C16 or C17 or C10), 134.1 (C16 or C17 or C10), 124.4 (C11), 82.7 (C3 or C13), 82.1 (C3 or C13), 61.3 (C4), 48.6 (C1 or C15), 47.8 (C1 or C15), 34.9 (C7 or C12 or C9), 34.7 (C7 or C12 or C9), 33.6 (C7 or C8 or C9), 32.1 (C2 or C14), 31.7 (C2 or C14), 24.6 (C18 or C19), 24.3 (C18 or C19), 22.4 (C8); LC-MS (ESI $^+$) m/z 311 [M+Na $^+$], R_t 2.87 min [method D]; HRMS [M+H $^{+}$] calcd for C₁₇H₂₅O₃ 289.1804 found 289.1798; Found: C,73.81; H, 8.63%; C₁₈H₂₄O₃ requires: C, 73.88; H, 8.75%.

 $(1R,7E/R,10S,11R,12R,15S,16S)-2,17-dioxatetracyclo[8.6.1.1^{12,15}\cdot0^{11,16}] octadec-7-en-3-one 41$

Dicyclopentadiene was cracked by heating to 170 °C and distillation of the monomer product. (S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)-one 8 (500 mg, 1.433 mmol) was weighed into a pressure tube, and cyclopentadiene (4.6 mL, 56.0 mmol) was added. The tube was sealed and heated to 110 °C for 3 d. The pressure tube was then cooled to 0 °C to reduce excess pressure, and the reaction was diluted in CH2Cl2 (10 mL). Solvent and unreacted cyclopentadiene were removed in vacuo. Non-polar side-products were removed by loading the crude reaction mixture onto a plug of silica and washing with hexane. The products were then washed though the silica with EtOAc and concentrated in vacuo. The products were then separated by column chromatography (25% EtOAc:hexane) to give the endo product 41a as a white crystalline solid (305 mg, 69%) and the exo product as a clear oil (116 mg, 16%). Endo Product **41a** [α]²³_D-17.3 (c=2.78, CH₂Cl₂); IR (film) 3070, 2931, 2857, 1770 (CO), 1427 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.65 (4H, m, Ph), 7.50-7.38 (6H, m, Ph), 6.32 (1H, dd, J=3.0, 6.0, H-9), 6.23 (1H, dd, J=3.0, 6.5, H-8), 3.97 (1H, dd, J=3.0, 6.0, H-5), 3.79 (1H, dd, J=3.5, 11.0, Ha-1'), 3.75 (1H, dd, 3.0, 11.0, Hb-1'), 3.50-3.35 (2H, m, H-7, H-2), 3.10-3.07 (1H, m, H-6), 3.05-3.01 (1H, m, H-1), 1.66 (1H, d, J=8.5, Ha-10), 1.46 (1H, d, J=8.5, Hb-10), 1.07 (9H, s, t Bu); 13 C NMR (125 MHz, CDCl₃) δ 177.8 (C3), 137.7 (C8), 137.3 (C9), 135.6 (Ph), 135.5 (Ph), 135.2 (Ph), 134.7 (Ph), 133.2 (Ph), 132.6 (Ph), 129.9 (Ph), 129.6 (Ph), 127.8 (2 x Ph), 127.8 (2 x Ph), 82.1 (C5), 65.7 (C1'), 51.7 (C10), 48.8 (C2), 45.9 (C1), 45.7 (C7), 43.1 (C6), 26.9 (tBu), 19.2 (Si-C); LC-MS (ESI⁺) m/z 441 [M+Na⁺], R_t 5.80 min [method B]; HRMS [M+Na⁺] calcd for C₂₆H₃₀O₃SiNa 441.1856; found 441.1857. Found: C, 74.58; H, 7.23%, requires: C, 74.60; H, 7.22%. Exo Product $[\alpha]^{23}$ _D -0.61 (c=2.14, CH₂Cl₂); IR (film) 3070, 3049, 2930, 2857, 1745 (CO), 1428 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 7.70-7.65 (4H, m, Ph), 7.48-7.38 (6H, m, Ph), 6.26 (1H, dd, J=3.0, 6.0, H-9), 6.19 (1H, dd, J=3.0, 6.0, H-8), 4.20 (1H, dd, J=3.0, 3.0, H-5), 3.84 (1H, dd, J=3.5, 11.0, Ha-1'), 3.75 (1H, dd, 3.5, 11.0, Hb-1'), 3.29 (1H, m, H-1), 2.88 (1H, m, H-7), 2.72 (1H, d, J=8.5, H-2), 2.46 (1H, dd, J=3, 8.5, H-6) 1.53 (2H, m, H-10), 1.05 (9H, s, ${}^{t}Bu$); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 177.4 (C1), 137.8 (C8), 137.5 (C9), 135.7 (Ph), 135.6 (Ph), 135.2 (Ph), 134.8 (Ph), 133.1 (Ph), 132.5 (Ph), 129.9 (Ph), 129.9 (Ph), 127.8 $(2 \times Ph)$, 127.7 $(2 \times Ph)$, 83.3 (C5), 65.7 (C1'), 49.1 (C2), 47.6 (C7), 46.6 (C1), 44.8 (C6), 43.6 (C10), 26.7 (tBu), 19.1 (Si-C); LC-MS (ESI^+) m/z 441 [M+Na⁺], Rt 5.80 min [method B]; HRMS [M+Na⁺] $C_{26}H_{30}O_3SiNa$ calcd for 441.1856; found 441.1857.

(15,2R,55,65,7R)-5-(tert-Butyldiphenylsilanoxymethyl)-4-oxa-tricyclo[5.2.1.0. 2,6]dec-8-en-3-one **41a** (150 mg, 0.36 mmol) was dissolved in EtOAc (3.6 mL) and Pd/C (7.5 mg, 10% w/w Pd) was added. The solution was stirred under H₂ (1 atm). The solution was stirred overnight at RT before being filtered through silica, washing with EtOAc. The solvent was removed *in vacuo* to yield **41b** a white crystalline solid (149 mg, 100%). mp (78-81 °C) [α]²²_D 36.9 (c=0.89 CH₂Cl₂); IR (film) 3076, 3026, 2901, 2841, 1740, 1641 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.60 (4H, m, Ph), 7.52-7.33 (6H, m, Ph), 4.39 (1H, dd, J=2.5, 5.0, H-5), 3.87 (1H, dd, J=3.0, 11.0, Ha-1'), 3.62 (1H, dd, J=3.0, 11.0, Hb-1'), 3.05 (1H, dd, J=5.5, 11.0, H-2), 2.76-2.74 (1H, m, H-6), 2.70-2.65 (1H, m, H-1), 2.42-2.30 (1H, m, H-7), 1.66-1.44 (6H, m, H-8, H-10, H-9), 1.06 (9H, s, [†]Bu); ¹³C NMR (125 Hz, CDCl₃) δ 178.4 (C3), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.1 ([†]Ph), 132.5 ([†]Ph), 129.9 (2 x Ph), 127.8 (4 x Ph), 79.8 (C5), 66.2 (C1'), 48.2 (C2), 45.1 (C6), 41.6 (C10), 40.2 (C1), 39.7 (C7), 26.7 ([†]Bu), 25.4 (C8 or C9), 19.1 (C8 or C9), 14.2 (Si-C); LC-MS (ESI+) m/z 443 [M+Na+], R_t 5.65 min [method B], HRMS [M+Na+] calcd for C₂₆H₃₂O₃SiNa 443.2018; found 443.2037.

(1*S*,2*R*,5*S*,6*S*,7*R*)-5-(*tert*-Butyldiphenylsilanoxymethyl)-4-oxa-tricyclo[5.2.1.0.^{2,6}]decan-3-one 41b (140 mg, 0.332 mmol) was dissolved in anhydrous CH₂Cl₂ (1.7 mL) and cooled to -78 °C under N₂. DIBAL-H (1.0 M in toluene, 0.36 mL, 0.36 mmol) was added dropwise. The reaction was stirred at -78 °C for 2 h then quenched with EtOAc (2 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (6mL) was added and stirred for 3 h. The aqueous layer was separated and extracted into CH₂Cl₂ (3 x 10 mL). The organic layers were combined, dried over MgSO₄ and the solvent was removed in vacuo to yield 41c as a clear oil (127 mg, 100%). $[\alpha]^{21}$ _D -52.6 (c=0.15, CH₂Cl₂) IR (film) 3424, 3070, 2956, 2857, 1427 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77-7.63 (4H, m, Ph), 7.54-7.36 (6H, m, Ph), 5.25 (1H, d, J=9.0, H-3), 4.42 (1H, d, J=10.0, OH), 4.15 (1H, dd, J=3.0, 3.0, H-5), 3.87 (1H, dd, J=3.0, 11.0, H-1'), 3.56 (1H, dd, J=3.0, 11.0, H-1'), 2.61-2.51 (2H, m, H-2, H-6), 2.42 (1H, m, H-7 or H-1), 2.16 (1H, m, H-1 or H-7), 1.55-1.41 (4H, m, CH₂), 1.38-1.30 (2H, m, CH₂), 1.10 (9H, s, ^tBu); ¹³C NMR (125 MHz, CDCl₃) δ 135.8 (2 x Ph), 135.6 (2 x Ph), 132.3 ($^{\rm i}$ Ph), 132.3 ($^{\rm i}$ Ph), 129.9 (Ph), 128.2 (Ph), 127.8 (4 x Ph), 100.2 (C3), 81.3 (C5), 68.0 (C1'), 56.0 (C2 or C6), 46.5 (C2 or C6), 42.0 (CH₂), 40.5 (C7), 39.4 (C1), 26.9 (tBu), 23.2 (CH₂), 23.0 (CH₂), 19.2 (Si-C); LC-MS (ESI⁺) m/z 441 [M+Na⁺], R_t 4.59 min [method B]; HRMS [M+K⁺] calcd for $C_{26}H_{34}O_3SiK$ 461.1909; found 461.1912.

(1S,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanoxymethyl)-4-oxatricyclo[5.2.1.0.^{2,6}]decan-3-ol **41c** (101 mg, 0.239 mmol) was dissolved in CH₂Cl₂ (1 mL) and cooled to -78 °C. BF₃.OEt₂ (90 μ L, 0.718 mmol) was added and the solution stirred for 5 min. Allyltrimethylsilane (114 μ L, 0.719 mmol) was added and the reaction then warmed to RT. The reaction was stirred for

18 h before quenching with H_2O (7 mL), and extracted with CH_2Cl_2 (3 x 7 mL). The combined organic layers were washed with brine (10 mL) and dried with MgSO₄. The solvent was removed *in vacuo* to yield **41d** a clear oil (97 mg, 92%). [α]^{24.9}_D 4.1 (c=0.75, CH_2Cl_2); IR (film) 3071, 3048, 2956, 1427 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 7.70-7.75 (4H, m, Ph), 7.41-7.48 (6H, m, Ph), 5.77-5.82 (1H, m, H-2"), 5.03-5.06 (2H, m, H-3"), 3.93 (1H, ddd, J=5.0, 6.0, 6.0, H-3), 3.85 (1H, ddd, J=5.0, 5.0, 7.0, H-5) 3.69 (1H, dd, J=5.5, 10.0, Ha-1"), 3.53 (1H, dd, J=6.5, 10.0, Hb-1"), 2.55-2.52 (1H, m, H-2), 2.35-2.29 (2H, m, H-6, Ha-1") 2.20 (1H, br s, H-7), 2.15 (1H, br s, H-1), 2.17-2.11 (1H, m, Hb-1"), 1.68-1.60 (4H, m, H-8, H-9), 1.41 (2H, d, J=8.0, H-10), 1.05 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.7 (2 x Ph), 135.4 (C2"), 133.8 (ⁱPh), 133.7 (ⁱPh), 129.6 (Ph), 129.5 (Ph), 127.6 (4 x Ph), 116.5 (C3"), 79.7 (C3), 78.9 (C5), 67.4 (C1'), 52.6 (C6), 50.4 (C2), 44.0 (C8), 42.0 (C2"), 39.9 (C7), 39.9 (C1), 26.9 (tBu), 22.9 (C9), 19.2 (Si-C).

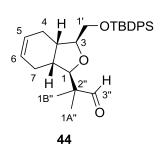
((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]decane-3-ylmethoxy-tert-

butyldiphenylsilane **41d** (90 mg, 0.202 mmol) was dissolved in THF (1.1 mL). The solution was cooled to 0 °C under N₂ and TBAF (0.60 mL, 0.60 mmol, 1.0 M in THF) was added by syringe. The reaction was stirred for 2 h at 0 °C before diluting with Et₂O (10 mL). The reaction mixture was washed with H₂O (3 x 10 mL) and extracted into Et₂O (3 x 10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo* to give the crude product. This was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **41e** as a clear oil (39 mg, 92%). [α]²²_D 15.3 (c=0.53 CH₂Cl₂); IR (film) 3416, 2950, 2879, 1641, 1455, 1048 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.76 (1H, tdd, *J*=7.0, 10.5, 17.0, Ha-3'), 5.11-5.06 (2H, m, H-3'), 4.04-3.99 (2H, m, H-3, H-5), 3.52 (1H, dd, *J*=4.0, 11.5, Ha-1"), 3.42 (1H, dd, *J*=8.0, 11.5, Hb-1"), 2.41-2.34 (3H, m, Ha-1', H-7 or H-1, H-2 or H-6), 2.27-2.23 (3H, m, Hb-1', H-1 or H-7, H-2 or H-6), 2.07 (1H, m, OH), 1.61-1.69 (4H, m, H-8, H-9), 1.46-1.49 (2H, m, H-10); ¹³C NMR (125 MHz, CDCl₃) δ 135.2 (C2'), 116.9 (C3'), 79.8 (C3), 78.8 (C5), 66.3 (C1"), 52.7 (C6 or C2), 49.0 (C6 or C2), 43.8 (C10), 42.4 (C1'), 39.9 (C1), 39.5 (C7), 22.9 (C8 or C9), 22.9 (C8 or C9); LC-MS (ESI⁺) *m/z* 231 [M+Na⁺], R_t 2.20 min [method D]; HRMS [M+H⁺] calcd for C₁₃H₂₁O₂ 209.1536; found 209.1539.

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-3-yl)-methanol **41e** (50 mg, 0.243 mmol) was dissolved in pyridine (1.2 mL). Pent-4-enoyl chloride (83 μL, 0.762 mmol) was added and the reaction mixture was stirred at RT for 18 h. The solvents were removed *in vacuo* and the remaining residue was dissolved in CH_2Cl_2 (10 mL) and washed with H_2O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH_2Cl_2 (10 mL x 2). The combined organic layers were dried with MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (25% EtOAc:hexane) to yield **41f** as a clear oil (38 mg, 55%). [α]²⁵_D +15.8 (c=1.0 CHCl₃); IR (film) 2952, 1737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.89-5.73 (2H, m, H-2', H-6''), 5.11-4.94 (4H, m, H-3', H-7''), 4.11-4.02 (3H, m, H-1'', H-3), 3.95 (1H, ddd, *J*=4.0, 7.0, 7.0, H-5), 2.49-2.32 (7H, m, H-5'', H-4'', H-6, H-2, HA-1'), 2.22-2.16 (3H, m, H-1, H-7, HB-1'), 1.65-1.56 (4H,

m, H-10, H-8 or H-9), 1.45-1.39 (2H, m, H-9 or H-8); 13 C NMR (125 MHz, CDCl₃) δ 173.0 (C3"), 136.7 (C2' or C6"), 134.9 (C2' or C6"), 116.8 (C3' or C7"), 115.5 (C3' or C7"), 79.2 (C5), 76.8 (C3), 67.6 (C1"), 52.5 (C6 or C2), 50.0 (C6 or C2), 43.9 (C10), 41.9 (C1'), 39.8 (C1 or C7), 39.5 (C1 or C7), 33.5 (C5" or C4"), 28.8 (C5" or C4"), 22.8 (C9 or C8), 22.8 (C9 or C8); LC-MS (ESI+) m/z 313 [M+Na+], R_t 2.50 min [method D]; HRMS [M+H+] calcd for $C_{18}H_{27}O_3$ 291.1955 found 291.1955.

(1S,2S,3S,5S,6R,7R)-5-allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-3-ylmethyl pent-5-enoate **41f** (20 mg, 0.069 mmol) was dissolved in CH₂Cl₂ (137 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (6 mg, 0.008 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 16 h. DMSO (10 μL) was added and the solution was stirred overnight. The solvents were removed *in vacuo* and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **41** as a mixture of E and Z (clear oil) (4 mg, 22%). [α]²⁴_D-6.8 (c=0.5 CHCl₃); IR (film) 2951, 1737 (C=O), 1171, 1106 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.59-5.42 (2H, m, H-7', H-6'), 4.18-3.90 (4H, m, H-1', H-3, H-5), 2.40-2.28 (6H, m, CH₂, CH), 2.26-2.14 (4H, m, CH, CH₂), 1.70-1.52 (4H, m, CH₂), 1.47-1.37 (2H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 173.0 (C3'), 130.2, 129.5, 129.0, 128.0 (2C, C7', C6'), 79.8, 79.6, 77.6, 77.5 (2C, C3, C5), 67.4, 67.5 (C1'), 52.4, 52.4 (CH), 49.0, 49.0 (CH), 43.6, 43.5 (CH₂), 41.3 (CH₂), 40.6 (CH₂), 40.0, 39.8 (CH), 39.6 (CH), 34.4, 34.3 (CH₂), 28.0, 27.9 (CH₂), 22.9 (CH₂), 22.8 (CH₂); LC-MS (ESI⁺) *m/z* 285 [M+Na⁺], R_t 2.32 min [method D]; HRMS [M+H⁺] calcd for C₁₆H₂₃O₃ 263.1642 found 263.1643.

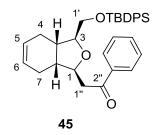

(E)-(1S,11S,12R,17S)-3,18-Dioxatetracyclo[9.6.1.1^{13,16}.0 ^{12,17}]nonadec-8-en-4-one 42

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-3-yl)methanol **41e** (50 mg, 0.243 mmol) was dissolved in pyridine 1.2 mL. Hex-5-enoyl chloride (100 mg, 0.762 mmol) was added and the reaction mixture was stirred at RT for 18 h. The solvents were removed *in vacuo* and the remaining residue was dissolved in CH_2Cl_2 (10 mL) and washed with H_2O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH_2Cl_2 (10 mL x 2). The combined organic layers were dried with CH_2Cl_2 and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **83** as a clear oil (73 mg, 100%). [α]²⁵_D -5.5 (c=1.0 CHCl₃); IR (film) 2952, 1737 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 5.79 (1H, dddd, J=7.0, 7.0 10.5, 17.0, H-2')

or H-7"), 5.76 (1H, dddd, J=7.0, 7.0 10.0, 17.0, H-2' or H-7"), 5.09-4.97 (4H, m, H-3', H-8"), 4.09-4.00 (3H, m, H-1", H-3), 3.90 (1H, ddd, J=4.0, 7.0, 7.0, H-5), 2.45-2.32 (5H, m, HA-1', H-4", H-2, H-6), 2.21-2.16 (3H, m, H-1, H-7, HB-1'), 2.16-2.08 (2H, m, H-6"), 1.75 (2H, tt, J=7.5, 7.5, H-5"), 1.63-1.56 (4H, m, HA-8, HA-9, H-10), 1.13-1.43 (2H, m, HB-9, HB-8); 13 C NMR (125 MHz, CDCl₃) δ 173.5 (C3"), 137.7 (C7"), 134.9 (C2'), 116.8 (C8" or C3'), 115.3 (C8" or C3'), 79.2 (C5), 76.7 (C3), 67.5 (C1"), 52.5 (C6 or C2), 50.1 (C6 or C2), 43.9 (C10), 41.9 (C1'), 39.8 (C1 or C7), 39.5 (C1 or C7), 33.4 (C4"), 33.0 (C6"), 24.0 (C5"), 22.8 (C9 or C8), 22.8 (C9 or C9); LC-MS (ESI+) m/z 327 [M+Na+], R_t 2.55 min [method D]; HRMS [M+H+] calcd for $C_{19}H_{30}O_3$ 305.2111 found 305.2115; Found: C,74.91; H, 9.26%; $C_{17}H_{28}O_3$ requires: C, 74.96; H, 9.27%.

(1S,2S,3S,5S,6R,7R)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-3-ylmethyl hex-5-enoate **83** (24 mg, 0.078 mmol) was dissolved in CH₂Cl₂ (156 mL, 0.0005 M). Argon was bubbled though the solution for 5 min. Grubbs II (7 mg, 0.008 mmol, 10 mol%) was added under argon and the reaction mixture was stirred for 5 d. DMSO (10 μL) was added and the solution was stirred overnight. The solvents were removed in vacuo and the resultant mixture purified by column chromatography on silica gel (15% EtOAc:hexane) to yield 42 as a white crystalline solid (11 mg, 51%). mp (94-96 °C); $[\alpha]^{24}$ _D-10.4 (c=1.0 CHCl₃); IR (film) 2948, 1729, 1440 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.54 (1H, ddd, J=7.0, 7.0, 14.0, H-9 or H-8), 5.28 (1H, ddd, J=7.0, 7.0, 14.0, H-9 or H-8), 4.33 (1H, dd, *J*=3.0, 12.0, Ha-2), 4.14-4.09 (2H, m, H-1, H-11), 3.69 (1H, dd, J=7.5, 12.0, Hb-2), 2.56-2.49 (1H, m, H-12 or H-17), 2.77-2.32 (3H, m, H-16 or H-17, CH₂, CH₂), 2.29-1.98 (7H, m, H-12 or H-17, H-16 or H-13, CH₂, CH₂, CH₂), 1.96-1.81 (2H, m, CH₂), 1.68-1.53 (4H, m, Ha-14, Ha-15, CH₂), 1.46-1.38 (2H, m, Hb-14, Hb-15); ¹³C NMR (125 MHz, CDCl₃) δ 175.3 (C4), 132.0 (C8 or C9), 127.4 (C8 or C9), 77.6 (C1 or C11), 76.1 (C1 or C11), 65.8 (C2), 51.5 (C12 or C17), 48.8 (C16 or C13), 43.7 (CH₂), 39.8 (CH), 39.5 (CH), 39.5 (CH), 33.9 (CH₂), 33.8 (CH₂), 24.0 (CH₂), 22.9 (C14 or C15), 22.7 (C14 or C15); LC-MS (ESI⁺) m/z 299 [M+Na⁺], R_t 2.43 min [method D]; HRMS [M+H⁺] calcd for $C_{17}H_{26}O_3$ 277.1798 found 277.1799.

2-[(1R,3S,3aS,7aR)-3-{[(tert-butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal 44



(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol **11** (100 mg, 0.245 mmol) was dissolved in CH₂Cl₂ (2.8 mL) and cooled to -78 °C. BF₃.OEt₂ (94 μ L, 0.735 mmol) was added and the solution was stirred for 5 min. Trimethyl(2-methylprop-1-enyloxy)silane (49 μ L, 0.269 mmol) was then added and the reaction was warmed to RT and stirred for 3 h. The reaction was diluted with CH₂Cl₂ (20 mL), and washed with H₂O

(2 x 20 mL), followed by brine (20 mL). The organic layer was dried with MgSO₄. The solvents were removed *in vacuo* and the resultant crude residue was purified by column

chromatography on silica gel (15% EtOAc:hexane) to yield the product as a clear oil (110 mg, 97%). [α]²¹_D +1.1 (c=5.0 CHCl₃); IR (film) 3018, 1708, 1218 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.66 (1H, s, H-3"), 7.73-7.68 (4H, m, Ph), 7.46-7.37 (6H, m, Ph), 5.81-5.78 (2H, m, H-5, H-6), 3.81-3.75 (2H, m, Ha-1', H-1 or H-3), 3.73-3.68 (2H, m, Hb-1', H-1 or H-3), 2.29-2.17 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.97-1.86 (2H, Hb-4, Hb-7), 1.11 (3H, s, Me), 1.08 (3H, s, Me), 1.07 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 206.1 (C3"), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.6 (iPh), 133.4 (iPh), 129.6 (Ph), 129.6 (Ph), 127.7 (4 x Ph), 127.0 (C5 or C6), 126.3 (C5 or C6), 89.1 (C1), 83.8 (C3), 64.7 (C1'), 49.6 (C2"), 37.8 (C3a or C7a), 37.2 (C3a or C7a), 27.4 (C7), 26.8 (tBu), 24.0 (C4), 19.2 (C-Si), 19.2 (Me), 17.6 (Me); LC-MS (ESI⁺) m/z 485 [M+Na⁺], R_t 2.60 min [method E]; Found: C, 75.35; H, 8.15%; C₂₉H₃₈O₃Si requires: C, 75.28; H, 8.28%.

2-((1S,3S,3aS,7aR)-3-((tert-butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7ahexahydroisobenzofuran-1-yl)-1-phenylethanone 45

(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol **11** (100 mg, 0.245 mmol) was dissolved in CH₂Cl₂ (2.8 mL) and cooled to -20 °C. BF₃.OEt₂ (63 μ L, 0.490 mmol) was added and the solution was stirred for 5 min. Trimethyl(1-phenylvinyloxy)silane (100 μ L, 0.490 mmol) was then added and the reaction was warmed to RT and stirred for a further

16 h. The reaction was diluted with CH₂Cl₂ (20 mL), and washed with H₂O (2 x 20 mL), followed by brine (20 mL). The organic layer was dried with MgSO₄. The solvents were removed in vacuo and the resultant crude residue was a green oil. The product was isolated by column chromatography on silica gel (10% EtOAc:hexane) to yield 45 as a clear oil (95 mg, 78%). [α]²¹_D-1.66 (c=1.0 CHCl₃); IR (film) 3070, 2930, 2857, 1684 (CO) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.94-7.90 (2H, m, Ph), 7.75-7.67 (5H, m, Ph), 7.44-7.35 (8H, m, Ph), 5.77-5.68 (2H, m, H-5, H-6), 4.35 (1H, dd, J=6.0, 12.0, H-1), 3.82-3.77 (1H, m, H-3), 3.76 (1H, dd, J=4.5, 11.0, Ha-1"), 3.68 (1H, dd, J=4.0, 11.0, Hb-1"), 3.30 (1H, dd, J=6.5, 16.5, Ha-1"), 3.07 (1H, dd, J=6.0, 16.5, Hb-1'), 2.54-2.48 (1H, m, H-3a), 2.47-2.36 (2H, m, Ha-4, Ha-7), 2.26-2.18 (1H, m, H-7a), 2.03-1.93 (2H, m, Hb-4, Hb-7), 1.09 (9H, s, tBu); 13 C NMR (125 MHz, CDCl₃) δ 198.7 (C2"), 137.2 (iPh), 135.6 (2 x Ph), 135.6 (2 x Ph), 134.8 (Ph), 133.6 (Ph), 133.4 (iPh), 133.0 (iPh), 129.7 (Ph), 129.6 (Ph), 129.6 (Ph), 128.5 (Ph), 128.2 (Ph), 127.7 (Ph), 127.7 (2 x Ph), 127.7 (Ph), 125.4 (C5 or C6), 125.2 (C5 or C6), 84.1 (C3), 80.2 (C1), 64.9 (C1'), 44.4 (C1''), 40.1 (C7a), 35.5 (C3a), 26.9 (tBu), 24.8 (C4 or C7), 24.5 (C4 or C7), 19.3 (Si-C); LC-MS (ESI⁺) m/z 533 [M+Na⁺], R_t 2.52 min [method D]; HRMS [M+Na⁺] calcd for C₃₃H₃₇O₃SiNa 533.2482 found 533.2492; Found: C, 77.51; H, 7.40%; C₃₃H₃₈O₃Si requires: C, 77.60; H, 7.50%.

3-[(1R,3S,3aS,7aR)-3-(Hydroxymethyl)-octahydro-2-benzofuran-1-yl]-3-methylbutan-2-one 46

(3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-ol **23** (235 mg, 0.573 mmol) was dissolved in CH₂Cl₂ (5 mL) and

trimethyl(3-methylbut-2-en-2-yloxy)silane (100 mg, 0.630 mmol) was added. The solution was cooled to -78 °C and TMSOTf (286 μ L, 0.1 M in CH₂Cl₂, 0.029 mmol) was added and the reaction was warmed to -18 °C for 18 h. The reaction was quenched with sat. aqueous NaHCO₃ (20 mL) and extracted in CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried over MgSO₄ and the solvent removed *in vacuo*. The crude residue was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **46a** as a clear oil (101 mg, 36%). [α]^{24.3} $_{\rm D}$ -22.7 (c=0.75 CHCl₃); IR (film) 2929, 2856, 1774 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.65 (4H, m, Ph), 7.46-7.35 (6H, m, Ph), 3.91 (1H, ddd, J=4.0, 4.0, 9.0, H-3), 3.87 (1H, d, J=3.5, H-1), 3.76 (1H, dd, J=4.0, 11.0, Ha-1"), 3.67 (1H, dd, J=5.0, 11.0, Hb-1") 2.17 (3H, s, H-1'), 2.05-1.94 (2H, m, H-3a, H-7a), 1.73-1.54 (4H, m, CH₂), 1.49-1.23 (4H, m, CH₂), 1.14 (3H, s, Me), 1.09 (3H, s, Me), 1.08 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 213.2 (C2'), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.7 (iPh), 133.5 (iPh), 129.6 (Ph), 129.5 (Ph), 127.8 (2 x Ph), 127.6 (2 x Ph), 88.8 (C1), 80.7 (C3), 65.2 (C1"), 51.5 (C3'), 39.3 (C7a or C3a), 38.8 (C7a or C3a), 29.6 (CH₂), 26.7 (tBu), 26.7 (C1'), 24.3 (CH₂), 24.2 (CH₂), 22.2 (CH₂), 20.8 (C4A' or C4B'), 20.3 (C4A' or C4B'), 19.2 (C-Si); HRMS [M+Na⁺] calcd for C₃₀H₄₂O₃SiNa 501.2795 found 501.2799.

3-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-yl]-3-methylbutan-2-one **46a** (81 mg, 0.169 mmol), was dissolved in THF (2 mL). TBAF (1.0 M in THF, 0.51 mL, 0.51 mmol) and AcOH (0.31 mL, 0.508 mmol) were added and the reaction stirred at RT for 16 h. The solution was diluted with Et₂O (20 mL) and washed with H₂O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue was purified by column chromatography on silica gel to yield **46** as a clear oil (32 mg, 78%). [α]^{24.6}D+12.4 (c=1.0 CHCl₃); IR (film) 3428, 2926, 2857, 1698, 1450 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.89 (1H, ddd, J=3.0, 5.5, 13.0, H-3), 3.87 (1H, d, J=3.5, H-1), 3.74 (1H, ddd, J=3.0, 6.5, 12.0, Ha-1'), 3.51 (1H, ddd, J=3.5, 3.5, 12.0, Hb-1'), 2.18 (3H, s, H-1''), 2.06-1.99 (2H, m, OH, H-7a), 1.96-1.90 (1H, m, H-3a), 1.74-1.52 (4H, m, CH₂), 1.43-1.21 (4H, m, CH₂), 1.11 (3H, s, Me), 1.09 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 212.8 (C2''), 89.3 (C1), 80.6 (C3), 63.8 (C1'), 51.5 (C3''), 39.6 (C7a), 38.0 (C3a), 29.8 (CH₂), 26.4 (C1''), 24.2 (CH₂), 23.9 (CH₂), 21.9 (CH₂), 21.3 (Me), 19.8 (Me); LC-MS (ESI⁺) m/z 263 [M+Na⁺], R_t 1.42 min [method D]; HRMS [M+Na⁺] calcd for C₁₄H₂₄O₃Na 263.1617 found 263.1617.

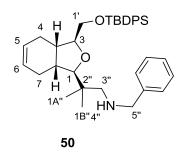
1-[(1S,3S,3aS,7aR)-3-(hydroxymethyl)-octahydro-2-benzofuran-1-yl]-3,3-dimethylbutan-2-one 47

(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)octahydroisobenzofuran-1-ol 23 (615 mg, 1.50 mmol) was dissolved in CH₂Cl₂ (15 mL) and cooled to -20 °C. BF₃.OEt₂ (578 μL, 4.50 mmol) was added and the solution was stirred for 5 min. (3,3-Dimethylbut-1-en-2loxy)trimethylsilane (797 µL, 4.50 mmol) was then added and the reaction was warmed to RT and stirred for 16 h. The reaction was diluted with CH₂Cl₂ (20 mL), and washed with H₂O (2 x 20 mL), followed by brine (20 mL). The organic layer was dried with MgSO₄. The product was isolated by column chromatography on silica gel (15% EtOAc:hexane) to yield 47a as a clear oil (483 mg, 65%). $[\alpha]^{21}_D$ +9.0 (c=1.0 CHCl₃); IR (film) 2931, 2858, 1702, 1473 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.66 (4H, m, Ph), 7.43-4.39 (6H, m, Ph), 4.30-4.25 (1H, m, H-1), 3.89-3.85 (1H, m, H-3), 3.68 (1H, dd, J=5.0, 11.0, Ha-1'), 3.61 (1H, dd, J=4.0, 11.0, Hb-1'), 2.78 (1H, dd, J=6.0, 17.0, Ha-1"), 2.53 (1H, dd, J=6.0, 17.0, Hb-1"), 2.27-2.22 (1H, m, H-7a), 1.93-1.87 (1H, m, 3a), 1.65-1.26 (8H, m, 4 x CH₂), 1.10 (9H, s, tBu), 1.08 (9H, s, tBu); ¹³C NMR (125 MHz, CDCl₃) δ 214.6 (C-3"), 135.6 (2 x Ph), 134.8 (2 x Ph), 133.7 (iPh), 133.5 (iPh), 129.6 (Ph), 129.6 (Ph), 127.7 (2 x Ph), 127.6 (2 x Ph), 82.3 (C3), 78.4 (C1), 65.0 (C1'), 44.1 (C3"), 43.1 (C3a), 42.7 (C1"), 38.3 (C7a), 26.1 (tBu), 25.9 (tBu), 25.9 (CH₂), 23.3 (CH₂), 23.1 (CH₂), 22.6 (CH₂), 19.3 (Si-C), HRMS [M+Na⁺] calcd for C₃₁H₄₄O₃SiNa 515.2957 found 515.2938. 1-[(1S,3S)-3-{[(tertbutyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-yl]-3,3dimethylbutan-2-one 47a (467mg, 0.949 mmol) was dissolved in THF (10 mL). The solution was cooled to 0 °C under N2, then TBAF (2.8 mL, 1.0 M in THF, 2.8 mmol) and AcOH (1.7 mL, 2.8 mmol) was added by syringe. The reaction was stirred for 16 h at RT before diluting with Et₂O (30 mL). The reaction mixture was washed with H₂O (30 mL) and extracted into Et₂O (2 x 30 mL). The combined organic layers were dried with MgSO₄ and solvents were removed in vacuo to yield the crude product as a clear oil. This was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield 47 as a clear oil (161 mg, 67%). $[\alpha]^{22}_D$ + 17.6 (c=2.60 CH₂Cl₂); IR (film) 3414, 3075, 3026, 2975, 2841, 1700, 1478 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.26-4.21 (1H, m, H-1), 3.93-3.89 (1H, m, H-3), 3.76-3.71 (1H, m, Ha-1'), 3.49-3.44 (1H, m, Hb-1'), 2.71 (1H, dd, J=7.5, 15.5, Ha-1"), 2.63 (1H, dd, J=5.5, 15.5, Hb-1"), 2.24-2.18 (1H, m, H-3a), 1.95-1.89 (1H, m, H-7a), 1.79-1.71 (1H, m, CH₂), 1.68-1.51 $(3H, m, 3 \times CH_2), 1.38-1.35 (3H, m, 3 \times CH_2) 1.35-1.26 (1H, m, CH_2), 1.16 (9H, s, tBu); ^{13}C NMR$ (125 MHz, CDCl₃) δ 82.0 (C3), 79.3 (C1), 63.8 (C1'), 44.3 (C3''), 43.7 (C1''), 42.0 (C7a), 37.0 (C3a), 26.5, (CH₂), 26.4 (^tBu), 25.1 (CH₂), 23.6 (CH₂), 22.5 (CH₂), missing quaternary C=O; LC-MS (ESI⁺) m/z 255 [M+Na⁺], R_t 1.52 min [method E]; HRMS [M+Na⁺] calcd for C₁₅H₂₆O₃Na 277.1779; found 217.1774.

1-[(1S,3S,3aS,7aR)-3-(hydroxymethyl)-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-3,3-imethylbutan-2-one 48

(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol 11 (100 mg, 0.245 mmol) was dissolved in CH₂Cl₂ (2.8 mL) and cooled to -20 °C. BF₃.OEt₂ (94 μL, 0.735 mmol) was added and the solution was stirred for 5 min. (3,3-Dimethylbut-1en-2-loxy)trimethylsilane (126 µL, 0.735 mmol) was then added and the reaction was warmed to RT and stirred for 16 h. The reaction was diluted with CH₂Cl₂ (20 mL), and washed with H₂O (2 x 20 mL), followed by brine (20 mL). The organic layer was dried with MgSO₄. The solvents were removed in vacuo and the resultant crude residue was analysed by ¹H NMR and found to be a mixture of diastereoisomers (85:15). The major isomer was isolated by column chromatography on silica gel (10% EtOAc:hexane) to yield 48a as a clear oil (85 mg, 62%). $[\alpha]^{21}_D$ +9.0 (c=1.0 CHCl₃); IR (film) 2931, 2858, 1702, 1473 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.65 (4H, m, Ph), 7.47-4.36 (6H, m, Ph), 5.77-5.67 (2H, m, H-5, H-6), 4.21 (1H, dd, J=6.0, 12.0, H-1), 3.79 (2H, m, H-3, Ha-1'), 3.71-3.66 (1H, m, Hb-1'), 2.84 (1H, dd, J=6.5, 17.0, Ha-1"), 2.59 (1H, dd, J=6.0, 17.0, Hb-1"), 2.48-2.41 (1H, m, H-3a), 2.35-2.22 (2H, m, Ha-4, Ha-7), 2.18-2.15 (1H, m, H-7a), 2.12-2.06 (2H, m, Hb-4, Hb-7), 1.11 (9H, s, tBu), 1.08 (9H, s, tBu); 13 C NMR (125 MHz, CDCl₃) δ 135.6 (2 x Ph), 134.8 (2 x Ph), 133.6 (iPh), 133.5 (iPh), 129.7 (Ph), 129.6 (Ph), 127.7 (2 x Ph), 127.7 (2 x Ph), 125.5 (C5 or C6), 125.2 (C5 or C6), 83.8 (C3), 80.0 (C1), 65.0 (C1'), 44.2 (C3'), 42.4 (C1''), 40.1 (C7a), 35.7 (C3a), 26.9 (tBu), 26.1 (tBu), 24.9 (C4 or C5), 24.6 (C4 or C7), 19.3 (Si-C), missing quaternary C=O; LC-MS (ESI⁺) m/z 513 [M+Na⁺], R_t 2.58 min [method E]; HRMS [M+Na⁺] calcd for C₃₁H₄₂O₃SiNa 513.2795 found 513.2808; Found: C, 75.81; H, 8.73%; C₃₁H₄₂O₃Si requires: C, 75.87; H, 8.73%.

1-((1S,3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzo furan-1-yl)-3,3-dimethylbutan-2-one **48a** (216 mg, 0.485 mmol) was dissolved in THF (10.0 mL). The solution was cooled to 0 °C under N₂, then TBAF (1.45 mL, 1.0 M in THF, 1.45 mmol) was added by syringe. The reaction was stirred for 16 h at RT before quenching with


Et₂O (30 mL). The reaction mixture was washed with H₂O (30 mL) and extracted into Et₂O (2 x 30 mL). The combined organic layers were dried with MgSO₄ and solvents were removed *in vacuo* to yield the crude product as a clear oil. This was purified by column chromatography on silica gel (10% EtOAc:hexane) to yield **48** as a clear oil (84 mg, 67%). [α]²²_D +17.6 (c=2.60 CH₂Cl₂); IR (film) 3418, 3026, 2967, 2907, 1700, 1478 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.77-5.67 (2H, m, H-5, H-6), 4.16 (1H, dd, J=6.0, 12.0, H-1), 3.80-3.75 (2H, m, H-3, Ha-1'), 3.52-3.47 (1H, m, Hb-1'), 2.73 (1H, dd, J=6.5, 17.0, Ha-1''), 2.59 (1H, dd, J=6.0, 17.0, Hb-1''), 2.42-2.34 (2H, m, H-3a, OH), 2.31-2.27 (2H, m, Ha-4, Hb-7), 2.10-2.03 (1H, m, H-7a), 1.97-1.88 (2H, m, Hb-4, Hb-7); ¹³C NMR (125 MHz, CDCl₃) δ 125.5 (C5 or C6), 125.1 (C5 or C6), 83.8 (C3), 81.4 (C1), 63.2 (C1'), 44.4 (C3'), 42.2 (C1''), 40.6 (C7a), 35.8 (C3a), 24.9 (C4 or C5), 23.6 (C4 or C7), missing quaternary C=O; LC-MS (ESI⁺) m/z 275 [M+Na⁺], R_t 1.47 min [method E].

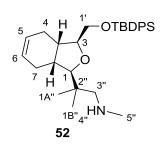
2-((1R,3S,3aS,7aR)-3-(hydroxymethyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)-2-methylpropan-1-ol 49

2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2benzofuran-1-yl]-2-methylpropanal 44 (110 mg, 0.239 mmol) was dissolved in THF:MeOH (4:1 ratio, 2.5 mL) and cooled to 0 °C. NaBH₄ (27 mg, 0.717 mmol) was added and the solution stirred for 1.5 h. The solution was diluted with Et₂O (10 mL), then washed with H₂O (10 mL) and brine (10 mL). The organic layer was then dried with MgSO₄. The solvents were removed in vacuo to yield **49a** as a clear oil (93 mg, 82%). $[\alpha]^{22}$ _D -8.4 (c=1.0 CHCl₃); IR (film) 3424, 1472 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 7.76-7.67 (4H, m, Ph), 7.50-7.37 (6H, m, Ph), 5.88-5.74 (2H, m, H-5, H-6), 3.83 (1H, dd, J=5.0, 7.0, Ha-1'), 3.70-3.66 (2H, m, Hb-1', H-3), 3.61 (1H, d, J=5.0, H-1), 3.51-3.47 (2H, m, H-3"), 3.12 (1H, t, J=7.0, OH), 2.33-2.24 (2H, m, H-3a, H-7a), 2.24-2.14 (2H, m, Ha-4, Ha-7), 1.97-1.90 (1H, Hb-4, or Hb-7), 1.86-1.79 (1H, Hb-4, or Hb-7), 1.09 (9H, s, t Bu), 1.01 (3H, s, Me), 0.90 (3H, s, Me); 13 C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.6 (2 x Ph), 133.4 (iPh), 133.4 (iPh), 129.7 (Ph), 129.6 (Ph), 127.7 (4 x Ph), 127.1 (C5 or C6), 126.7 (C5 or C6), 93.4 (C1), 83.7 (C3), 72.4 (C1'), 64.5 (C3"), 37.9 (C2"), 37.8 (C3a or C7a), 37.4 (C3a or C7a), 27.7 (C4 or C7), 26.8 (tBu), 23.9 (C4 or C7), 22.7 (Me), 19.2 (Si-C), 19.0 (Me); LC-MS (ESI⁺) m/z 487 [M+Na⁺], R_t 3.12 min [method E]; HRMS [M+Na⁺] calcd for C₂₉H₄₀O₃SiNa 487.2639 found 487.2637; Found: C, 75.07; H, 8.64%; C₂₉H₄₀O₃SiNa requires: C, 74.95; H, 8.68%.

2-[(1R,3S,3aS,7aR)-3-{[(*tert*-butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropan-1-ol **49a** (80 mg, 0.172 mmol) was dissolved in THF (0.5 mL) and TBAF (1.0 M in THF, 1.70 mL) was added. The reaction was stirred at RT for 16 h. The reaction mixture was then diluted with Et₂O (5 mL) and washed with H₂O (5 mL x 2). Solvents were removed *in vacuo* and the crude residue was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **49** as a clear oil (16 mg, 41%). [α]²²_D-8.4 (c=1.0 CHCl₃); ¹H NMR (500 MHz, CDCl₃) 5.85-5.78 (2H, m, H-5, H-6), 3.84 (1H, dd, J=5.0, 7.0, Ha-1'), 3.71-3.68 (1H, m, H-1), 3.64-3.60 (2H, m, Hb-1', H-3), 3.50 (1H, d, J=11.0, Ha-3"), 3.46 (1H, d, J=11.0, Hb-3"), 2.31-2.17 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.98-1.84 (2H, Hb-4, Hb-7), 0.94 (3H, s, Me), 0.91 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ, 126.7 (C5 or C6), 126.6 (C5 or C6), 93.2 (C1), 83.6 (C3), 71.7 (C1'), 63.0 (C3"), 38.1 (C2"), 37.3 (C3a or C7a), 36.8 (C3a or C7a), 27.8 (C4 or C7), 23.6 (C4 or C7), 22.2 (Me), 19.3 (Me), LC-MS (ESI†) *m/z* 227 [M+Na†], R_t 1.38 min [method E]; HRMS [M+Na†] calcd for C₁₃H₂₂O₃ Na 249.1461 found 249.1463.

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}(benzyl)amine 50

2-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal **44** (107 mg, 0.232 mmol) and benzyl amine (25 μ M, 0.232 mmol) was dissolved in 1,2-dichloroethane (3.0 mL). Sodium triacetoxyborohydride (68 mg, 0.324 mmol) was then added and the solution stirred at RT for 3 h. The reaction mixture was quenched by adding aqueous sat. NaHCO₃ (10 mL), and the


solution was extracted with EtOAc. The organic extract was dried (MgSO₄), and the crude residue was purified by ionic exchange chromatography on acidic resin (5 g) to yield **50** as a clear oil (67 mg, 52%). [α]^{21.9}_D-7.0 (c=1.0 CH₂Cl₂); IR (film) 3028, 2930, 2856, 1471, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.69 (4H, m, Ph), 7.46-7.20 (11H, m, Ph), 5.83-5.74 (2H, m, H-5, H-6), 3.89-3.67 (5H, m, H-1, H-1', H-3''), 3.57-3.54 (1H, m, H-3), 2.62 (1H, d, J=12.0, Ha-5''), 2.44 (1H, d, J=12.0, Hb-5''), 2.23-2.11 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.97-1.84 (2H, m, Hb-4, Hb-7), 1.07 (9H, s, tBu), 0.93 (3H, s, Me), 0.92 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 135.7 (Ph), 135.6 (Ph), 133.8 (iPh), 133.6 (iPh), 129.6 (Ph), 129.5 (Ph), 128.2 (2 x Ph), 128.6 (2 x Ph), 127.62 (4 x Ph), 127.0 (2 x Ph), 126.8 (C5 or C6), 126.7 (C5 or C6), 91.3 (C3), 83.3 (C1), 65.3 (C1'), 58.5 (C3''), 54.7 (C5''), 38.3 (C3a or C7a), 36.9 (C3a or C7a), 28.0 (C4 or C7), 26.8 (tBu), 24.0 (C2''), 22.9 (C4 or C7), 21.2 (Me), 19.2 (Me); LC-MS (ESI⁺) m/z 553 [M+Na⁺], R_t 2.37 min [method D]; HRMS [M+Na⁺] calcd for C₃₆H₄₈NO₂Si 554.3450 found 554.3452.

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}[(3-methoxyphenyl)methyl]amine 51

2-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal **44** (145 mg, 0.315 mmol) and (3-methoxyphenyl)methanamine (40 μ M, 0.315 mmol) was dissolved in 1,2-dichloroethane (3.0 mL). Sodium triacetoxyborohydride (86 mg, 0.441 mmol) was then added and the solution stirred at RT for 3 h. The reaction mixture was quenched by adding aqueous sat. NaHCO₃ (10 mL), and the

solution was extracted with EtOAc. The EtOAc extract was dried (MgSO₄), and the crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **51** as a clear oil (115 mg, 62%). [α]^{24.4}D -33.7 (c=1.0 CHCl₃); IR (film) 2931, 2857, 1600, 1586, 1488 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.70 (4H, m, Ph), 7.45-7.36 (6H, m, Ph), 7.21 (1H, dd, J=8.0, 8.0, H-8"), 6.96-6.89 (2H, m, H-9", H-11"), 6.84-6.77 (1H, m, H-7"), 5.83-5.76 (2H, m, H-5, H-6), 3.85-3.68 (8H, m, H-1', H-5", OMe, H-3), 3.58-3.55 (1H, d, J=4.0, H-1), 2.60 (1H, d, J=11.0, Ha-3"), 2.42 (1H, d, J=11.0, Hb-3"), 2.43-2.13 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.97-1.86 (2H, Hb-4, Hb-7), 1.07 (9H, s, tBu), 0.93 (3H, s, Me), 0.93 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 159.7 (C8"), 142. 7 (C6"), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.7 (iPh), 133.6 (iPh), 129.5 (Ph), 129.2 (C10"), 127.6 (4 x Ph), 127.0 (C5 or C6), 126.8 (C5 or C6), 120.3 (C11"), 113.3 (C7" or C9"), 112.4 (C7" or C9"), 91.3 (C1), 83.3 (C3), 65.4 (C1'), 58.3 (C3"), 55.2 (C12"), 54.0 (C5"), 38.2 (C3a or C7a), 37.8 (C2"), 36.9 (C3a or C7a), 28.0 (C4 or C7), 26.8 (tBu), 24.1 (C4 or C7), 22.9 (Me), 21.9 (Me), 19.2 (Si-C); LC-MS (ESI[†]) *m/z* 584.37 [M+H[†]], R_t 2.33 min [method D]; HRMS [M+H[†]] calcd for C₃₇H₅₀NO₃Si 584.3554 found 584.3568.

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}(methyl)amine 52

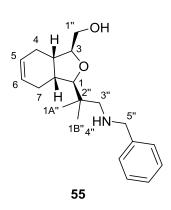
2-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal **44** (145 mg, 0.315 mmol) and methylamine (25 μ M, 0.315 mmol) was dissolved in 1,2-dichloroethane (3.0 mL). Sodium triacetoxyborohydride (86 mg, 0.441 mmol) was added and the solution stirred at RT for 3 h. The reaction mixture was quenched by adding aqueous sat. NaHCO₃ (10 mL), and the solution was

extracted with EtOAc. The EtOAc extract was dried over MgSO₄, and the crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **52** as a clear oil (92 mg, 64%). [α]^{24.4}_D-28.5 (c=0.41 CHCl₃); IR (film) 2931, 2857, 1472, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.68 (4H, m, Ph), 7.45-7.36 (6H, m, Ph), 5.83-5.76 (2H, m, H-5, H-6), 3.79

(1H, dd, J=4.0, 11.0, Ha-1'), 3.75-3.68 (2H, m, Hb-1', H-3), 3.55-3.51 (1H, d, J=4.0, H-1), 2.59 (1H, d, J=11.5, Ha-3''), 2.42 (3H, s, H-5''), 2.37 (1H, d, J=11.5, Hb-3''), 2.24-2.14 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.99-1.85 (2H, m, Hb-4, Hb-7), 1.06 (9H, s, tBu), 0.93 (3H, s, Me), 0.91 (3H, s, Me); 13 C NMR (125 MHz, CDCl₃) δ 135.7 (2 x Ph), 135.6 (2 x Ph), 133.8 (iPh), 133.6 (iPh), 129.6 (Ph), 129.5 (Ph), 127.6 (2 x Ph), 127.0 (C5 or C6), 126.8 (C5 or C6), 91.4 (C1), 83.3 (C3), 65.2 (C1'), 61.9 (C3''), 38.2 (C3a or C7a), 37.6 (C2''), 37.6 (C5''), 36.9 (C3a or C7a), 28.1 (C4 or C7), 26.8 (tBu), 24.0 (C4 or C7), 23.1 (Me), 21.1 (Me), 19.2 (Si-C); LC-MS (ESI+) m/z 478 [M+H+], R_t 2.28 min [method D]; HRMS [M+H+] calcd for $C_{30}H_{44}NO_2$ 478.3135 found 478.3114.

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}(propyl)amine 53

2-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal **44** (145 mg, 0.315 mmol) and n-propylamine (25 μ M, 0.315 mmol) was dissolved in 1,2-dichloroethane (3.0 mL). Sodium triacetoxyborohydride (86 mg, 0.441 mmol) was added and the solution stirred at RT for 3 h. The reaction mixture was quenched by adding aqueous sat. NaHCO₃ (10 mL), and the solution was


extracted with EtOAc. The EtOAc extract was dried (MgSO₄), and the crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **53** as a clear oil (92 mg, 62%). [α]^{24.4}_D -21.3 (c=0.5 CHCl₃); IR (film) 2956, 2857, 1472 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.68 (4H, m, Ph), 7.46-7.36 (6H, m, Ph), 5.82-5.74 (2H, m, H-5, H-6), 3.82-3.74 (3H, m, H-1', H-3), 3.56 (1H, d, J=4.0, H-1), 2.63-2.50 (3H, m, H-5", Ha-3"), 2.42 (1H, d, J=11.5, Hb-3"), 2.25-2.13 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 2.00-1.84 (2H, m, Hb-4, Hb-7), 1.50 (2H, ddddd, J=7.0, 7.0, 7.0, 7.0, 7.0, H-6"), 1.07 (9H, s, tBu), 0.91-0.89 (9H, m, Me, Me, H-7"); ¹³C NMR (125 MHz, CDCl₃) δ 135.6 (4 x Ph), 133.7 (iPh), 133.6 (iPh), 129.6 (Ph), 129.5 (Ph), 127.6 (4 x Ph), 127.0 (C5 or C6), 126.8 (C5 or C6), 91.5 (C1), 83.4 (C3), 65.2 (C1'), 59.0 (C3"), 52.8 (C5"), 38.3 (C3a or C4a), 37.6 (C2), 36.9 (C3a or C4a), 28.0 (C4 or C7), 26.0 (tBu), 24.0 (C4 or C7), 22.9 (C6"), 22.9 (C1A" or C1B"), 21.1 (C1A" or C1B"), 19.2 (Si-C), 11.7 (C7"); LC-MS (ESI+) m/z 506 [M+H+], Rt 2.30 min [method D]; HRMS [M+H+] calcd for C₃₂H₄₈NO₂Si Na 506.3449 found 506.3464.

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}(2-methoxyethyl)amine 54

 $2\text{-}[(1R,3S,3aS,7aR)\text{-}3\text{-}\{[(\textit{tert}\text{-}Butyldiphenylsilyl)\text{oxy}]\text{methyl}\}\text{-}1,3,3a,4,7,7a\text{-}hexahydro-}2\text{-}benzofuran-}1\text{-}yl]\text{-}2\text{-}methylpropanal}$ **44** (145 mg, 0.315 mmol) and methoxyethyl amine (27 $\mu\text{M},$ 0.315 mmol) was dissolved in 1,2-dichloroethane (3.0 mL). Sodium triacetoxyborohydride (86 mg, 0.441 mmol) was added and the solution stirred at RT for 3 h. The reaction mixture was quenched by adding aqueous sat. NaHCO3 (10 mL), and the

solution was extracted with EtOAc. The EtOAc extract was dried (MgSO₄), and the crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **54** as a clear oil (92 mg, 56%). [α]^{24.3}_D-28.6 (c=1.0 CHCl₃); IR (film) 2930, 2857, 1472, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.65 (4H, m, Ph), 7.44-7.36 (6H, m, Ph), 5.82-5.74 (2H, m, H-5, H-6), 3.80-3.66 (3H, m, H-1', H-3), 3.56 (1H, d, J=4.0, H-1), 3.48 (2H, dd, J=5.5, 5.5, H-6"), 3.30 (3H, s, H-8"), 2.81-2.75 (2H, m, H-5"), 2.60 (1H, d J=11.5, Ha-3"), 2.42 (1H, d, J=11.5, Hb-3"), 2.25-2.09 (4H, m, H-3a, H-7a, Ha-4, Ha-7), 1.99-1.79 (2H, m, Hb-4, Hb-7), 1.05 (9H, s, tBu), 0.91 (3H, s, Me), 0.90 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 135.6 (4 x Ph), 133.7 (iPh), 133.6 (iPh), 129.6 (Ph), 129.5 (Ph), 127.6 (4 x Ph), 127.0 (C5 or C6), 126.8 (C5 or C6), 91.2 (C1), 83.2 (C3), 72.0 (C6"), 65.2 (C1'), 58.9 (C3" or C8"), 58.7 (C3" or C8"), 50.4 (C5"), 38.3 (C3a or C7a), 37.8 (C2"), 36.8 (C3a or C7a), 28.0 (C4 or C7), 26.8 (tBu), 24.1 (C4 or C7), 22.3 (Me), 21.2 (Me), 19.2 (Si-C); LC-MS (ESI+) m/z 522 [M+H+], Rt 2.30 min [method D]; HRMS [M+H+] calcd for C₃₂H₄₈NO₃Si 522.3398 found 522.3409; Found: C, 73.75; H, 9.00%; C₃₂H₄₇NO₃Si requires: C, 73.66; H, 9.08%.

[(1S,3R,3aR,7aS)-3-[1-(benzylamino)-2-methylpropan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol 55

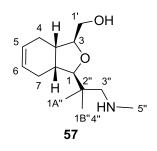
 $\{2-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert-b} uty|dipheny|sily|)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-$

methylpropyl}(benzyl)amine **50** (50 mg, 0.090 mmol) was dissolved in THF (1 mL). TBAF (1.0 M in THF, 0.27 mL, 0.27 mmol) was added and the reaction stirred at 0°C for 6 h. The solution was diluted with Et₂O (20 mL) and washed with H₂O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **55** as a clear oil (18 mg, 63%). $[\alpha]^{21}_D$ -10.5

(c=1.0 CHCl₃); IR (film) 3319, 2930, 2839, 1495, 1453 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.34 (4H, m, Ph), 7.29-7.24 (1H, m, Ph), 5.81-5.74 (2H, m, H-5, H-6), 3.86-3.81 (2H, m, Ha-1', Ha-5''), 3.73 (1H, d, J=13.0, Hb-5''), 3.68 (1H, ddd, J=3.0, 3.0, 8.5, H-3), 3.56-3.52 (2H, m, Hb-1', H-1), 2.61 (1H, d, J=12.0, Ha-3''), 2.38 (1H, d, J=12.0, Hb-3''), 2.34-2.15 (4H, m, H-7a, H-3a, Ha-4, Ha-7), 1.97-1.83 (2H, m, Hb-4, Hb-7), 1.00 (3H, s, Me), 0.83 (3H, s, Me); 13 C NMR

(125 MHz, CDCl₃) δ 128.4 (4x Ph), 128.3 (Ph), 127.2 (Ph), 126.5 (C5 or C6), 126.4 (C5 or C6), 92.7 (C1), 83.6 (C3), 62.5 (C1'), 57.3 (C3''), 24.5 (C5''), 37.5 (C2''), 37.0 (C3a or C7a), 36.2 (C3a or C7a), 27.9 (C4 or C7), 23.9 (C4 or C7), 23.8 (Me), 23.2 (Me); LC-MS (ESI⁺) m/z 316 [M+H⁺], R_t 1.73 min [method D]; HRMS [M+H⁺] calcd for C₂₀H₃₀NO₂ 316.2271 found 316.2278.

[(1S,3R,3aR,7aS)-3-(1-{[(3-Methoxyphenyl)methyl]amino}-2-methylpropan-2-yl)-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol 56

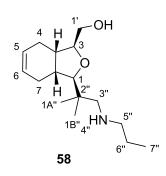

{2-[(1R,3S,3aS,7aR)-3-{[(tert-

Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}[(3-

methoxyphenyl)methyl]amine **51** (69 mg, 0.118 mmol), was dissolved in THF (1.3 mL). TBAF (1.0 M in THF, 0.35 mL, 0.35 mmol) was added and the reaction stirred at 0 °C for 6 h. The solution was diluted with Et_2O (20 mL) and washed with H_2O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue

was purified by ionic exchange chromatography on acidic resin (2 g) to yield **56** as a clear oil (26 mg, 63%). [α]²¹_D -6.7 (c=2.0 CHCl₃); IR (film) 2938, 1600, 1489, 1466, 1252 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.24 (1H, m, Ph), 7.00-6.92 (2H, m, Ph), 6.85-6.80 (1H, m, Ph), 5.82-5.77 (2H, m, H-5, H-6), 3.89-3.79 (6H, m, Ha-1', H-3''), 3.76 (3H, s, H-13''), 3.70-3.65 (1H, m, H-3), 3.57-3.52 (2H, m, Hb-1', H-1), 2.66 (1H, d, J=12.0, Ha-5''), 2.42 (1H, d, J=12.0, Hb-5''), 2.32-2.14 (4H, m, H-3a, H-7a, Ha-4, Hb-7), 1.96-1.83 (2H, m, H-4, H-7), 1.01 (3H, s, Me), 0.92 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (C8"), 128.9 (Ph), 126.1 (C5 or C6), 125.8 (C5 or C6), 120.8 (Ph), 119.9 (Ph), 113.5 (Ph), 113.1 (Ph), 92.3 (C1), 83.2 (C3), 61.9 (C1'), 56.5 (C5"), 54.7 (C13"), 53.6 (C3"), 36.9 (C2"), 36.5 (C3a or C7a), 35.8 (C3a or C7a), 27.4 (C4 or C7), 23.3 (C4 or C7), 23.0 (Me), 22.3 (Me); LC-MS (ESI+) m/z 346 [M+H+], R_t 1.53 min [method D]; HRMS [M+H+] calcd for C₂₁H₃₂NO₃ 346.2376 found 346.2386.

[(1S,3R,3aR,7aS)-3-[2-Methyl-1-(methylamino)propan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol 57



{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-

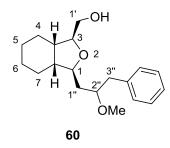
methylpropyl}(methyl)amine 52 (84 mg, 0.176 mmol), was dissolved in THF (2 mL). TBAF (1.0 M in THF, 0.53 mL, 0.53 mmol) was added and the reaction stirred at 0 °C for 4 h. The solution was diluted with

Et₂O (20 mL) and washed with H₂O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue was purified by ionic exchange chromatography on acidic resin (2 g) to yield **57** as a clear oil (25 mg, 60%). [α]²¹_D -16.1 (c=1.0 CHCl₃); IR (film) 3327, 3027, 2932, 1472, 1443 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.83-5.72 (2H, m, H-5, H-6), 3.86 (1H, dd, J=2.5, 12.0, Ha-1'), 3.68 (1H, ddd, J=2.5, 2.5, 9.0, H-3), 3.54-3.50 (2H, m, Hb-1', H-1), 2.58 (1H, d, J=12.0, Ha-3''), 2.36 (3H, s, H-5''), 2.35-2.16 (5H, m, Hb-3'', H-3a, H-7a, Ha-4, Ha-7), 1.98-1.82 (2H, m, Hb-4, Hb-7), 1.04 (3H, s, Me, 0.87 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 126.4 (C5 or C6), 126.1 (C5 or C6), 93.1 (C1), 83.7 (C3), 62.1 (C1'), 60.5 (C3''), 37.5 (C2''), 27.1 (C7a or C3a), 36.9 (C5''), 35.0 (C3a or C7a), 28.0 (C4 or C7), 24.4 (Me), 23.9 (C4 or C7), 23.8 (Me); LC-MS (ESI⁺) m/z 240 [M+H⁺], R_t 1.43 min [method D]; HRMS [M+H⁺] calcd for C₁₄H₂₆NO₂ 240.1958 found 240.1967.

[(1S,3R,3aR,7aS)-3-[2-methyl-1-(propylamino)propan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol 58

{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-

methylpropyl)(propyl)amine **53** (84 mg, 0.144 mmol), was dissolved in THF (2 mL). TBAF (1.0 M in THF, 0.43 mL, 0.43 mmol) was added and the reaction stirred at 0 °C for 4 h. The solution was diluted with Et_2O (20 mL) and washed with H_2O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue was purified by ionic exchange chromatography on


acidic resin (2 g) to yield **58** as a clear oil (36 mg, 93%). [α]²¹_D -25.6 (c=1.0 CHCl₃); IR (film) 3313, 3027, 2931, 2872, 1467 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.83-5.74 (2H, m, H-5, H-6), 3.88 (1H, dd, J=2.0, 12.0, Ha-1'), 3.68 (1H, ddd, J=2.0, 2.0, 9.0, H-3), 3.57-3.52 (2H, m, Hb-1', H-1), 2.69 (1H, d, J=12.0, Ha-3''), 2.66-2.59 (1H, m, Ha-5''), 2.55-2.49 (1H, m, Hb-5''), 2.40 (1H, d, J=12.0, Hb-3''), 2.32-2.17 (4H, m, Ha-4, Ha-7, H-3a, H-7a), 1.98-1.83 (2H, m, Hb-4, Hb-7), 1.67-1.50 (2H, m, H-6''), 1.06 (3H, s, Me), 0.94 (3H, s, Me), 0.92 (3H, t, J=7.0, J-7''); ¹³C NMR (125 MHz, CDCl₃) δ 126.7 (C5 or C6), 126.0 (C5 or C6), 93.7 (C1), 84.1 (C3), 61.2 (C1'), 58.8 (C3''), 51.7 (C5''), 37.2 (C3a or C7a), 36.9 (C2''), 35.5 (C3a or C7a), 28.0 (C4 or C7), 24.5 (Me), 23.6 (C4 or C7), 21.6 (Me), 20.4 (C6''), 11.4 (C7''); LC-MS (ESI⁺) m/z 268 [M+H⁺], R_t 1.55 min [method D]; HRMS [M+H⁺] calcd for C₁₆H₃₁NO₂ 268.2271 found 268.2273.

[(1S,3R,3aR,7aS)-3-{1-[(2-Methoxyethyl)amino]-2-methylpropan-2-yl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol 59

 $\{2-[(1R,3S,3aS,7aR)-3-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}{2-methoxyethyl)amine$ **54**(94 mg, 0.180 mmol), was dissolved in THF (2 mL). TBAF (1.0 M in THF, 0.54 mL, 0.54 mmol) was added and the reaction stirred at 0 °C for 6 h. The solution was diluted with Et₂O (20 mL) and washed with H₂O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The crude residue was purified by ionic exchange chromatography on

acidic resin (2 g) to yield **59** as a clear oil (25 mg, 49%). [α]²¹_D -21.2 (c=1.0 CHCl₃); IR (film) 3331, 2875, 2839, 1457, 1097 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.81-5.76 (2H, m, H-5, H-6), 3.87 (1H, dd, J=2.0, 12.0, Ha-1') 3.69 (1H, ddd, J=3.0, 3.0, 9.0, H-3), 3.57-3.51 (4H, Hb-1', H-1, H-6"), 3.38 (3H, s, H-8"), 2.77-2.72 (2H, m, H-5"), 2.66 (1H, d, J=12.0, Ha-3"), 2.43 (1H, d, J=12.0, Hb-3"), 2.35-2.31 (1H, m, H-3a), 2.30-2.17 (3H, m, Ha-4, Ha-7, H-7a), 1.98-1.84 (2H, m, Hb-4, Hb-7), 1.06 (3H, s, Me), 0.92 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 126.0 (C5 or C6), 125.7 (C5 or C6), 92.9 (C3), 83.3 (C1), 70.6 (C6"), 61.8 (C1'), 58.3 (C8"), 57.9 (C3"), 49.6 (C5"), 36.9 (C2"), 36.6 (C7a), 35.4 (C3a), 27.5 (C4 or C7), 23.6 (Me), 23.4 (C4 or C7), 23.2 (Me); LC-MS (ESI⁺) m/z 284 [M+H⁺], R_t 1.52 min [method D]; HRMS [M+H⁺] calcd for C₁₆H₃₀NO₃ 284.2220 found 284.2230; Found: C, 67.90; H, 10.36%; C₁₆H₂₉NO₃ requires: C, 67.81; H, 10.31%.

[(1S,3S,3aR,7aS)-3-(2-methoxy-3-phenylpropyl)-octahydro-2-benzofuran-1-yl]methanol 60

Trimethyl(phenyl)silane (0.155 mL, 0.903 mmol), Ph_3PAuCl (11 mg, 0.023 mmol) and Selectfluor (346 mg, 0.903 mmol) was added to a solution of ((1S,3S,3aR,7aS)-3-allyloctahydroisobenzofuran-1-yl)methanol **25** (196 mg, 1.000 mmol) in MeOH:MeCN (1:5, 4.8 mL) and heated to 70 °C for 5 h. The reaction was the cooled to RT and TBAF (1.0 M in THF, 1.35 mL, 1.35 mmol) was added. The resultant solution was stirred at RT

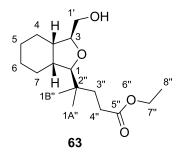
for 16 h. The reaction mixture was then diluted with Et₂O (10 mL) and washed with H₂O (10 mL x 2). Solvents were removed *in vacuo* and the crude residue was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **60** as a mixture of diastereoisomers (39 mg, 29%). IR (film) 3406, 3028, 2926, 1451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.27 (2H, m, Ph), 7.25-7.20 (3H, m, Ph), 4.00 (0.8H, ddd, J=4.0, 4.0, 8.5, H-1), 3.93 (0.2H, ddd, J=3.5, 3.5, 8.5, H-3), 3.88-3.84 (0.8H, m, H-3), 3.80 (0.2H, ddd, J=4.0, 4.0, 10.0, H-1), 3.78 (0.2H, dd, J=3.0, 11.5, Ha-1'), 3.66-3.63 (0.8H, m, H-2''), 3.60-3.54 (1H, m, Ha-1', H-2''), 3.48-3.41 (0.2H, m, Hb-1'), 3.42 (2.4H, s, OMe), 3.36 (0.6H, s, OMe), 3.30-3.23 (0.8H, m, Hb-1'), 2.99 (0.8H, dd, J=5.5, 13.5, Ha-3''), 2.91 (0.2H, dd, J=5.5, 13.5, Ha-3''), 2.75 (0.2H, dd, J=7.0, 13.5, Hb-3''), 2.69 (0.8H, dd, J=7.5, 14.0, Hb-3''), 2.35-2.28 (0.2H, m, H-3a),

2.08-1.98 (0.8H, m, H-3a), 1.85-1.77 (1H m, H-7a), 1.68-1.24 (10H, m, H-4, H-5. H-6, H-7, H-1"); 13 C NMR (125 MHz, CDCl₃) δ **MAJOR**: 139.3 (iPh), 130.3 (2 x Ph), 129.1 (2 x Ph), 127.0 (Ph), 82.7 (C3), 80.6 (C1), 80.5 (C2"), 65.0 (C1'), 58.1 (OMe), 44.4 (C7a), 41.5 (C1"), 40.8 (C3"), 38.3 (C3a), 27.2 (CH₂), 26.1 (CH₂), 24.3 (CH₂), 23.4 (CH₂), **MINOR**: 139.0 (iPh), 130.1 (2 x Ph), 129.0 (2 x Ph), 126.9 (Ph), 83.1 (C3), 82.1 (C2"), 82.5 (C1), 63.6 (C1'), 57.5 (OMe), 44.6 (C7a), 41.1 (C3"), 40.4 (C1"), 36.8 (C3a), 27.7 (CH₂), 25.5 (CH₂), 24.8 (CH₂), 22.6 (CH₂); LC-MS (ESI⁺) m/z 327 [M+Na⁺], R_t 1.52 min [method E].

Ethyl (2E)-4-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate 61

NaH (60 mg, 60% w/w mineral oil, 1.519 mmol) was added to THF (5 mL) to form a suspension. Triethylphosphonate (370 μ L, 1.870 mmol) was added dropwise followed by a solution of 2-[(1R,3S,3aS,7aR)-3-[(tert-butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropanal **44** (469 mg, 1.167 mmol) in THF (7 mL). The reaction was stirred at RT for 16 h. The reaction was then diluted in Et₂O (50 mL), washed with H₂O (50 mL x 2) and brine (50 mL). The combined

aqueous layers were extracted into CH_2Cl_2 , and the organic layers dried over MgSO₄. Solvents were removed *in vacuo* to yield the crude product as a clear oil (660 mg). The product was purified by column chromatography on silica gel (5% EtOAc:hexane) to yield **61** as a clear oil (361 mg, 58%). $[\alpha]^{24.7}_D$ -22.9 (c=1.0 CHCl₃); IR (film) 2931, 2858, 1716 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.76-7.69 (4H, m, Ph), 7.47-7.37 (6H, m, Ph), 7.03 (1H, d, J=16.0, H-3"), 5.81 (1H, d, J=16.0, H-4"), 5.80-5.77 (2H, m, H-5, H-6), 4.19 (2H, dq, J= 1.5, 7.0, H-7"), 3.80-3.72 (3H, m, H-1', H-3), 3.51 (1H, J=5.0, H-1), 2.24-2.07 (4H, m, H-3a, H-7a, Ha-4, Hb-7), 1.95-1.88 (2H, m, Hb-4, Hb-7), 1.28 (3H, t, J=7.0, H-8"), 1.11 (3H, s, H-1A" or H-1B"), 1.10 (3H, s, H-1A" or H-1B"), 1.08 (9H, s, [†]Bu); ¹³C NMR (125 MHz, CDCl₃) δ 166.9 (C5"), 155.4 (C3"), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.7 (iPh), 133.6 (iPh), 129.6 (Ph), 129.6 (Ph), 127.8 (2 x Ph), 127.7 (2 x Ph), 126.9 (C5 or C6), 126.4 (C5 or C6), 119.0 (C4"), 91.6 (C1), 83.7 (C3), 65.3 (C1'), 60.2 (C7"), 40.8 (C2"), 38.1 (C3a or C7a), 37.2 (C3a or C7a), 27.6 (C4 or C7), 26.8 ([†]Bu), 24.1 (C4 or C7), 23.4 (Me), 22.6 (Me), 19.2 (Si-C), 14.3 (C8"); LC-MS (ESI[†]) m/z 555 [M+Na[†]], R_t 3.15 min [method E]; HRMS [M+H[†]] calcd for C₃₃H₄₄O₄SiNa 555.2901 found 555.2917.


Ethyl 4-[(1R,3S,3aS,7aR)-3-{[(*tert*-butyldiphenylsilyl)oxy]methyl} octahydro-2-benzofuran-1-yl]-4-methylpentanoate 62

Ethyl (2E)-4-[(1R,3S,3aS,7aR)-3-{[(*tert*-

butyldiphenylsilyl)oxy]methyl $\}$ -1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate **61** (587 mg, 1.105 mmol) was dissolved in EtOAc (11 mL). Palladium on activated carbon (30 mg, 10% w/w Pd) was added. The flask was evacuated and flushed with H₂, and left to stir under an atmosphere of H₂ for 5 d. The suspension was filtered through celite and the solvents removed *in vacuo* to yield **62** as a clear oil

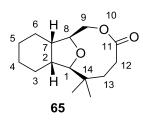
(592 mg, 97%). [α]^{24.7}_D-7.0 (c=1.0 CHCl₃); IR (film) 2930, 2858, 1733, 1472 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.60 (4H, m, Ph), 7.36-7.27 (6H, m, Ph), 4.03 (2H, q, J=7.5, H-7"), 3.84 (1H, ddd, J=4.5, 9.0, 9.0, H-3), 3.71 (1H, dd, J=4.0, 11.0, Ha-1'), 3.59 (1H, dd, J=4.5, 11.0, Hb-1'), 3.27 (1H, d, J=2.5, H-1), 2.29 (1H, dd, J=5.0, 10.5, Ha-4"), 2.28 (1H, J=6.0, 10.5, Hb-4"), 1.99-1.91 (2H, m, H-3a, H-7a), 1.64-1.45 (8H, m, 8 x CH₂), 1.49-1.20 (2H, m, 2 x CH₂), 1.16 (3H, t, J=7.5, H-8"), 1.01 (9H, s, tBu), 0.77 (3H, s, Me), 0.75 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 174.5 (C5"), 135.7 (2 x Ph), 135.6 (2 x Ph), 133.8 (iPh), 133.6 (iPh), 129.5 (Ph), 129.5 (Ph), 127.6 (4 x Ph), 91.9 (C1), 80.1 (C3), 65.4 (C1'), 60.2 (C7"), 38.8 (C3a, C7a), 36.6 (C2"), 34.0 (CH₂), 30.3 (CH₂), 29.5 (CH₂), 26.8 (tBu), 24.6 (2 × CH₂), 24.0 (CH₂), 22.6 (Me), 22.4 (Me), 22.1 (CH₂), 19.21 (C-Si), 14.2 (C8"); LC-MS (ESI+) m/z 559 [M+Na+], R_t 3.50 min [method E]; HRMS [M+Na+] calcd for C₃₃H₄₈O₄SiNa 559.3214 found 559.3224; Found: C, 74.02; H, 8.91%; C₃₃H₄₈O₄Si requires: C, 73.83; H, 9.01%.

Ethyl 4-[(1R,3S)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoate 63

Ethyl 4-[(1R,3S,3aS,7aR)-3-{[(*tert*-

butyldiphenylsilyl)oxy]methyl}octahydro-2-benzofuran-1-yl]-4-methylpentanoate **62** (221 mg, 0.412 mmol) was dissolved in THF (4 mL). TBAF (1.0 Mol in THF, 1.23 mL, 1.23 mmol) was added and the reaction stirred at 0 °C for 4 h. The solution was diluted with Et₂O (20 mL) and washed with H₂O (2 x 20 mL), brine (20 mL) and the organic layer was dried with MgSO₄. The

product was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **63** as a clear oil (89 mg, 72%). [α]^{24.6}_D+7.3 (c=3.0 CHCl₃); IR (film) 2931, 1723, 1450 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.11 (2H, dq, J= 1.5, 7.0, H-7"), 3.89 (1H, ddd, J=3.0, 6.0, 10.5, H-3), 3.76 (1H, br d, J=11.5, Ha-1'), 3.51 (1H, dd, J=6.0, 11.5, Hb-1'), 3.35 (1H, d, J=3.0, H-1), 2.32 (1H, ddd, J=6.5, 10.5, 15.5, Ha-4"), 2.27 (1H, ddd, J=6.5, 10.5, 15.5, Hb-4"), 2.07-1.99 (1H, m, H-7a), 1.92-1.86 (1H, m, H-3a), 1.67-1.52 (6H, m, CH₂), 1.50-1.44 (1H, m, CH₂), 1.41-1.20 (3H, m, CH₂), 1.24 (3H, t, J=7.0, H-8"), 0.83 (3H, s, Me), 0.81 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 174.4 (C5"), 92.3 (C1), 79.9 (C3), 64.2 (C1'), 60.3 (C4'), 39.1 (C7a), 38.1 (C3a), 36.5 (C2"), 34.0 (CH₂), 30.3 (CH₂), 29.5 (CH₂), 24.5 (CH₂), 23.8 (CH₂), 22.9 (Me), 22.3 (Me), 21.9

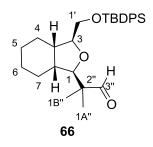

(CH₂), 14.2 (C8"); LC-MS (ESI⁺) m/z 321.24 [M+Na⁺], R_t 1.72 min [method E]; HRMS [M+H⁺] calcd for C₁₇H₃₀O₄H 298.2144 found 298.2151;

4-[(1R,3S,3aS,7aR)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoic acid 64

Ethyl 4-[(1R,3S)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoate **63** (95 mg, 0.319 mmol) was dissolved in THF: H_2O (3.0 mL, 2:1 ratio) and LiOH. H_2O (23 mg, 7.9 mmol) was added. The solution was stirred at RT for 16 h. The reaction mixture was acidified to pH 4 with 1 M HCl. The solution was extracted with CH_2Cl_2 (4 x 5 mL). The combined organic layers were dried over MgSO₄ and the solvents removed *in vacuo* to yield **64** as a clear oil

(81 mg, 99%). [α]^{24.2}_D +17.8 (c=1.0 CHCl₃); IR (film) 2928, 2858, 1708, 1451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.96 (1H, ddd, J=2.5, 6.0, 10.0, H-3), 3.77 (1H, dd, H=2.5, 12.0, Ha-1'), 3.55 (1H, dd, J=6.0, 12.0, Hb-1'), 3.40 (1H, d, J=3.0, H-1), 2.37 (1H, ddd, J=6.0, 12.0, 16.0, Ha-4"), 2.30 (1H, ddd, J=6.0, 12.0, 16.0, Hb-4"), 2.09-2.02 (1H, m, H-7a), 1.95-1.88 (1H, m, H-3a), 1.71-1.46 (7H, m, H-3", 3 x CH₂), 1.42-1.21 (3H, m, CH₂), 0.85 (3H, s, H-1A"), 0.84 (3H, s, H-1B"); ¹³C NMR (125 MHz, CDCl₃) δ 178.5 (C5"), 92.3 (C1), 80.5 (C3), 64.2 (C1"), 39.1 (C7a), 38.0 (C3a), 36.4 (C2"), 33.9 (C3"), 30.3 (CH₂), 29.0 (C4"), 24.5 (CH₂), 23.7 (CH₂), 23.1 (C1A"), 22.1 (C1B"), 21.8 (CH₂); LC-MS (ESI+) m/z 293 [M+Na+], R_t 1.58 min [method D lipolI]; HRMS [M+Na+] calcd for C₁₅H₂₆O₄Na 293.1723 found 293.1726; Found: C, 66.59 H, 9.59%; C₁₅H₂₆O₄ requires: C, 66.64; H, 9.69%.

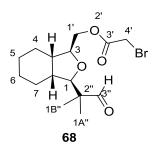
(1R,2R,7S,8S)-14,14-dimethyl-10,15-dioxatricyclo[6.6.1.0^{2,7}]pentadecan-11-one 65



2-Methyl-6-nitrobenzoic anhydride (87 mg, 0.253 mmol) and DMAP (61 mg, 0.506 mmol) was dissolved in CH_2Cl_2 (90 mL). A solution of 4-[(1R,3S,3aS,7aR)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoic acid **64** (57 mg, 0.211 mmol) in CH_2Cl_2 (20 mL, 0.01 M) was added by syringe pump over 16 h at RT. Approximately 50% of the solvent was removed *in vacuo* and the remaining solution was

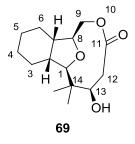
washed with ice cold sat. aqueous NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL), and the combined organic layers were washed with brine (30 mL). The organic layer was dried with MgSO₄ and the solvents were removed *in vacuo*. The crude residue was purified by column chromatography on silica gel (5% MeOH:CH₂Cl₂) to yield the product as a white crystalline solid (18 mg, 30%). mp (56.6-57.1 °C); [α]²²_D +14.0 (c=2.0 CHCl₃); IR (film) 2923, 2860, 1730, 1447 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.12 (1H, dd, J=4.0, 11.5, Ha-9), 3.90 (1H, dd, J=4.0, 8.0, H-8), 3.70 (1H, d, J=11.5, Hb-9), 3.50 (1H, d, J=3.0, H-1), 2.55-2.48

(1H, m, H-7), 2.48-2.44 (2H, m, H-12), 2.27-2.20 (1H, m, H-2), 2.05 (1H, ddd, J=6.5, 10.5, 15.0, Ha-13), 1.69-1.60 (3H, m, CH₂), 1.62-1.47 (2H, m, CH₂), 1.40-1.09 (4H, m, CH₂), 1.09 (3H, s, Me), 0.86 (3H, s, Me); 13 C NMR (125 MHz, CDCl₃) δ 175.7 (C11), 95.7 (C1), 79.5 (C8), 65.4 (C9), 39.0 (C2 or C7), 38.8 (C2 or C7), 37.3 (C14), 33.9 (C12), 32.5 (C13), 30.1 (CH₂), 29.1 (Me), 25.4 (Me), 24.3 (CH₂), 24.0 (CH₂), 22.1 (CH₂); LC-MS (ESI⁺) m/z 253 [M+H⁺], R_t 1.63 min [method D]; HRMS [M+H⁺] calcd for C₁₅H₂₅O₃ 253.1798 found 253.1799; Found: C, 71.45; H, 9.42%; C₁₅H₂₄O₃ requires: C, 71.39; H, 9.59%.


2-[(1R,3S,3aS,7aR)-3-{[(*tert-b*utyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-yl]-2-methylpropanal 66

(3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-ol **23** (841 mg, 2.05 mmol) was dissolved in CH_2Cl_2 (20 mL) and cooled to -78 °C. BF_3 . OEt_2 (0.78 mL, 6.15 mmol) was added and the solution was stirred for 5 min. Trimethyl(2-methylprop-1-enyloxy)silane (0.41 mL, 2.25 mmol) was then added and the reaction was warmed to RT and stirred for 3 h. The reaction was diluted with CH_2Cl_2 (20 mL), and washed with H_2O (2 x 50 mL),

followed by brine (50 mL). The organic layer was dried with MgSO₄. Solvent was removed *in vacuo* to yield **66** as a pale brown oil (950 mg, >98%). This compound was found to be unstable so was used immediately. 1 H NMR (500 MHz, CDCl₃) δ 9.63 (1H, s, H-3"), 7.75-7.64 (4H, m, Ph), 7.46-4.36 (6H, m, Ph), 3.96-3.89 (1H, m, H-3), 3.79-3.75 (2H, m, Ha-1', H-1), 3.65 (1H, dd, J=5.0, 11.5, Hb-1'), 2.06-2.01 (2H, m, H-3a, H-7a), 1.70-1.56 (4H, 4 x CH₂), 1.49-1.37 (2H, m, 2 x CH₂), 1.37-1.21 (2H, m, 2 x CH₂), 1.07 (3H, s, Me), 1.06 (9H, s, tBu), 1.06 (3H, s, Me); 13 C NMR (125 MHz, CDCl₃) δ 206.1 (C3") 135.7 (2 x Ph), 135.6 (2 x Ph), 133.6 (iPh), 133.4 (iPh), 129.6 (Ph), 129.6 (Ph), 127.7 (4 x Ph), 88.3 (C1), 80.9 (C3), 64.9 (C1'), 49.9 (C2"), 39.0 (C3a or C7a), 38.6 (C3a or C7a), 29.4 (CH₂), 26.8 (tBu), 24.2 (CH₂), 24.0 (CH₂), 22.2 (CH₂), 19.2 (Me) 18.8 (C-Si), 17.6 (Me); LC-MS (ESI+) m/z 487 [M+Na+], Rt 1.92 min [method E]; HRMS [M+Na+] calcd for C₂₉H₄₀O₃SiNa 487.2644 found 487.2639.


[(1S,3R,3aR,7aS)-3-(2-methyl-1-oxopropan-2-yl)octahydro-2-benzofuran-1-yl]methyl 2-bromoacetate 68

2-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-yl]-2-methylpropanal $\bf 66$ (950 mg, 2.05 mmol) was dissolved in THF (20 mL). TBAF (1.0 M in THF, 6.2 mL, 6.2 mmol) was added and the reaction stirred at RT for 8 h. The solution was diluted with Et₂O (30 mL) and washed with H₂O (2 x 30 mL) and

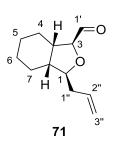
the organic layer was dried with MgSO₄. The product was purified by column chromatography on silica gel (33% EtOAc:hexane) to yield the alcohol 67 as a clear oil (200 mg, 43%). This unstable product was taken immediately into the next step. The alcohol 67 (200 mg, 0.89 mmol) was dissolved in CH_2Cl_2 (9 mL) and Et_3N (257 μL , 1.78 mmol) was added. 2-Bromoacetyl bromide (154 µL, 1.78 mmol) was added and the solution was stirred at RT for 5 h. The solution was diluted with CH₂Cl₂ (20 mL), washed with H₂O (10 mL), brine (10 mL) and then the aqueous layers where extracted with CH₂Cl₂ (2 x10 mL). The organic layer was dried with MgSO₄. The solvents were removed in vacuo and the crude mixture was flushed through silica (4 cm x Ø 20 mm) with (33% EtOAc:hexane) to yield 68 as a pale brown oil (250 mg, 34% over 2 steps). This compound was unstable so limited characterisation was possible. ¹H NMR (500 MHz, CDCl₃) δ 9.61 (1H, s, H-3"), 4.31 (1H, dd, J=3.0, 11.5, Ha-1'), 4.17-4.10 (1H, m, Hb-1'), 4.04 (1H, ddd, J=3.0, 6.0, 9.0, H-3), 3.88 (2H, s, H-4'), 3.81 (1H, d, J=4.0, H-1), 2.14-2.08 (1H, m, H-7a), 1.96-1.89 (1H, m, H-3a), 1.75-1.58 (4H, m, 2 x CH₂), 1.46-1.25 (4H, m, 2x CH₂), 1.08 (3H, s, Me), 1.07 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 205.7 (C3"), 166.7 (C3'), 88.3 (C1), 77.4 (C3), 66.5 (C1'), 49.3 (C2"), 38.6 (C7a or C3a), 38.4 (C7a or C3a), 28.7 (CH₂), 25.1 (C4'), 23.5 (CH₂), 23.4 (CH₂), 21.3 (CH₂), 18.3 (C1A"), 17.3 (C1B"); LC-MS (ESI⁺) m/z 369 [M+Na⁺], R_t 2.25 min [method D].

(1R,2R,7S,8S,13R)-13-hydroxy-14,14-dimethyl-10,15-dioxatricyclo[6.6.1.0^{2,7}]pentadecan-11-one 69

[(1S,3R,3aR,7aS)-3-(2-Methyl-1-oxopropan-2-yl)octahydro-2-

benzofuran-1-yl]methyl 2-bromoacetate **68** (240 mg, 0.581 mmol) was dissolved in THF (200 mL), and Sml_2 (0.1 M in THF) was added dropwise (~25 mL) until the colour change of the Sml_2 from blue to yellow on addition slowed and the reaction mixture remained green. The solution was then diluted with Et_2O (20 mL), and washed with H_2O (20 mL) and brine (20 mL). The organic layer was dried with MgSO₄. The

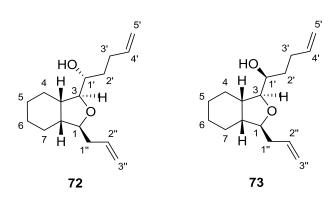
crude yellow oil was purified by column chromatography on silica gel (5% MeOH:CH₂Cl₂) to yield **69** as a white crystalline solid (70 mg, 45%). mp (107.8-108.3 °C); $[\alpha]^{21}_D$ +14.3 (c=2.0 CHCl₃); IR (film) 3518, 1724, 1448 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.41 (1H, dd, J=4.0, 11.0, H-9A), 3.93 (1H, dd, J=4.0, 8.0, H-8), 3.82-3.78 (1H, m, H-13), 3.74 (1H, d, J=11.0, H-9B), 3.62 (1H, d, J=1.5, H-1), 2.86-2.77 (2H, m, H-12), 2.49-2.43 (3H, m, H-2, H-7, OH), 1.72-1.60 (3H, m, CH₂), 1.57-1.49 (2H, m, CH₂), 1.38-1.24 (3H, m, CH₂), 1.08 (3H, s, CH₃), 1.01 (3H, s, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 172.2 (C11), 94.7 (C1), 78.1 (C8), 75.4 (C13), 65.6 (C9), 41.9 (C14), 40.8 (C12), 38.8 (C2 or C7), 38.7 (C2 or C7), 30.1 (CH₂), 26.2 (Me), 23.6 (CH₂), 23.4 (CH₂), 23.1 (Me), 21.2 (CH₂); LC-MS (ESI⁺) m/z 269 [M+H⁺], R_t 1.28 min [method E]; HRMS [M+Na⁺] calcd for C₁₅H₂₄O₄Na 291.1566 found 291.1572; Found: C, 67.26; H, 9.01%; C₁₅H₂₄O₄ requires: C, 67.14; H, 9.01%.


$(1R,2R,7S,8S,13R)-14,14-dimethyl-11-oxo-10,15-dioxatricyclo[6.6.1.0^{\{2,7\}}] pentadecan-13-ylacetate~70$

(1R,2R,7S,8S,13R)-13-Hydroxy-14,14-dimethyl-10,15-

dioxatricyclo[6.6.1.0^{2,7}]pentadecan-11-one **69** (8 mg, 0.030 mmol) was dissolved in CH₂Cl₂ (1.0 mL) and Et₃N (8.3 μ L, 0.060 mmol) was added. Acetic anhydride (6.6 μ L, 0.070 mmol) was added and the reaction mixture was stirred for 18 h. The solution was diluted with CH₂Cl₂ (5 mL) and washed with H₂O (10 mL x 2). The combined aqueous layers were extracted in CH₂Cl₂ (10 mL) and the combined organic layers dried over MgSO₄. Solvent was removed *in vacuo* to yield **70** as a clear

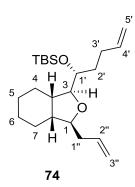
oil (9 mg, quant.). [α]²⁴_D +42.3 (c=0.1 CHCl₃); IR (film) 2921, 2852, 1735, 1450 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.18 (1H, dd, J=4.0, 11.0, Ha-9), 4.95 (1H, dd, J=4.5, 4.5, H-13), 3.96 (1H, dd, J=4.0, 9.0, H-8), 3.74 (1H, d, J=11.5, Hb-9), 3.58 (1H, d, J=1.5, H-1), 2.83 (1H, obs dd, J=4.5, 15.0, Ha-12), 2.82-2.76 (1H, m, H-7), 2.68 (1H, dd, J=4.5, 15.0, Hb-12), 2.39-2.32 (1H, m, H-2), 2.11 (3H, s, H-3'), 1.72-1.50 (5H, m, CH₂), 1.37-1.21 (3H, m, CH₂), 1.07 (3H, s, Me), 0.98 (3H, s, Me); ¹³C NMR (125 MHz, CDCl₃) δ 172.4 (C11), 169.9 (C2'), 95.2 (C1), 78.9 (C8), 76.1 (C13), 65.9 (C9), 41.6 (C14), 39.8 (C2), 38.7 (C12), 37.4 (C7), 30.9 (CH₂), 25.9 (Me), 24.4 (CH₂), 24.4 (Me), 23.7 (CH₂), 21.7 (CH₂), 21.0 (C3'); LC-MS (ESI⁺) *m/z* 311 [M+Na⁺], R_t 1.57 min [method D]; HRMS [M+Na⁺] calcd for C₁₇H₂₆O₅Na 333.1673 found 333.1691.


(1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-carbaldehyde 71

[(1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-yl]methanol **25** (146 mg, 0.753 mmol) was dissolved in CH_2Cl_2 (3 mL). Dess Martin reagent (3.0 mL, 0.3 M in CH_2Cl_2 , 0.90 mmol) was added and the reaction was stirred at RT for 3 h. An aqueous quenching solution (10 mL, 1.0 g NaHCO₃ and 13 g Na₂S₂O₃ in 100 mL H₂O) was added and the mixture was stirred for 3 h. The organic layer was separated and washed with the quenching solution (5 mL), dried over MgSO₄ and flushed through

silica gel (CH₂Cl₂). The solvent was removed *in vacuo* to yield **71** as a clear oil (146 mg, 100%). This compound was unstable so limited characterisation was possible and the compound was used immediately. 1 H NMR (500 MHz, CDCl₃) δ 9.69 (1H, d, J=2.0, H-1'), 5.90 (1H, dddd, J=7.0, 7.0, 10.0, 17.0, H-2"), 5.20-5.06 (2H, m, H-3"), 4.09-3.99 (2H, m, H-1, H-3), 2.45-2.25 (3H, m, H-1", H-7a or H-3a), 1.98-1.90 (1H, m, H-7a or H-3a), 1.81-1.32 (8H, m, CH₂); 13 C NMR (125 MHz, CDCl₃) δ 203.2 (C1'), 134.2 (C2"), 116.8 (C3"), 85.7 (C1 or C3), 82.8 (C1 or C3), 41.6 (C3a or C7a), 39.7 (C3a or C7a), 39.2 (C1"), 25.2 (CH₂), 24.9 (CH₂), 22.5 (CH₂), 22.2 (CH₂).

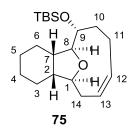
(R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-ol 72 and (S)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-ol 73



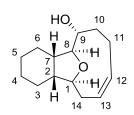
A solution of (1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-carbaldehyde **71** (160 mg, 0.824 mmol) in

carbaldehyde **71** (160 mg, 0.824 mmol) in THF (8.2 mL) was added dropwise by syringe to a freshly prepared solution of but-3-enylmagnesium bromide (0.9 mL, 4.0 M in Et_2O) at 0 °C under nitrogen. The reaction was warmed to RT, quenched with sat. aqueous NH₄Cl (30 mL) and

extracted with Et₂O (3 × 20 mL). The combined organic layers were dried over NaSO₄ and the solvents were removed in vacuo. The crude residue was purified by column chromatography (20% ethyl acetate in hexane) to give major isomer 72 (106 mg, 51%) and minor isomer 73 (59 mg, 29%) as clear oils. Major isomer $[\alpha]^{24.6}$ _D -35.1 (c=0.1 CHCl₃); IR (film) 3408, 2925, 2856, 1640 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.94-5.77 (2H, m, H-2", H-4'), 5.22-4.96 (4H, m, H-3", H-5"), 3.88 (1H, ddd, J=4.5, 7.0, 7.0, H-1), 3.70-3.62 (2H, m, H-1", H-3), 2.40-2.10 (5H, m, H-3', H-1", H-3a), 2.00-1.88 (2H, m, H-7a, OH), 1.69-1.27 (10H, m, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 138.6 (C4' or C2"), 135.2 (C4' or C2"), 117.3 (C3" or C5'), 115.0 (C3" or C5'), 86.3 (C3), 80.6 (C1), 72.6 (C1'), 42.5 (C7a), 39.1 (C1" or C3'), 37.7 (C3a), 31.9 (CH₂), 30.5 (C1" or C3"), 28.0 (CH₂), 25.3 (CH₂), 23.8 (CH₂), 22.8 (CH₂); LC-MS (ESI⁺) m/z 273 [M+Na⁺], R_t 1.45 min [method D]; HRMS [M+H⁺] calcd for C₁₆H₂₇O₂ 251.2006 found 251.2013. Minor Isomer- ¹H NMR (500 MHz, CDCl₃) δ 5.90-5.77 (m, 2H, H-2", H-4"), 5.14-4.93 (m, 4H, H-3", H-5"), 3.89 (ddd, J = 7.0, 6.0, 5.2 Hz, 1H, H-1), 3.56 (t, J = 5.4 Hz, 1H, H-3), 3.35 (dq, J = 8.1, 5.2 Hz, 1H, H-1'), 2.38-2.05 (m, 6H, H-1", H-3', H-3a, OH), 1.98-1.89 (m, 1H, H-7a), 1.69-1.30 (m, 10H); 13 C NMR (126 MHz, CDCl₃) δ 138.7 (C4' or C2"), 135.2 (C4' or C2"), 117.3 (C5' or C3"), 114.8 (C5' or C3"), 85.4 (C3), 81.5 (C1), 71.8 (C1'), 42.2 (C7a), 40.0 (C1" or C3'), 39.0 (C3a), 34.0 (CH₂), 30.2 (C1" or C3'), 26.5 (CH₂), 25.9 (CH₂), 23.4 (CH₂), 23.2 (CH₂); LC-MS (ESI⁺) m/z 273 [M+Na⁺], R_t 1.53 min [method D]; HRMS [M+H⁺] calcd for $C_{16}H_{27}O_2$ 251.2006 found 251.2003.


(((R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-yl)oxy)(tert-butyl)dimethylsilane 74

1-[(1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-yl]pent-4-en-1-ol **72** (70 mg, 0.283 mmol) was dissolved in CH₂Cl₂ (2.8 mL) and DIPEA (195 μ L, 1.12 mmol) was added. TBSOTf (117 μ L, 0.67 mmol) was added and the reaction was stirred at RT for 30 min. The reaction was quenched with sat. aqueous NH₄Cl (10 mL) and extracted in CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over


MgSO₄ and the solvent was removed *in vacuo* to yield **74** as a clear oil (102 mg, 100%). [α]^{24.3}_D-33.5 (c=0.25 CHCl₃); IR (film) 3407, 2927, 2857, 1463 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.95-5.81 (2H, m, H-2", H-4'), 5.14-4.92 (4H, m, H-5', H-3"), 3.87-3.85 (1H, m, H-1), 3.58-3.52 (2H, m, H-3, H-1'), 2.37-2.24 (1H, m, Ha-1"), 2.20-2.12 (2H, m, Hb-1", H-3a or H-7a), 1.94-1.84 (1H, m, H-3a or H-7a), 1.74-1.26 (12H, m, CH₂), 0.91 (9H, s, [†]Bu), 0.08 (6H, s, Si-CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 139.2 (C2" or C4'), 135.7 (C2" or C4'), 116.5 (C3" or C5'), 114.1 (C3" or C5'), 85.8 (C3), 80.2 (C1), 73.6 (C1'), 41.6 (C3a or C7a), 39.7 (C3a or C7a), 39.6 (C1"), 33.4 (CH₂), 28.6 (CH₂), 28.2 (CH₂), 26.0 (†Bu), 24.7 (CH₂), 24.3 (CH₂), 22.3 (CH₂), 18.1 (Si-C), -4.0 (Si-Me), -4.3 (Si-Me); HRMS [M+H[†]] calcd for C₂₂H₄₁O₂Si 365.2870 found 365.2875.

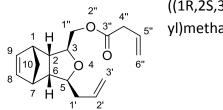
tert-butyl(((4aS,5S,6R,12S,12aR,Z)-5,12-dimethyl-1,2,3,4,4a,5,6,7,8,11,12,12a-dodecahydro-5,12-epoxybenzo[10]annulen-6-yl)oxy)dimethylsilane 75

({1-[(1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-yl]pent-4-en-1-yl}oxy)(tert-butyl)dimethylsilane **74** (42 mg, 0.115 mmol) was dissolved in CH_2Cl_2 (230 mL) and Grubbs II catalyst (9.7 mg, 0.01 mmol) was added. The solution was stirred at RT for 16 h. DMSO (10 μ L) was added and the solution was stirred for 24 h, before preabsorbing on to silica (~200 mg). The product was purified by column

(4aS,5S,6R,12S,12aR,Z)-5,12-dimethyl-1,2,3,4,4a,5,6,7,8,11,12,12a-dodecahydro-5,12-epoxybenzo[10]annulen-6-ol 76

tert-Butyldimethyl[(1S,2R,7S,8S,12Z)-15-oxatricyclo[6.6.1.0^{2,7}]pentadec-12-en-9- yloxy]silane **75** (42 mg, 0.113 mmol), was dissolved in 1M HCl:EtOH:Et₂O (5 mL, 0.05:1:1) and stirred

at RT for 3 h. The solution was then basified with sat. aqueous NaHCO $_3$ (dropwise to neutral pH) and extracted into Et $_2$ O (3 × 10 mL). The combined organic layers were washed in brine (10 mL) and dried over MgSO $_4$. The solvents were removed *in vacuo* to yield **76** as white crystals (14 mg, 55%). mp (102.3-103.2 °C); [α] $^{22}_D$ +23.0 (c=0.1 CHCl $_3$); IR (film) 3014, 2923, 2851, 1449 cm $^{-1}$; ¹H NMR (500 MHz, CDCl $_3$) δ 5.73 (1H, dddd, J=2.5, 5.5, 11.0, 12.0, H-12), 5.59 (1H, ddd, J=6.5, 8.5, 11.0, H-13), 4.12 (1H, ddd, H-1), 3.40-3.35 (2H, m, H-8, H-9), 2.98 (1H, dddd, J=7.5, 12.0, 12.0, 12.0, Ha-11), 2.67-2.62 (1H, m, Ha-14), 2.20-2.16 (1H, m, H-2), 2.05-1.97 (3H, m, H-7, Hb-11, Hb-14), 1.82-1.75 (2H, m, H-10), 1.74-1.66 (2H, m, CH $_2$), 1.62-1.49 (3H, m, CH $_2$), 1.36-1.15 (3H, m, CH $_2$); ¹³C NMR (125 MHz, CDCl $_3$) δ 133.6 (C12), 125.5 (C13), 89.7 (C8), 80.0 (C1), 71.6 (C9), 42.9 (C7), 36.7 (C2), 33.9 (C10), 28.8 (C14), 27.8 (CH $_2$), 25.4 (C11), 24.9 (CH $_2$), 23.9 (C3), 21.4 (CH $_2$); LC-MS (ESI $^+$) m/z 245 [M+Na $^+$], R $_1$ 1.47 min [method E]; HRMS [M+H $^+$] calcd for C₁₄H₂₃O₂ 223.1693 found 223.1695.


((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-yl)-methanol 79

(15,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanoxymethyl)-4-oxatricyclo[5.2.1.0.^{2,6}]dec-8-en-3one 41a (292 mg, 0.699 mmol) was dissolved in anhydrous CH₂Cl₂ (1.9 mL) and cooled to -78 °C under N₂. DIBAL-H (1.0 M in toluene, 0.77 mL, 0.77 mmol) was added dropwise. The reaction was stirred at 78 °C for 100 min then quenched with EtOAc (10 mL). The solution was warmed to RT and a sat. aq. solution of Rochelles salt (6 mL) was added and the mixture was stirred for 3 h. The aqueous layer was separated and extracted with CH₂Cl₂ (3 x 20 mL). The organic layers were combined, dried over MgSO₄ and the solvent was removed in vacuo to yield **79a** as a clear oil (286 mg, 98%). $[\alpha]^{24}D + 2.8$ (c=0.34 CH₂Cl₂); IR (film) 3423, 2931, 2858, 1428 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.67 (4H, m, Ph), 7.49-7.41 (6H, m, Ph), 6.19-6.17 (2H, m, H-8, H-9), 4.87 (1H, d, J=9.5, H-3), 3.99 (1H, d, J=9.5, OH), 3.76 (1H, dd, J=3.0, 11.0, Ha-1'), 3.67-3.65 (1H, m, H-5), 3.55 (1H, dd, J=3.0, 11.0, Hb-1'), 3.08-3.05 (1H, m, H-7), 2.92-2.89 (1H, m, H-1), 2.88-2.84 (2H, m, H-2, 6), 1.48 (1H, d, J=8.0, Ha-10), 1.35 (1H, d, J=8.0, Hb-10), 1.09 (9H, s, t Bu); 13 C NMR (125 MHz, CDCl₃) δ 135.8 (2 x Ph), 135.7 (2 x Ph), 135.6 (Ph), 134.9 (C9), 134.6 (C8), 132.5 (Ph), 132.4 (Ph), 130.1 (Ph), 129.9 (Ph), 129.4 (Ph), 127.9 (Ph), 127.7 (Ph), 101.3 (C3), 83.6 (C5), 67.6 (C1'), 58.1 (C1), 51.6 (C10), 48.3 (C6), 46.0 (C2), 45.2 (C7), 27.0 (^tBu), 19.2 (Si-C); LC-MS (ESI⁺) m/z 443 [M+Na⁺], Rt 3.22 min, [method C]; HRMS [M+Na⁺] calcd for C₂₆H₃₂O₃SiNa 443.2013; found 443.2002.

(1S,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanoxymethyl)-4-oxatricyclo[5.2.1.0.^{2,6}]dec-8-en-3-ol 79a (286 mg, 0.90 mmol) was dissolved in CH₂Cl₂ (3 mL) and cooled to -78 °C. BF₃.OEt₂ (0.26 mL, 2.04 mmol) was added by syringe and the solution stirred for 5 min. Allyltrimethylsilane (0.32 mL, 2.04 mmol) was added by syringe and the reaction then warmed to RT over 18 h. The reaction was then quenched with H₂O (6 mL) and extracted into CH₂Cl₂ (3 x 6 mL). The combined organic layers were dried over MgSO₄. The solvent was removed in vacuo to yield **79b** as a clear oil (289 mg, 96%). $[\alpha]^{22}$ _D 67.7 (c=0.10 CH₂Cl₂); IR (film) 2930, 2857, 1471, 1427 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72-7.68 (4H, m, Ph), 7.45-7.39 (6H, m, Ph), 6.22-6.19 (2H, m, H-8, H-9), 5.85 (1H, dddd, J=7.0, 7.0, 10.0, 17.0, H-2'), 5.09-5.02 (2 H, m, H-3'), 3.72 (1H, dd, J=5.0, 10.0 H-1"), 3.59 (1H, dd, J=6.0, 10.0, H-1"), 3.54 (1H, ddd, J=6.0, 6.0, 6.0, H-3), 3.48 (1H, ddd, J=6.5, 6.0, 6.5, H-5), 2.89 (1H, ddd, J=4.0, 6.0, 10.0, H-2), 2.85-2.82 (1H, m, H-1), 2.80-2.78 (1H, m, H-7), 2.66 (1H, ddd, *J*=4.0, 6.0, 10.5, H-6), 2.38-2.32 (1H, m, H-1'), 2.20-2.15 (1H, m, H-1'), 1.71 (1H, dt, J=2.0, 8.0, H-10), 1.59-1.56 (1H, m, H-10), 1.09 (9H, s, ^tBu); ¹³C NMR (125 MHz, CDCl₃) δ 136.7 (C9), 136.6 (C8), 135.7 (4 x Ph), 135.1 (C1'), 133.8 ($^{\rm i}$ Ph), 133.7 (Ph), 129.6 (Ph), 129.6 (Ph), 127.6 (4 x Ph), 116.6 (C3'), 82.1 (C3), 81.5 (C5), 66.9 (C1"), 55.0 (C2), 53.8 (C10), 53.1 (C6), 45.0 (C1), 44.9 (C7), 41.0 (C1'), 26.9 (^tBu), 19.3 (Si-C).

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-ylmethoxy)-tertbutyldiphenyl silane 79b (178 mg, 0.403 mmol) was dissolved in THF (2.2 mL). The solution was cooled to 0 °C under N2 and TBAF (1.20 mL, 1.20 mmol, 1.0 M in THF) was added by syringe. The reaction was stirred for 1 h at 0 °C before quenching with Et₂O (20 mL). The reaction mixture was washed with H₂O (3 x 30 mL) and extracted into Et₂O (2 x 30 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in vacuo to give the crude product. This was purified by column chromatography on silica gel (15% EtOAc:hexane) to yield **79** as a clear oil (49 mg, 59%). $[\alpha]^{25}_D$ -5.7 (c=0.51 CH₂Cl₂); IR (film) 3420, 2965, 1653, 1558 cm⁻¹; ¹H NMR (500 MHz, d5-Pyr) δ 6.23-6.11 (2H, m, H-8, H-9), 6.11-6.02 (1H, m, OH), 5.91 (1H, ddt, J=7.0, 10.5, 17.0, H-2'), 5.12 (1H, dd, J=1.5, 17.0, Ha-3'), 5.09-5.09 (1H, m, Hb-3'), 3.90 (1H, dd, J=5.0, 11.0, Ha-1"), 3.84 (1H, dd, J=6.0, 11.0, Hb-1"), 3.75 (1H, ddd, J=5.5, 6.0, 6.0, H-3), 3.57 (1H, ddd, J=6.5, 6.5, 6.5, H-5), 2.93 (1H, ddd, J=4.0, 6.5, 10.5, H-2), 2.80-2.75 (1H, m, H-1) 2.70-2.64 (1H, m, H-7), 2.64 (1H, ddd, *J*=4.0, 6.5, 10.0, H-6), 2.43 (1H, m, H-1'), 2.29 (1H, ddd, J=7.0, 7.0, 13.5, H-1'), 1.63 (1H, d, J=8.0, Ha-10), 1.48 (1H, d, J=8.0, Hb-10); ¹³C NMR (125 MHz, CDCl₃) δ 137.6 (C8 or C9), 137.4 (C8 or C9), 136.4 (C2'), 117.1 (C3'), 83.9 (C3), 81.9 (C5), 66.1 (C1''), 56.0 (C2), 54.7 (C10), 53.5 (C6), 45.6 (C1 or C7), 45.5 (C1 or C7), 41.7 (C2'); LC-MS (ESI⁺) m/z 229 [M+Na⁺], R_t 2.12 min [method D]; HRMS [M+H $^{+}$] calcd for C₁₃H₁₉O₂ 207.1380; found 207.1377.

(1R,2S,3S,5S,6R,7S)-5-allyl-4-oxa-tricyclo[5.2.1.0^{2,6}]dec-8-en-3-ylmethyl but-3-enoate 80

 $\label{eq:condition} $$((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-yl)methanol $$79$ (50 mg, 0.243 mmol) was dissolved in CH_2Cl_2 (0.5)$

mL). Trans-crotonyl chloride (30 μL, 0.316 mmol) and triethylamine (105 μL, 0.725 mmol) were added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic layers were dried with MgSO₄ and the solvents removed in vacuo. The crude reaction mixture was purified by column chromatography on silica gel (20% EtOAc:hexane) to yield 80 as a clear oil (44 mg, 66%). $[\alpha]^{25}$ _D -19.0 (c=1.0 CHCl₃); IR (film) 3076, 2968, 1752 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.23-6.19 (2H, m, H-9, H-8), 5.93 (1H, tdd, J=6.5, 10.0, 17.0, H-5"), 5.78 (1H, tdd, J= 7.0, 10.0, 17.0, H-2'), 5.19-5.14 (2H, m, H-6"), 5.11-5.03 (2H, m, H-3'), 4.15 (1H, dd, J=4.0, 11.0, HA-1"), 4.02 (1H, dd, J=7.0, 11.0, HB-1"), 3.64 (1H, dd, J=6.0, 11.0, H-3), 3.51 (1H, dd, J=6.0, 12.5, H-5), 3.13 (2H, d, J=7.0, H-4"), 2.84-2.77 (2H, m, H-1, H-7), 2.76-2.67 (2H, m, H-2, H-6), 2.41-2.34 (1H, m, HA-1'), 2.24-2.18 (1H, m, HB-1'), 1.71 (1H, d, J=8.0, HA-10), 1.56 (1H, d, J=8.0, HB-10); ¹³C NMR (125 MHz, CDCl₃) δ 171.4 (C3"), 136.8 (C8 or C9), 136.3 (C8 or C9), 134.7 (C2'), 130.2 (C5"), 118.6 (C6"), 116.9 (C3'), 81.8 (C5), 79.2 (C3), 67.1 (C1"), 54.9 (C2 or C6), 53.7 (C10), 52.9 (C2 or C6), 44.9 (C1 or C7), 44.5 (C1 or C7), 40.8 (C1'), 38.7 (C4"); LC-MS (ESI⁺) m/z 297 [M+Na⁺], Rt 2.37 min [method D]; HRMS [M+Na⁺] calcd for C₁₇H₂₂O₃ H 275.1643 found 275.1642.

(1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-ylmethyl pent-4-enoate 81

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-yl)-methanol **79** (50 mg, 0.243 mmol) was dissolved in pyridine (1.2 mL). Pent-4-enoyl chloride (35 μ L, 0.316 mmol) was added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (10 mL x 2). The combined organic

layers were dried with MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (20% EtOAc:hexane) to yield **81** as a clear oil (49 mg, 70%). [α]²⁵_D+15.5 (c=2.0, CHCl₃); IR (film) 3075, 2965, 1741 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.22-6.21 (2H, m, H-9, H-8), 5.88-5.74 (2H, m, H-2', H-6''), 5.12-4.99 (4H, m, H-3', H-7''), 4.15 (1H, dd, *J*=4.5, 11.5, HA-1''), 4.02 (1H, dd, *J*=6.5, 11.5, HB-1''), 3.64 (1H, ddd, *J*=6.5, 6.5, 4.5, H-3), 3.15 (1H, ddd, *J*=5.5, 5.5, 7.5, H-5), 2.83-2.79 (2H, m, H-1, H-7), 2.76-2.69 (2H, m, H-2, H-6), 2.47-2.35 (5H, m, H-4'', H-5'', HA-1'), 2.20 (1H, ddd, *J*=7.5, 7.5,

14.5, HB-1'), 1.71 (1H, ddd, J=1.5, 1.5, 8.5, HA-10), 1.57 (1H, br d, J=8.5, HB-10); ¹³C NMR (125 MHz, CDCl₃) δ 172.9 (C3"), 136.9 (C8 or C9), 136.7 (C2' or C6"), 136.4 (C8 or C9), 134.6 (C2' or C6"), 117.0 (C3' or C7"), 115.5 (C3' or C7"), 81.8 (C5), 79.3 (C3), 66.9 (C1"), 54.9 (C2 or C6), 53.9 (C10), 52.7 (C2 or C6), 44.9 (C1 or C7), 44.5 (C1 or C7), 40.8 (C1'), 33.5 (C4" or C5"), 28.8 (C4" or C5"); LC-MS (ESI+) m/z 311 [M+Na+], Rt 2.43 min [method D]; HRMS [M+H+] calcd for C₁₈H₂₄O₃ H 289.1798 found 289.1798.

(1R,2S,3S,5S,6R,7S)-5-allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-8-en-3-ylmethyl hex-5-enoate 82

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.1.0 2,6]dec-8-en-3-yl) methanol **79** (50 mg, 0.243 mmol) was dissolved in pyridine (1.2 mL). Hex-5-enoyl chloride (42 mg, 0.317 mmol) was added and the reaction mixture was stirred at RT for 18 h. The reaction mixture was diluted with CH_2Cl_2 (10 mL) and washed with H_2O (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with CH_2Cl_2 (10 mL x 2).

The combined organic layers were dried over MgSO₄ and the solvents removed *in vacuo*. The crude reaction mixture was purified by column chromatography on silica gel (20% EtOAc:hexane) to yield **82** as a clear oil (33 mg, 46%). [α]²⁵_D +19.6 (c=1.0 CHCl₃); IR (film) 3075, 2965, 1738 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.25-6.22 (2H, m, H-9, H-8), 5.83-5.74 (2H, m, H-2', H-7", 5.13-5.05 (2H, m, H-3'), 5.06-4.98 (2H, m, H-8"), 4.18 (1H, dd, J=4.5, 11.0, Ha-1"), 4.02 (1H, dd, J=7.0, 11.0, Hb-1"), 3.63 (1H, ddd, J=4.5, 6.0, 6.5, H-3), 3.51 (1H, ddd, J=6.0, 7.0, 7.5, H-5), 2.84-2.79 (2H, m, H-1, H-7), 2.77-2.69 (2H, m, H-2, H-6), 2.42-2.35 (1H, m, Ha-1'), 2.38 (2H, t, J=7.5, H-4"), 2.26-2.19 (2H, m, H-1'), 2.14-2.08 (1H, m, H-5"), 1.78-112 (3H, m, H-6", Ha-10), 1.61-1.56 (1H, m, Hb-10), ¹³C NMR (125 MHz, CDCl₃) δ 173.5 (C3"), 137.6 (C7"), 136.9 (C8 or C9), 136.3 (C8 or C9), 134.6 (C2'), 116.2 (C3'), 115.3 (C8"), 81.7 (C5), 79.3 (C3), 66.8 (C1"), 54.9 (C2 or C6), 53.8 (C10), 52.7 (C2 or C6), 44.9 (C1 or C7), 44.5 (C1 or C7), 40.8 (C1'), 33.7 (C4"), 33.0 (C5"), 24.0 (C6"); LC-MS (ESI⁺) m/z 325 [M+Na⁺], Rt 2.48 min [method D]; HRMS [M+H⁺] calcd for C₁₉H₂₇O₃ 303.1955 found 303.1940.

[(1S,3R,3aR,7aS)-3-(2-methyl-3-oxobutan-2-yl)-octahydro-2-benzofuran-1-yl]methyl acetate 89

3-[(1R,3S,3aS,7aR)-3-(Hydroxymethyl)octahydro-2-benzofuran-1-yl]-3-methylbutan-2-one **46** (67 mg, 0.279) was dissolved in CH₂Cl₂ (3 mL) and Et₃N (80 μ L, 0.558 mmol) was added. 2-Bromoacetyl bromide (260 μ L, 0.558 mmol) was added and the solution was stirred at RT for 5 h. The solution was diluted with CH₂Cl₂ (20 mL), washed with H₂O (10 mL), brine (10 mL), and then the aqueous layers where extracted with CH₂Cl₂ (2 x10 mL). The combined organic layers were dried with MgSO₄. The solvent was removed *in vacuo* and the crude residue purified by column chromatography on silica gel (33% EtOAc:hexane) to yield the product as a pale brown oil (67 mg, 67%). This compound was unstable so limited characterisation was possible. ¹H NMR (500 MHz, CDCl₃) δ 4.29 (1H, dd, J=3.0, 12.0, Ha-1'), 4.16 (1H, dd, J=6.0, 12.0, Hb-1'), 4.03 (1H, ddd, J=3.0, 6.0, 9.0, H-3), 3.88 (2H, s, H-4'), 3.88-3.80 (1H, m, H-1), 2.18 (3H, s, H-1''), 2.07-2.01 (1H, m, H-7a), 1.95-1.88 (1H, m, H-3a), 1.75-1.68 (1H, m, CH₂), 1.68-1.57 (3H, m, CH₂), 1.45-1.23 (4H, m, CH₂), 1.13 (3H, s, Me), 1.09 (3H, s, Me); LC-MS (ESI+) m/z 361 [M+H+], R_t 1.50 min [method E]; HRMS [M+Na+] calcd for C₁₆H₂₅BrO₄Na 361.1009 found 361.1013.

[(1S,3R,3aR,7aS)-3-(2-Methyl-3-oxobutan-2-yl)-octahydro-2-benzofuran-1-yl]methyl 2bromoacetate 89a (67 mg, 0.186 mmol) was dissolved in THF (37 mL) and Sml₂ (0.1 M in THF) was added dropwise (~9 mL) until the colour change of the Sml₂ from blue to yellow on addition slowed and the reaction mixture remained green for ~10 seconds before returning to a pale yellow. The solution was then diluted with Et₂O (20 mL) and washed with H₂O (20 mL) and brine (20 mL). The organic layer was dried with MgSO₄. The crude yellow oil was purified by column chromatography on silica gel (5% MeOH:CH2Cl2) to yield 89 as a clear oil (26 mg, 49%). $[\alpha]^{24.3}$ _D +25.4 (c=1.0 CHCl₃); IR (film) 2929, 2858, 1739, 1701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.25-4.19 (1H, m, Ha-1'), 4.06-3.97 (2H, m, Hb-1', H-3), 3.86 (1H, d, J=3.5, H-1), 2.17 (3H, s, H-4"), 2.08 (3H, s, H-4"), 2.06-1.98 (1H, m, H-7a), 1.83-1.76 (1H, m, H-3a), 1.75-1.57 (4H, m, CH₂), 1.46-1.22 (4H, m, CH₂), 1.12 (3H, s, Me), 1.09 (3H, s, Me), ¹³C NMR (125 MHz, CDCl₃) δ 213.2 (C3"), 171.1 (C3'), 89.7 (C1), 78.0 (C3), 65.7 (C1'), 51.6 (C2"), 39.4 (C3a or C7a), 39.4 (C3a or C7a), 29.9 (CH₂), 27.0 (C4"), 24.2 (CH₂), 24.1 (CH₂), 22.1 (CH₂), 21.0 (C4" or Me), 21.0 (C4" or Me), 20.6 (C4" or Me); LC-MS (ESI $^+$) m/z 305 [M+Na $^+$], Rt 1.48 min [method E]; HRMS [M+H⁺] calcd for C₁₆H₂₇O₄ 283.1904 found 283.1914; Found: C, 66.09; H, 8.81%; C₁₆H₂₆O₄ requires: C, 66.12; H, 8.72%.

Assay methods

SRB assay

Cells were seeded in 100μ l medium into 96-well plates. After 36 hours, serial doubling dilutions of drug (or vehicle) were added to give the required dose range in sextuplicate across the plate. Cells were incubated for a further 96 hours. The medium was then removed and cells were fixed by adding 50μ l of 10% (w/v) trichloroacetic acid (TCA) for one hour at room temperature. The plates were gently washed by immersion in tap water three times then air dried. 50μ l of 0.4% (w/v) SRB in 1% (v/v) acetic acid was added to each well for one hour. Plates were then washed three times with 1% acetic acid and air dried. SRB was solubilised with 100ul/well 10mM Tris

pH10.5. Absorbance at 570nm was measured using a SPECTRAmax 340PC plate reader.

Migration assay

Cells in standard tissue culture flasks were fluorescently labelled by incubation with 1umol/L CellTracker Green 5-chloromethylfluorescein diacetate (Invitrogen, Paisley) concomitant with serum starvation for two hours. Following trypsinisation cells were counted and added to the upper wells of 8um pore FluoroblokTM membrane inserts in 24-well companion plates (BD Biosciences, Franklin Lakes, NJ). The lower chambers were filled with 800uL medium containing 5% heat- inactivated FCS (to measure chemotaxis) or serum-free medium (to measure unstimulated random motility). The assay plates were incubated in a humidified atmosphere at 37°C in 5% CO₂ in air for 16 hours. Cells which successfully migrated to the lower surface of the filter were visualised using an inverted fluorescence microscope.

PCA methodology

Principal Components Analysis (PCA) was conducted using SIMCA-P+⁴, and the scatter plot was created using Spotfire⁵. The descriptors used for the calculation of the PCA models are given in Table S1.

Table S1. Molecular descriptors calculated for the generation of the PCA model.

Descriptor ID	Descriptor Definition
Molecular Weight	Molecular weight
No. Bonds	Number of bonds
No. Rings	Number of rings
AlogP	Calculated octanol/water partition coefficient
No. Rotatable Bonds	Number of rotatable bonds
No. H acceptors	Number of hydrogen-bond acceptors
No. H donors	Number of hydrogen-bond donors
O count	Number of oxygen atoms
H count	Number of hydrogen atoms
No. Stereocentres	Number of stereocentres
N count	Number of nitrogen atoms
No. Aromatic Rings	Number of aromatic rings
No. Aromatic Bonds	Number of aromatic bonds

The first two principal components of the PCA model explain 69% of the variance in the data which indicates that visualisation in a two-dimensional scatterplot is reasonable for interpretation of the chemistry spaces covered by the libraries.

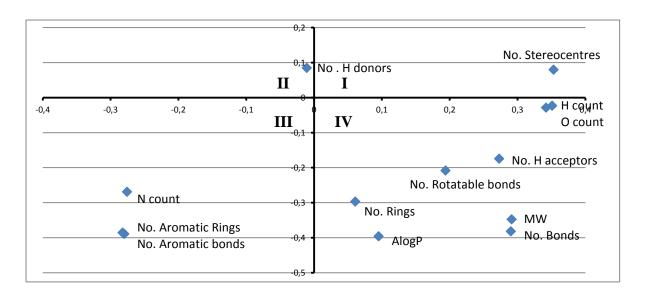
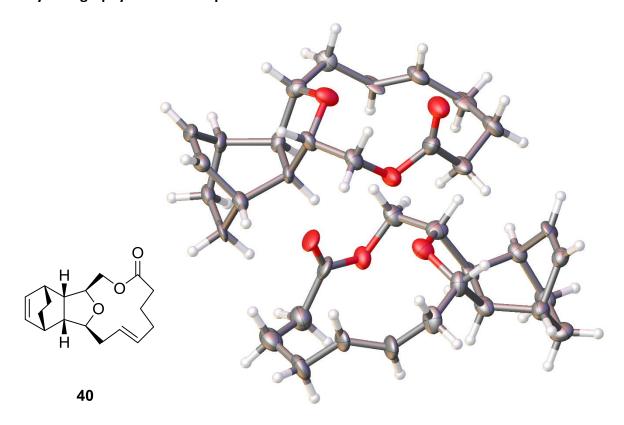
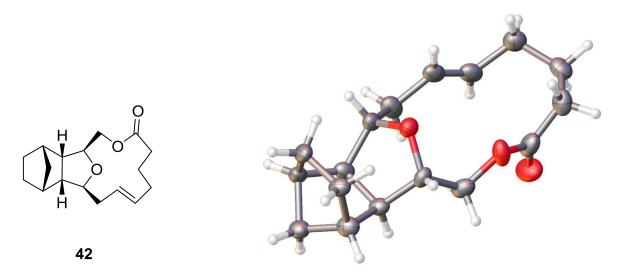
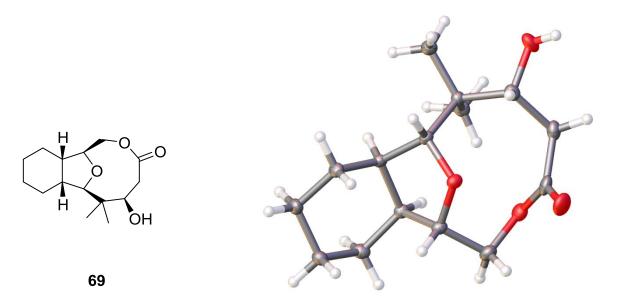



Figure S1. The loading scores of the Principal Components Analysis.


The loadings plot is provided in Figure S1 and can assist in interpreting the PCA scores plot of Figure 5 in the main paper. The loadings plot illustrates those molecular descriptors that are most important for explaining the variance of the molecules in those regions of the scores plot when overlaid. Descriptors that lie proximate to each other on the loadings plot are correlated, such as aromatic rings and bonds in quadrant III. Furthermore, the magnitude of deviation from the origin indicates the importance of each descriptor in that region of the plot, as seen in those molecules in quadrant III being more nitrogen-rich in their composition. Therefore, it can be readily observed that the screening collection is enriched for nitrogen-containing compounds and aromaticity, as opposed to the cembranoid-like and cembranoid libraries.

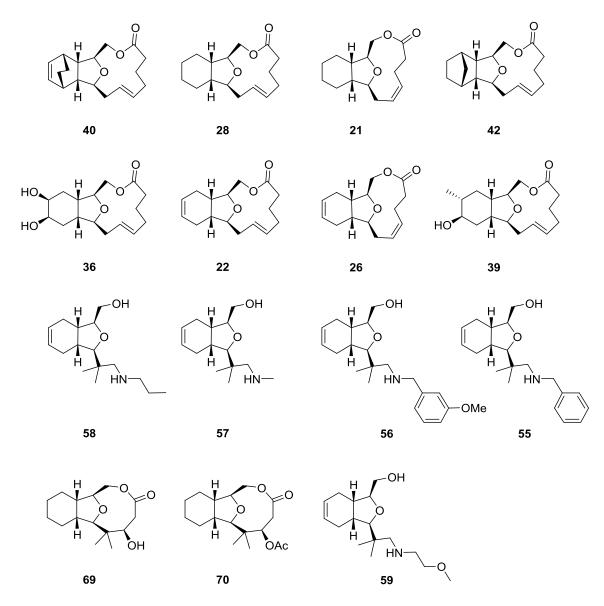
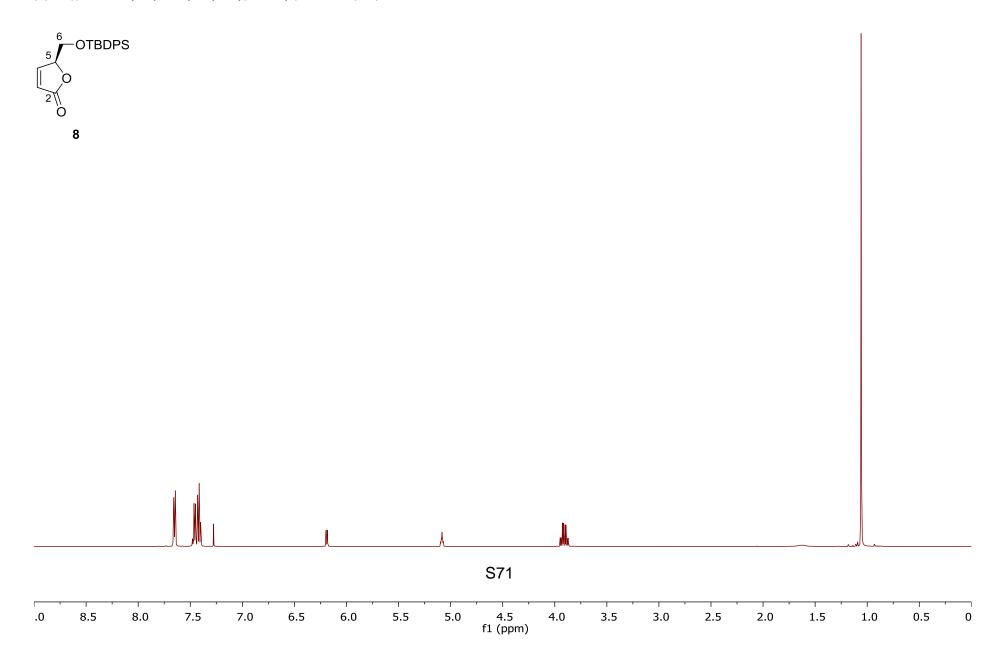

Formula: $C_{15}H_{22}O_3$; M_r = 250.32; crystal dimensions: 0.62 x 0.22 x 0.06 mm; crystal system: orthorhombic; space group: $P2_12_12_1$; α = 5.25570(10) Å, b = 10.3241(4) Å, c = 24.6007(9) Å, α = 90°, β = 90°, γ = 90°; V = 1334.84(8) ų; Z = 4; ρ_{calcd} = 1.246 Mg/m³; μ = 0.085 mm⁻¹; Mo $K\alpha$ radiation, λ = 0.71073 Å; T = 120(2) K; $2\Theta_{max}$ = 54.9°; 10722/3007 measured/independent reflections; R_{int} : 0.0442; R = 0.0418, wR = 0.0935; $\Delta\rho_{max}$ = 0.206 eÅ⁻³, $\Delta\rho_{min}$ = -0.208 eÅ⁻³. Colourless blade crystals gave good diffraction. The data were collected on a Nonius-Kappa CCD area detector mounted at the window of an FR591 rotating anode generator with a Mo anode and equipped with an Oxford Cryosystems cryostream device. Nonius COLLECT⁶ was used to record images and HKL (Denzo and Scalepack)⁷ was used for data integration. The structure was solved by direct methods using SHELXT⁸ and refined on F_0 ² by full-matrix least squares refinement using SHELXL.⁹ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added at calculated positions and refined using a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (Ueq) of the parent atom. The structure was deposited on the Cambridge Structural Database with the deposition number CCDC 1010197.

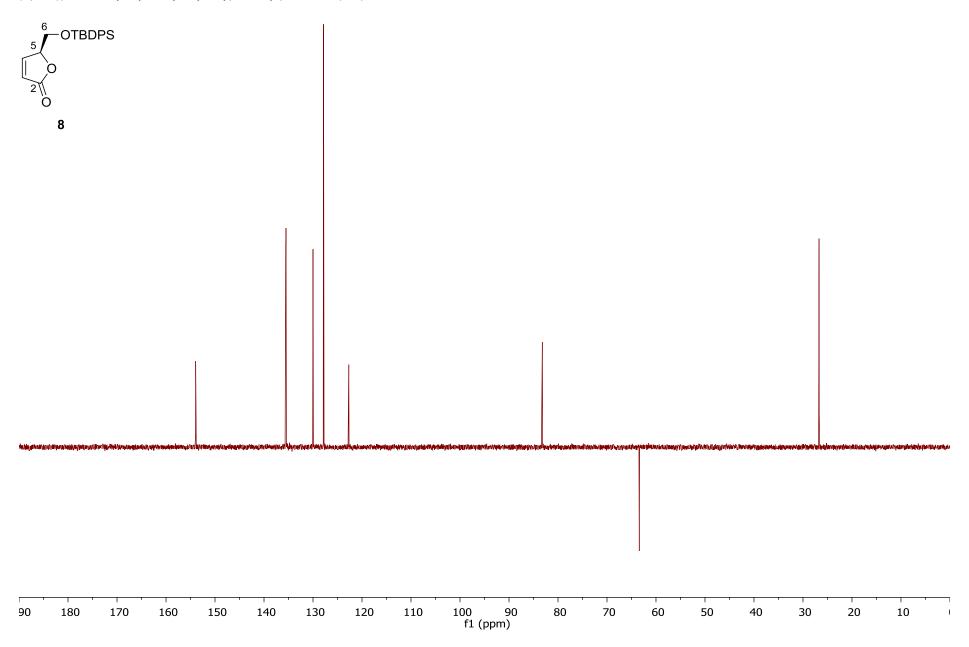
Formula: $C_{18}H_{24}O_3$; $M_r = 288.37$; crystal dimensions: 0.3 x 0.2 x 0.19 mm; crystal system: monoclinic; space group: $P2_1$; $\alpha = 10.801(3)$ Å, b = 11.564(3) Å, c = 12.083(4) Å, $\alpha = 90^{\circ}$, $\theta = 10.801(3)$ 90.15(3)°, $\gamma = 90^{\circ}$; V = 1509.2(8) Å³; Z = 4; $\rho_{calcd} = 1.269$ Mg/m³; $\mu = 0.085$ mm⁻¹; Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$; T = 120(2) K; $2\Theta_{\text{max}} = 50.2^{\circ}$; 9752/9752 measured/independent reflections; R_{int} : N/A; R = 0.0899, wR = 0.2274; $\Delta \rho_{\text{max}} = 0.348$ eÅ⁻³, $\Delta \rho_{\text{min}} = -0.308$ eÅ⁻³. Colourless block crystals were poorly diffracting with no significant data beyond 0.84Å resolution and also non-merohedrally twinned, with a twinning ratio of 0.537:0.463. The twinned components were related by 179.8° rotation about reciprocal lattice vector 001. The data were collected on a Nonius-Kappa CCD area detector mounted at the window of an FR591 rotating anode generator with a Mo anode and equipped with an Oxford Cryosystems cryostream device. Nonius COLLECT⁶ was used to record images and RigakuOD CrysAlisPro¹⁰ was used for data integration. The structure was solved by direct methods using SHELXT⁸ and refined on F_o² by full-matrix least squares refinement using SHELXL.⁹ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added at calculated positions and refined using a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (Ueg) of the parent atom. The structure was deposited on the Cambridge Structural Database with the deposition number CCDC 1011320.

Formula: $C_{17}H_{24}O_3$; M_r = 276.36; crystal dimensions: 0.4 x 0.2 x 0.03 mm; crystal system: orthorhombic; space group: $P2_12_12_1$; α = 5.7992(6) Å, b = 12.0419(10) Å, c = 20.795(2) Å, α = 90°, β = 90°, γ = 90°; V = 1452.2(2) ų; Z = 4; ρ_{calcd} = 1.264 Mg/m³; μ = 0.085 mm⁻¹; Mo $K\alpha$ radiation, λ = 0.71073 Å; T = 120(2) K; $2\Theta_{max}$ = 54.9°; 17321/3252 measured/independent reflections; R_{int} : 0.1130; R = 0.1002, wR = 0.2476; $\Delta\rho_{max}$ = 0.534 eÅ⁻³, $\Delta\rho_{min}$ = -0.400 eÅ⁻³. Colourless plate crystals were poorly diffracting. The data were collected on a Nonius-Kappa CCD area detector mounted at the window of an FR591 rotating anode generator with a Mo anode and equipped with an Oxford Cryosystems cryostream device. Nonius COLLECT⁶ was used to record images and RigakuOD CrysAlisPro¹⁰ was used for data integration. The structure was solved by direct methods using SHELXT⁸ and refined on F₀² by full-matrix least squares refinement using SHELXL.⁹ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added at calculated positions and refined using a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (Ueq) of the parent atom. The structure was deposited on the Cambridge Structural Database with the deposition number CCDC 1435146.

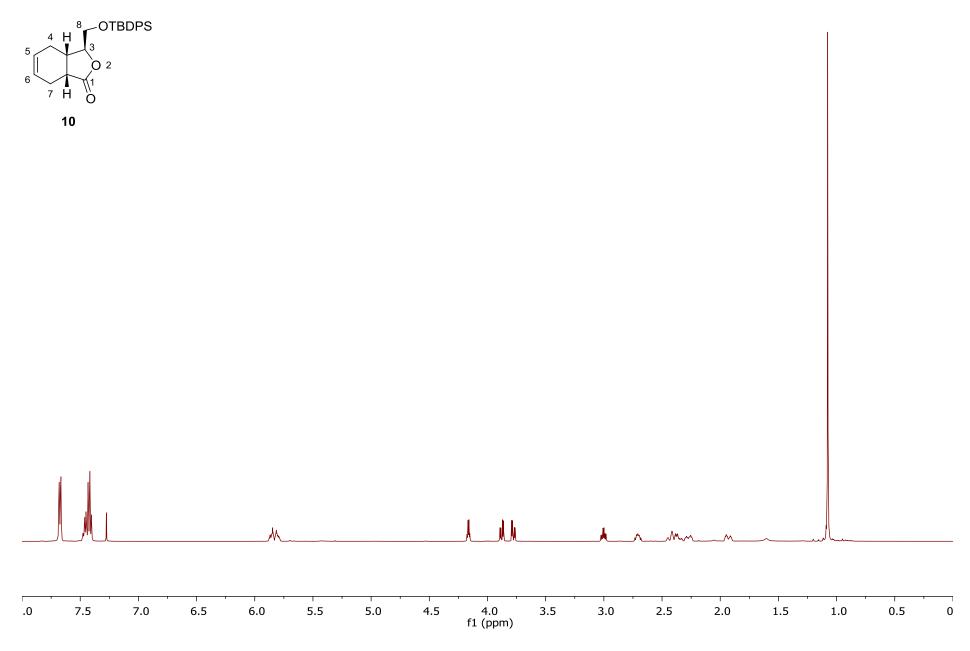
Formula: $C_{15}H_{24}O_4$; $M_r = 268.34$; crystal dimensions: 0.45 x 0.4 x 0.38 mm; crystal system: orthorhombic; space group: $P2_12_12_1$; $\alpha = 9.16700(10)$ Å, b = 10.5275(2) Å, c = 14.3960(3) Å, $\alpha = 10.5275(2)$ Å, α = 90°, θ = 90°, γ = 90°; V = 1389.29(4) Å³; Z = 4 ρ_{calcd} = 1.283 Mg/m³; μ = 0.091 mm⁻¹; Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$; T = 120(2) K; $2\Theta_{\text{max}} = 55.4^{\circ}$; 14418/3181 measured/independent reflections; R_{int} : 0.0361; R = 0.0324, wR = 0.0756; $\Delta \rho_{\text{max}} = 0.178$ eÅ⁻³, $\Delta \rho_{\text{min}} = -0.174$ eÅ⁻³. Colourless block crystals diffracted well. The data were collected on a Nonius-Kappa CCD area detector mounted at the window of an FR591 rotating anode generator with a Mo anode and equipped with an Oxford Cryosystems cryostream device. Nonius COLLECT⁶ was used to record images and HKL (Denzo and Scalepack)⁷ was used for for data integration. The structure was solved by direct methods using SHELXS¹¹ and refined on F_o² by full-matrix least squares refinement using SHELXL.9 All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added at calculated positions and refined using a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (Ueq) of the parent atom. The structure was deposited on the Cambridge Structural Database with the deposition number CCDC 1435148.

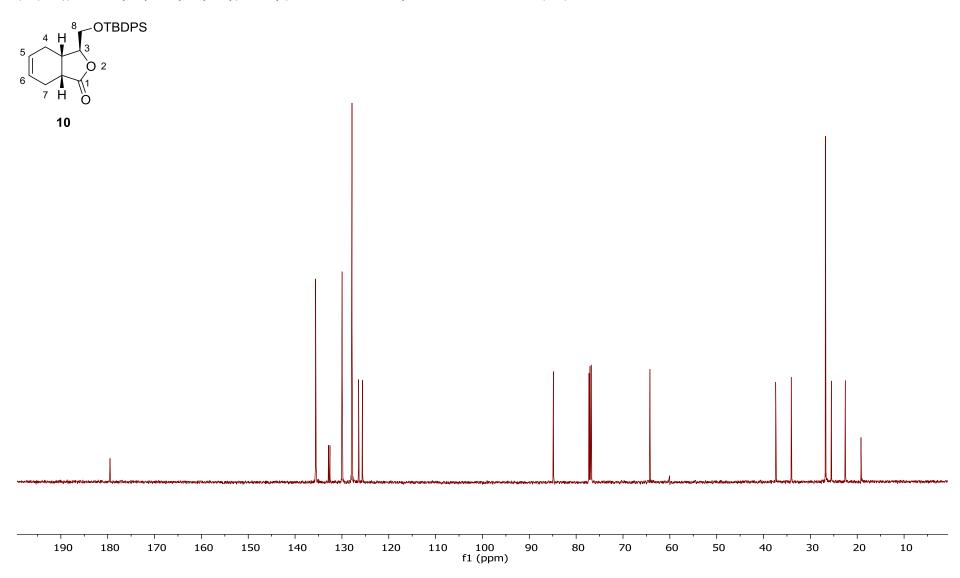
NCI cytotoxicity screening compounds

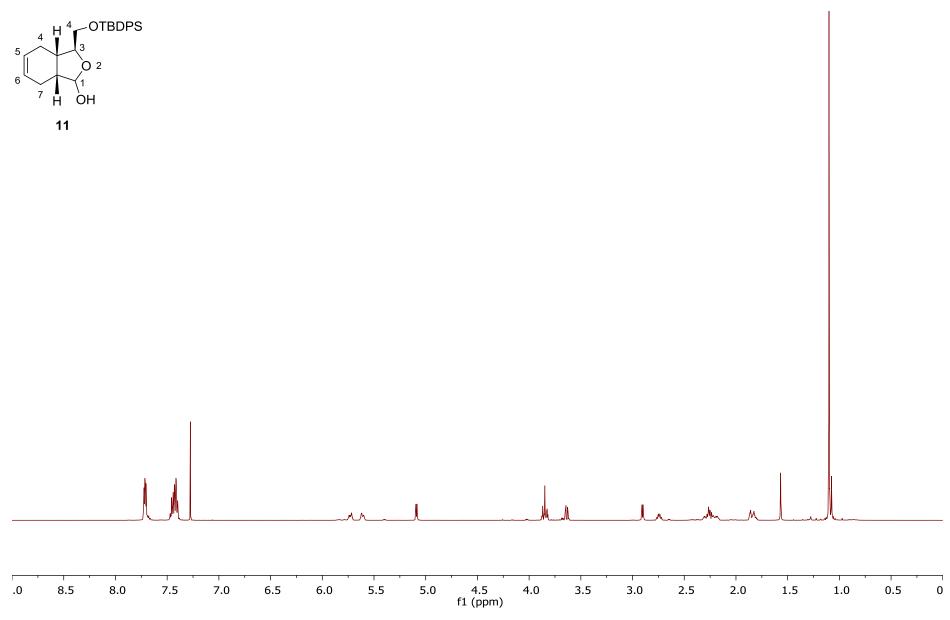

Figure S2: Compounds screened at the NCI for cytotoxicity in a 60 cell line panel

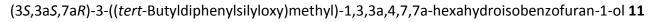
References

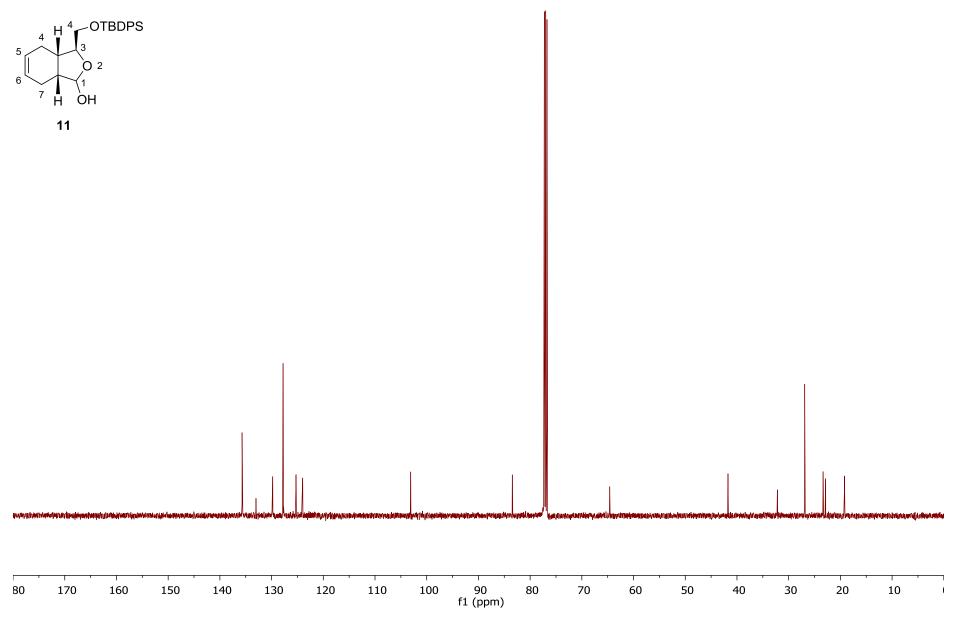

- 1. J. Mann, A. Thomas, *Chem. Commun.* **1985**, 737-738.
- 2. S. Hanessian, P. J. Murray, *J Org Chem*, **1987**, *52*, 1170-1172.
- 3. J. Mann, A. Thomas, J Chem Soc., Perkin Trans 1, 1986, 2279-2285.
- 4. Simca-P+ 12.0, Umertrics, Umeâ, Sweden, http://www.umetrics.com/
- 5. Spotfile Decision Site, Tibco, Palo Alto, CA, USA, http://spotfire.tibco.com/
- 6. R. W. W. Hooft, COLLECT data collection software, Nonius B.V., 1998.
- 7. Z. Otwinowski, W. Minor, Macromolecular Crystallography, Pt A. 1997; 276, 307-326.
- 8. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 9. G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 10. CrysAlisPro Software System, Rigaku Oxford Diffraction, Yarnton, Oxford, UK, 2015.
- 11. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.

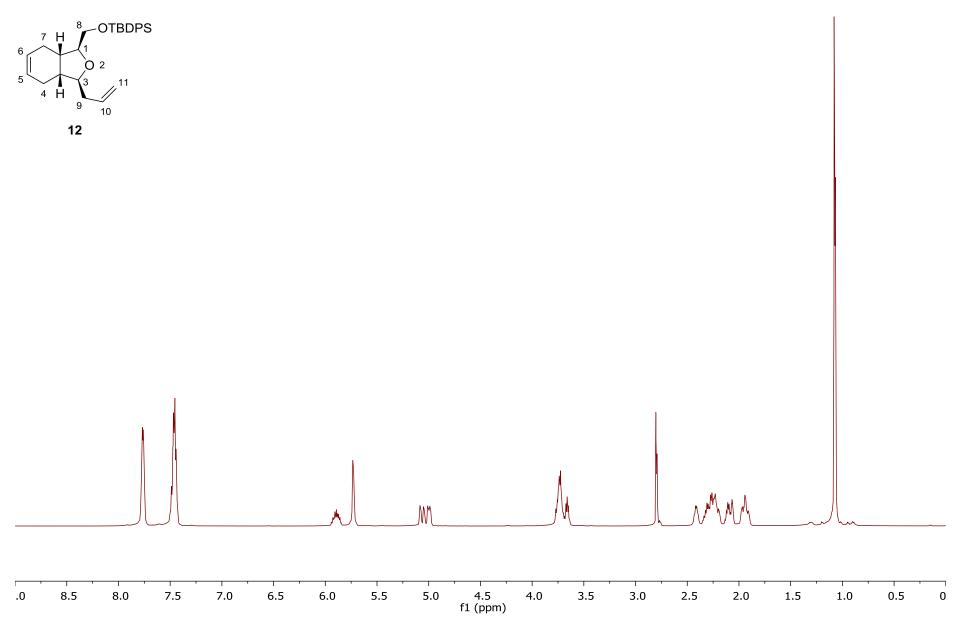


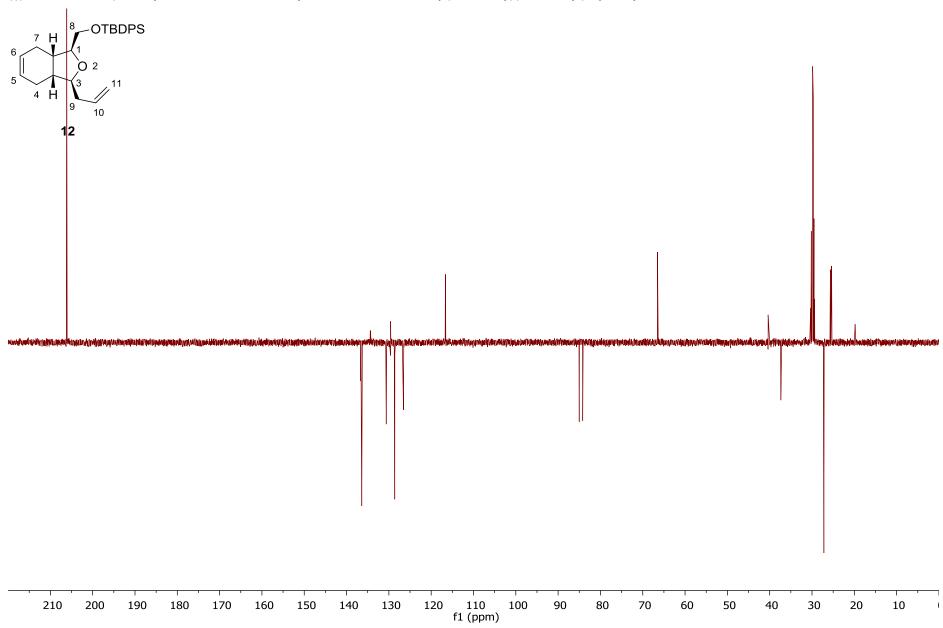
(S)-5-((tert-Butyldiphenylsilyloxy)methyl)furan-2-(5H)one 8

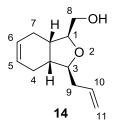


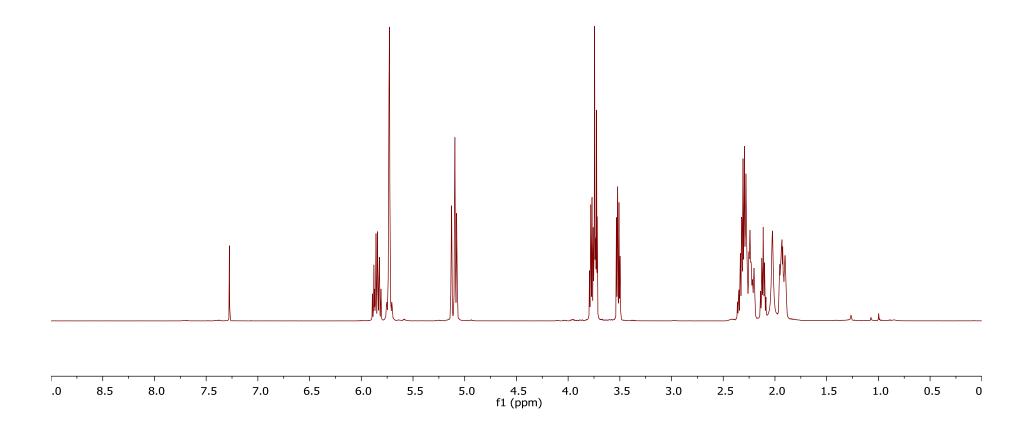

$(3S)-3-((\textit{tert}-\mathsf{Butyldiphenylsilyloxy}) methyl)-3a,4,7,7a-tetrahydroisobenzofuran-1-(3\textit{H})-one~\textbf{10}$

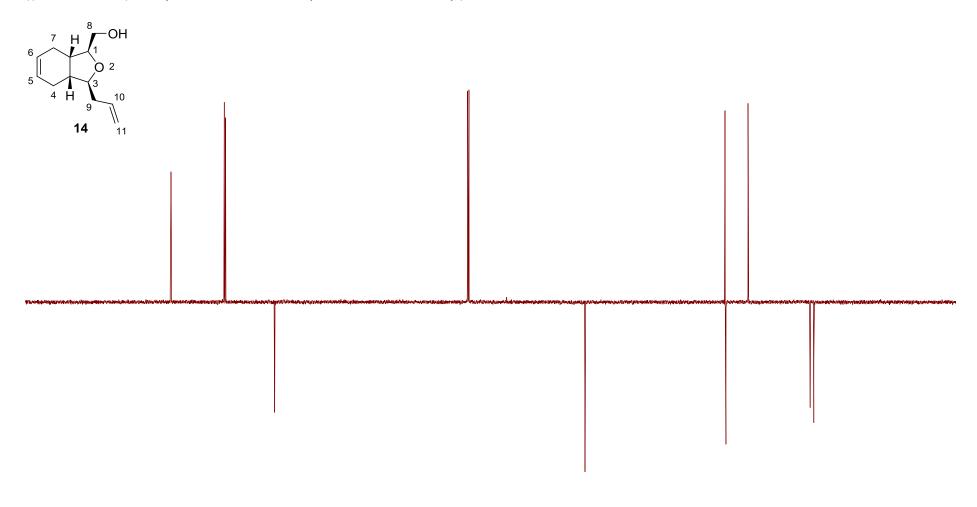


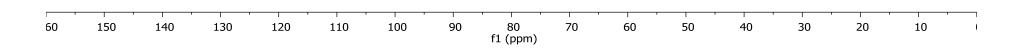



(3S,3aS,7aR)-3-((tert-Butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-ol 11

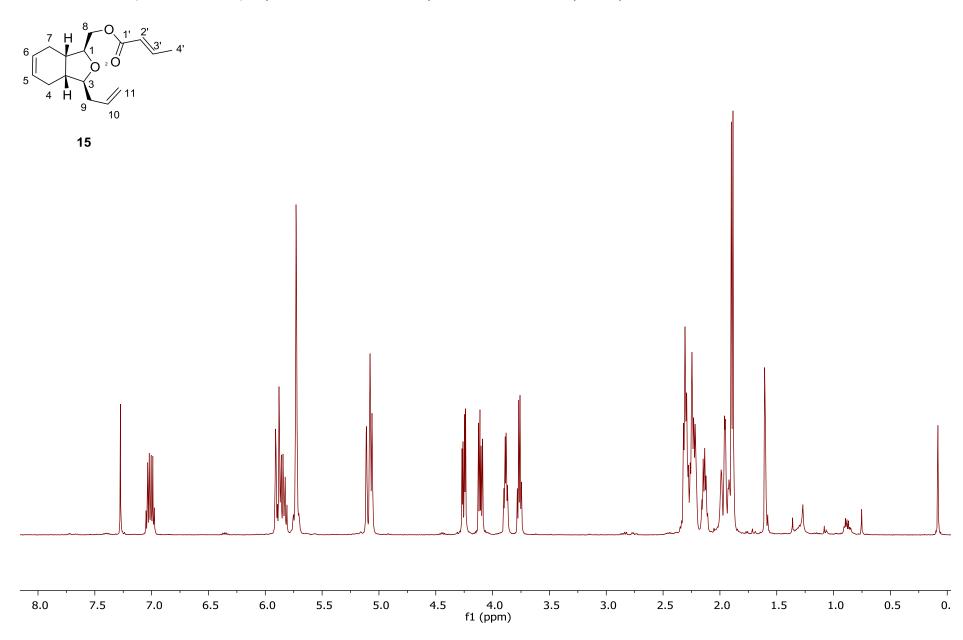


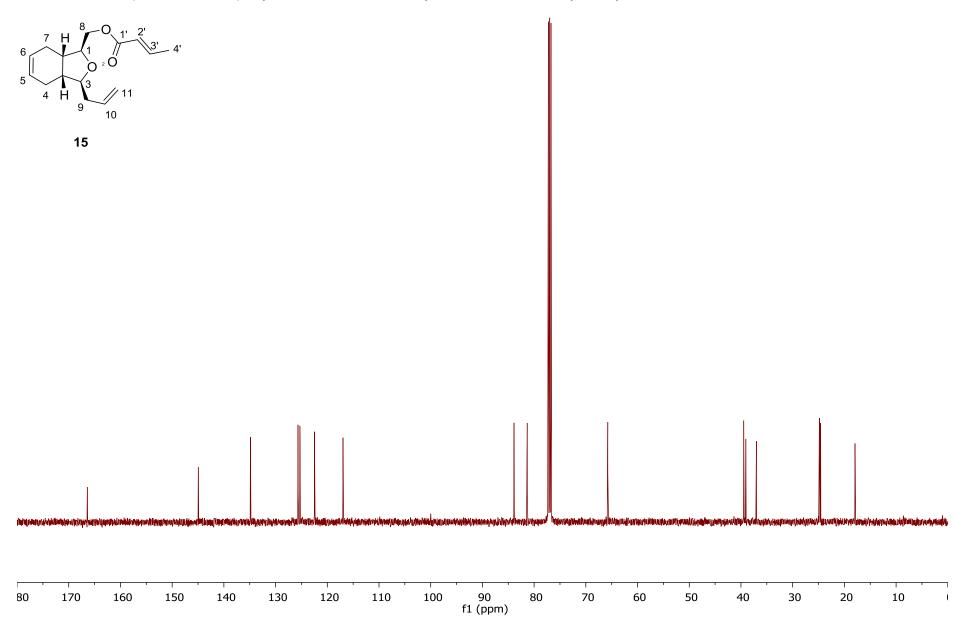


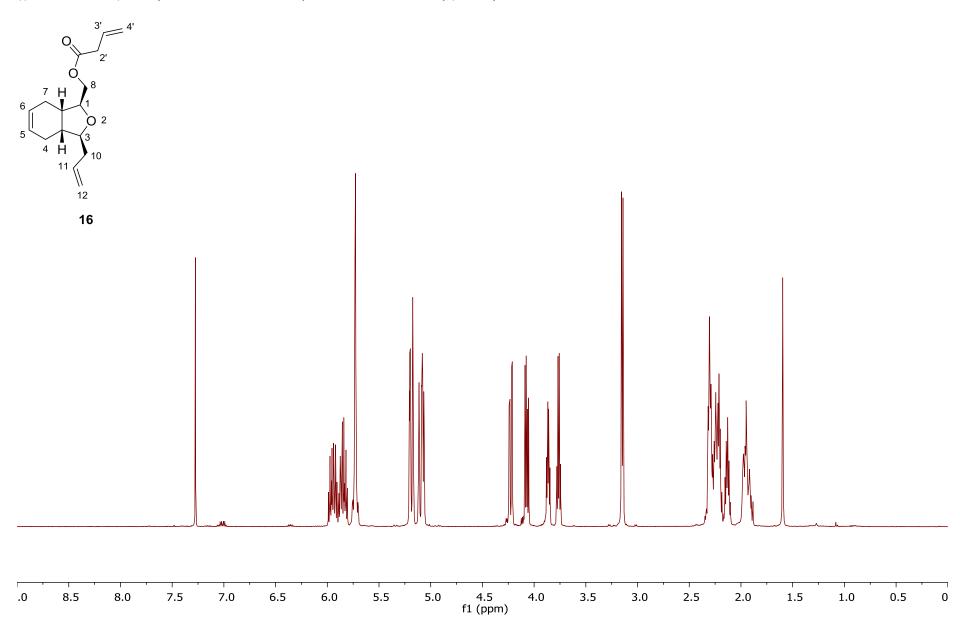




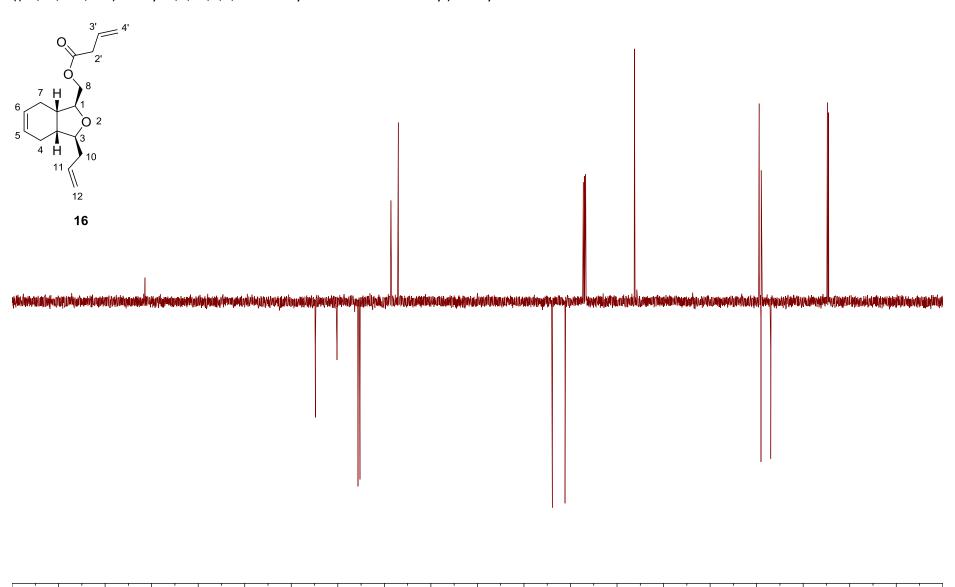
((15,35,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methanol **14**



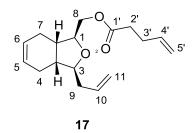


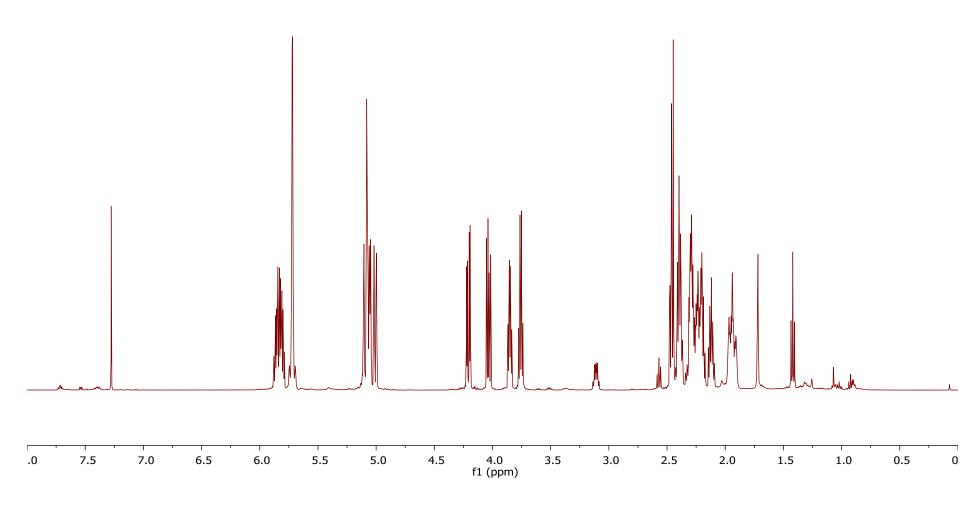


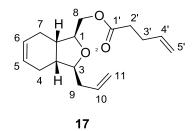
But-2'-enoic acid (15, 35, 3aR, 7aS)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester 15

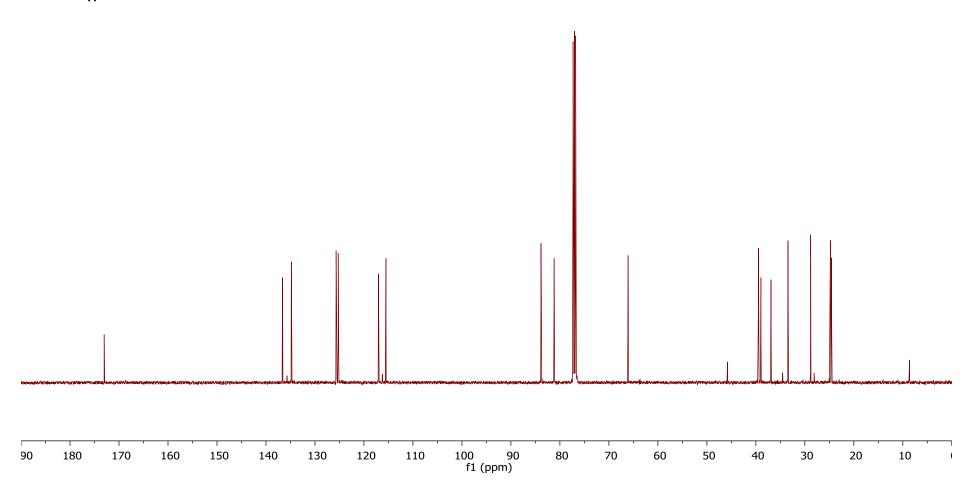


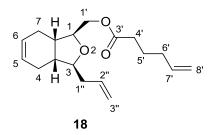
But-2'-enoic acid (15, 35, 3aR, 7aS)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester 15

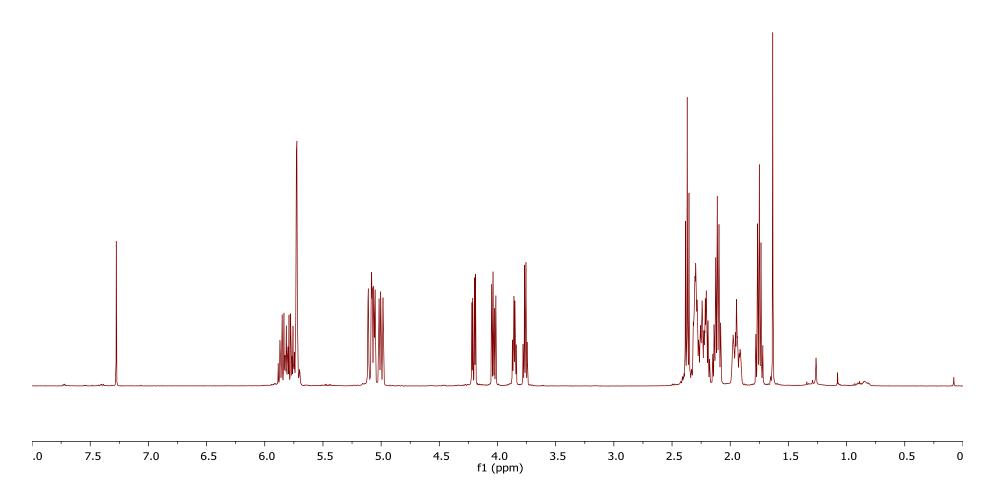


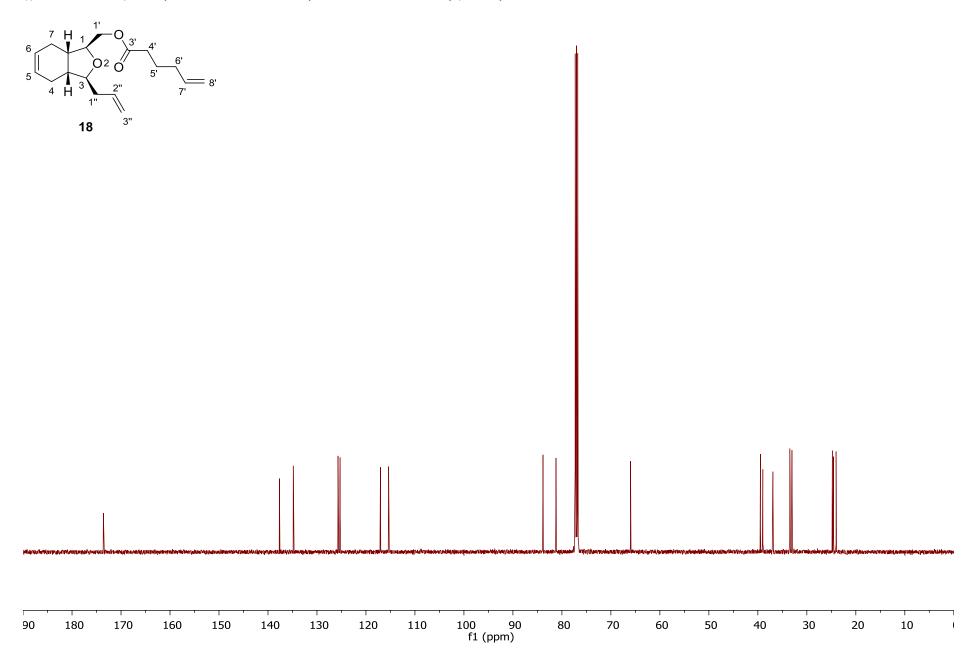

$((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl) methyl but-3'-enoate {\bf 16}$

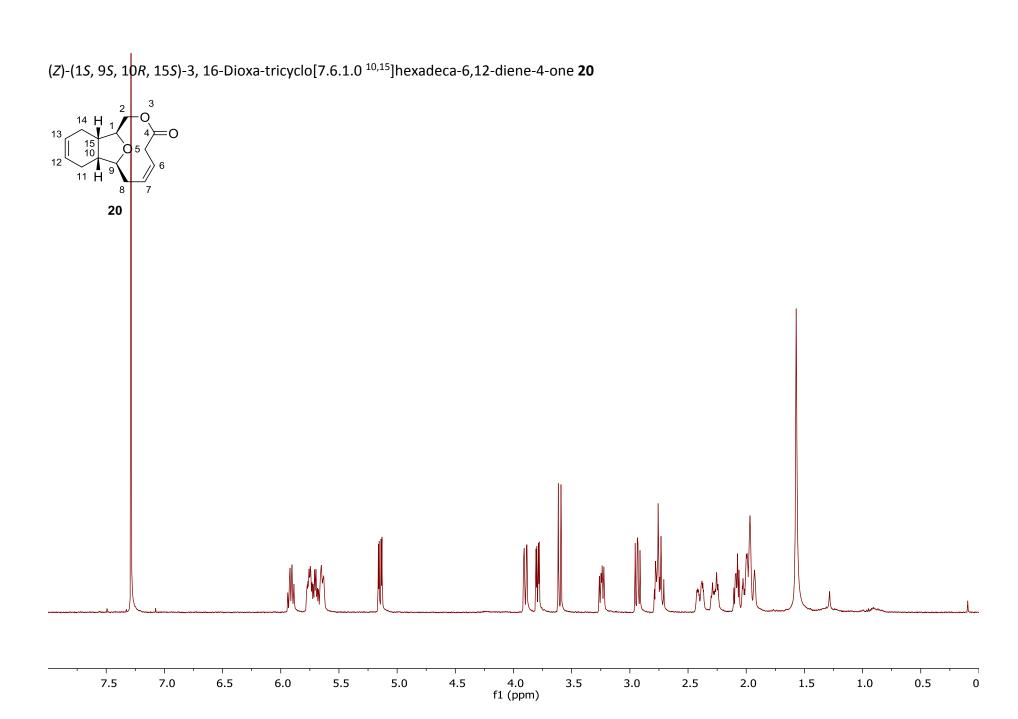

f1 (ppm)

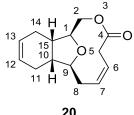

Pent-4'enoic acid (1*S*, 3*S*, 3a*R*, 7a*S*)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester **17**

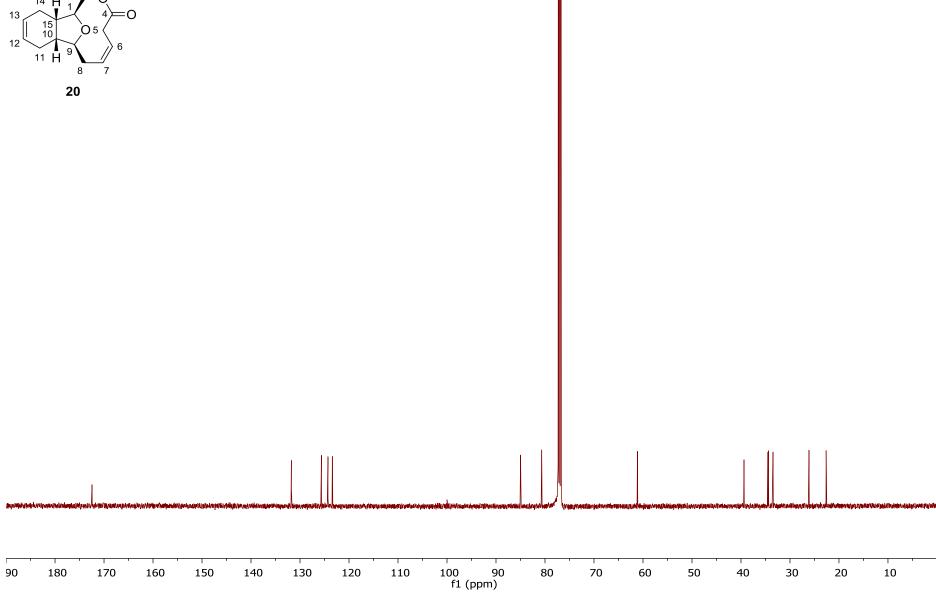


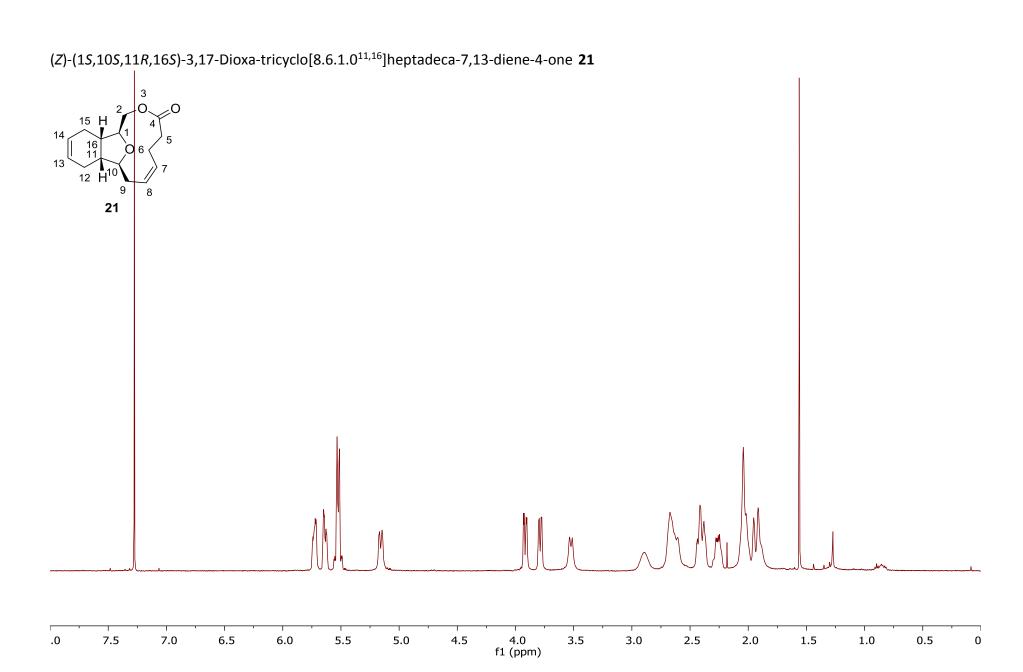

Pent-4'enoic acid (1*S*, 3*S*, 3a*R*, 7a*S*)-allyl-1, 3, 3a, 4, 7, 7a-hexahydro-isobenzofuran-8-ylmethyl ester **17**

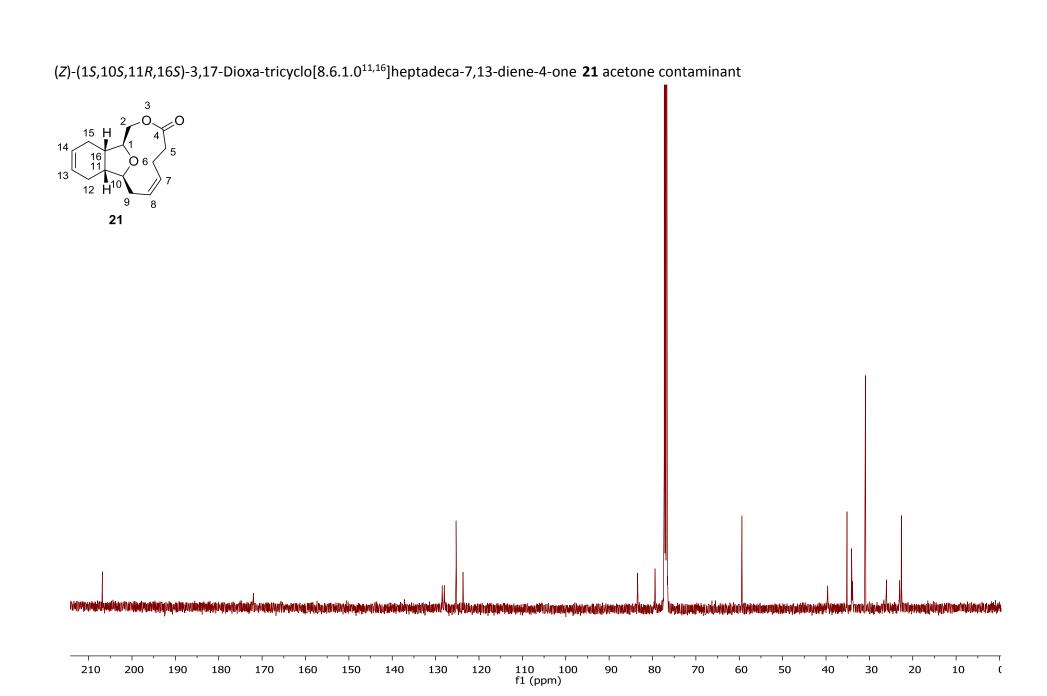


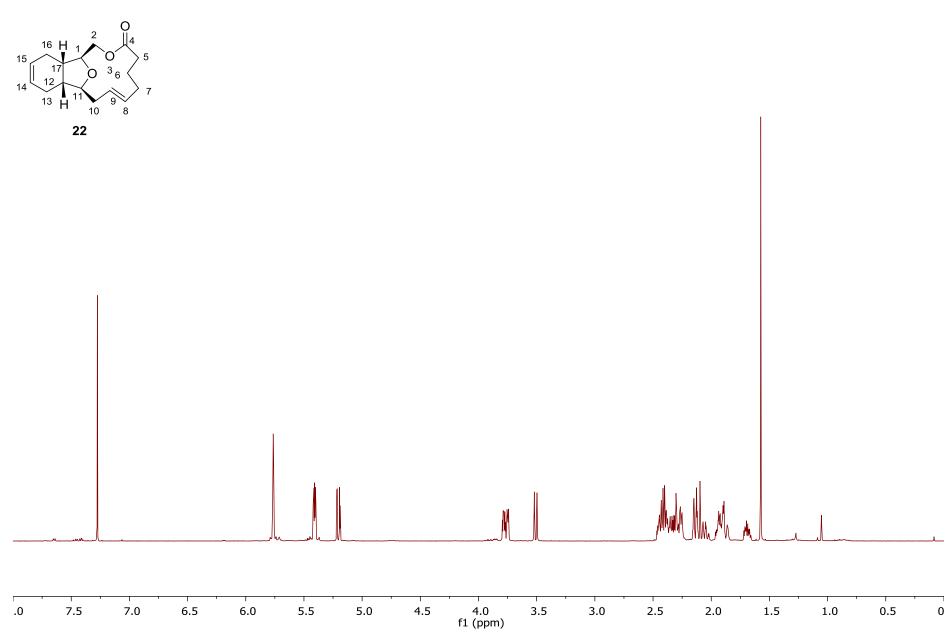

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methyl hex-5-enoate 18

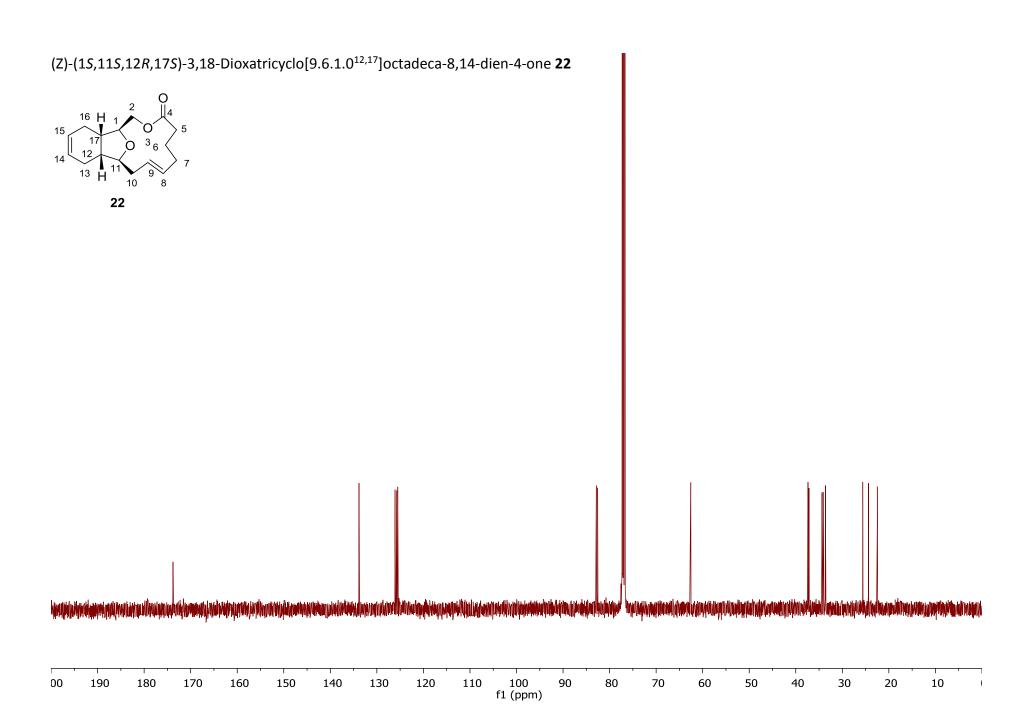


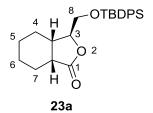

((1S,3S,3aR,7aS)-3-Allyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)methyl hex-5-enoate 18

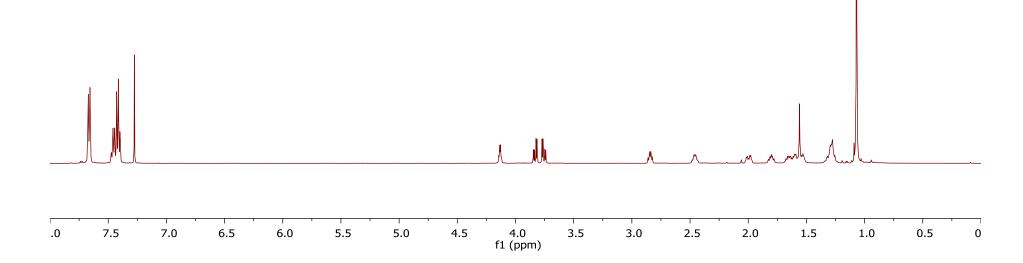


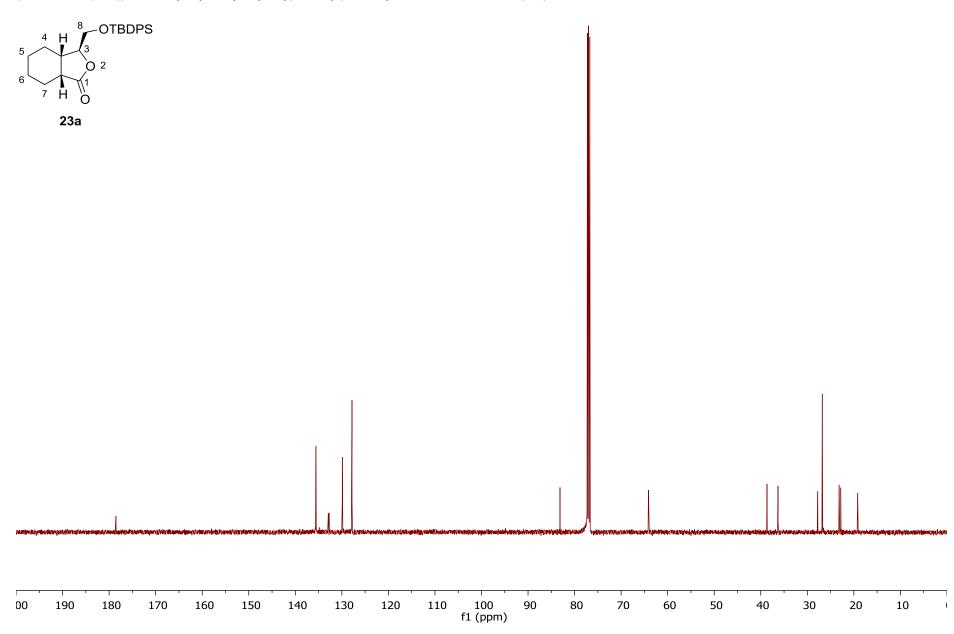


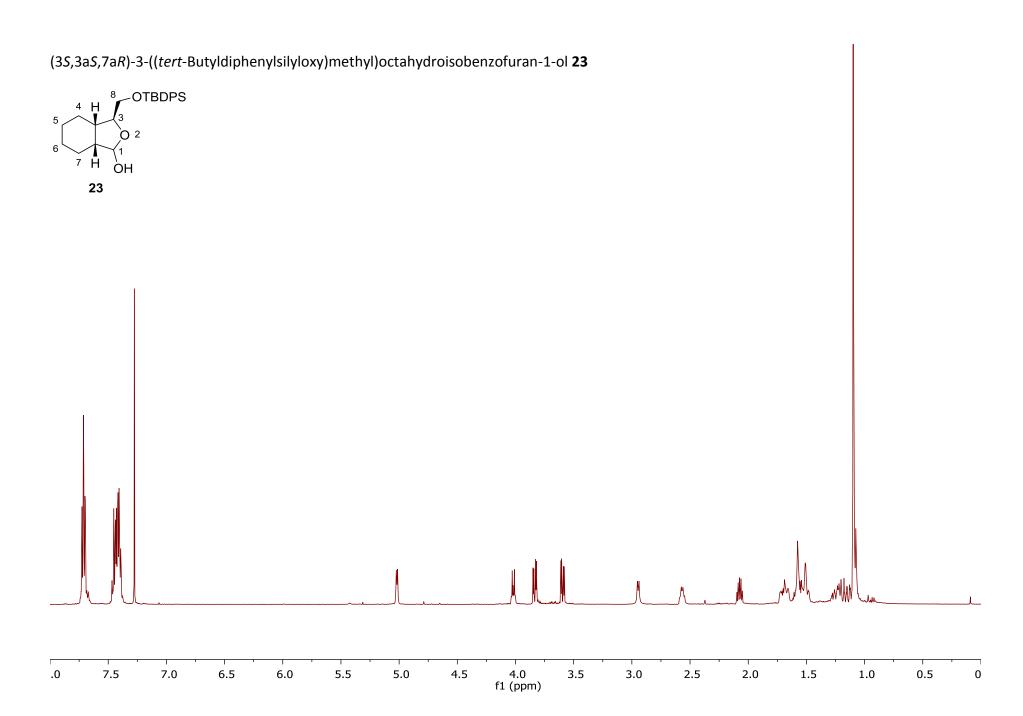


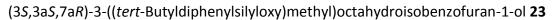


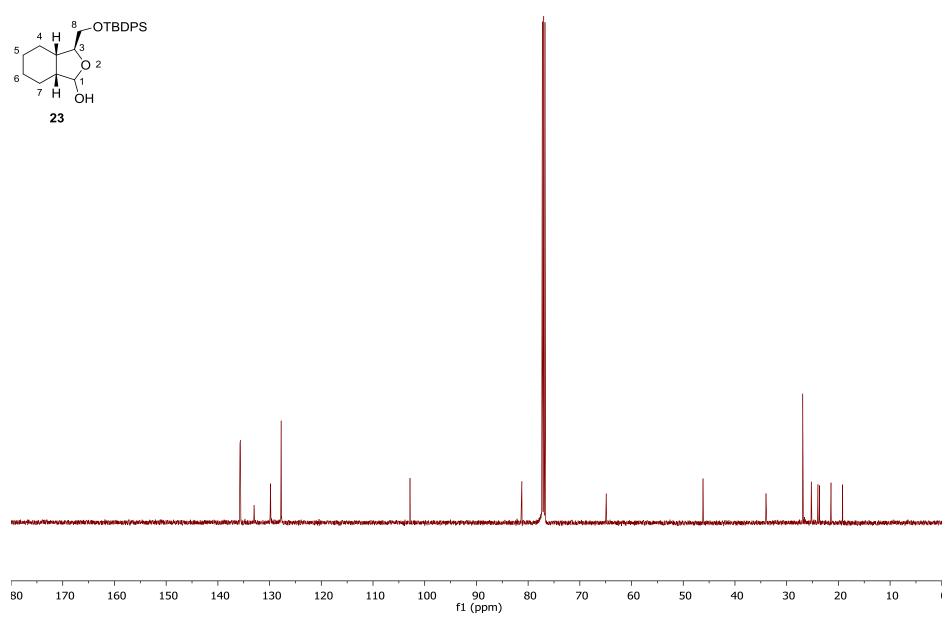


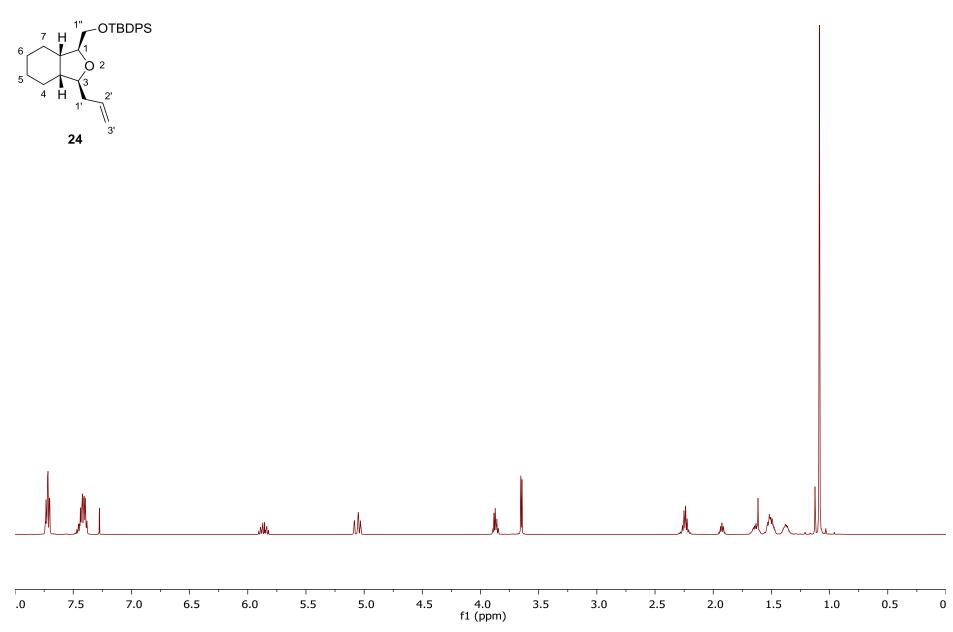

(Z)-(1S,11S,12R,17S)-3,18-Dioxatricyclo[9.6.1.0^{12,17}]octadeca-8,14-dien-4-one **22**

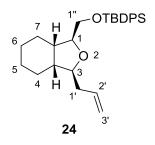


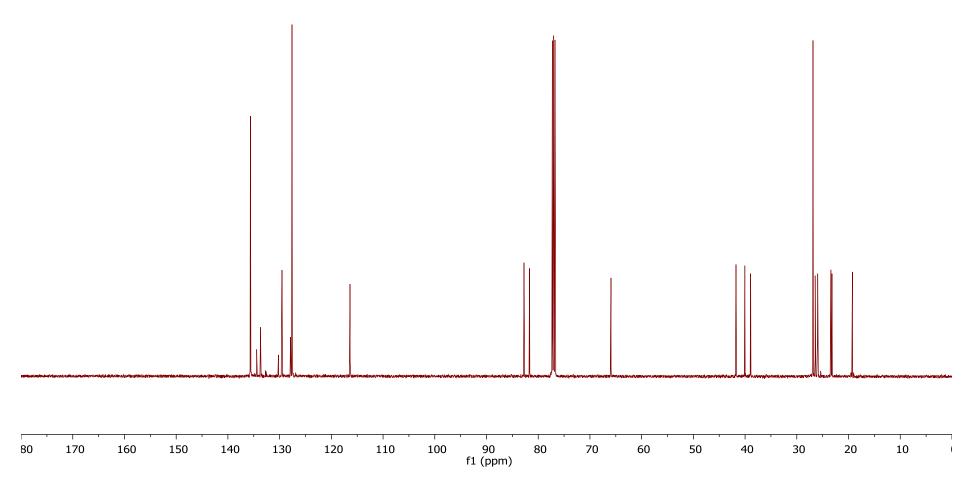


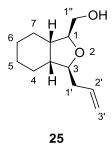


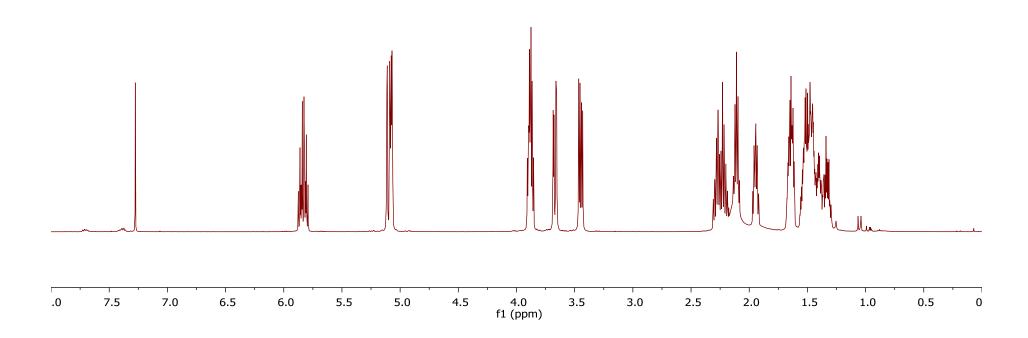


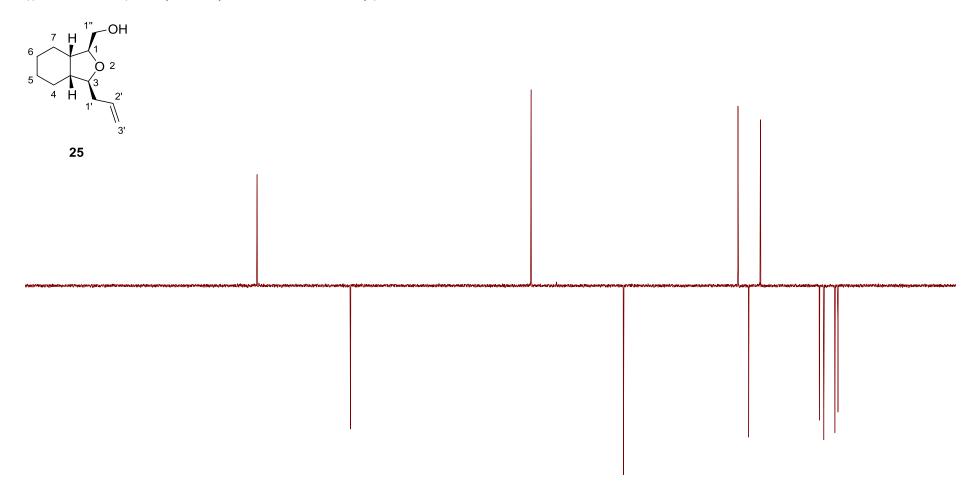


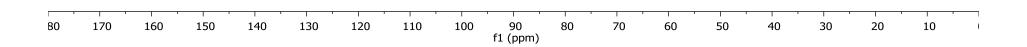


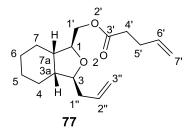


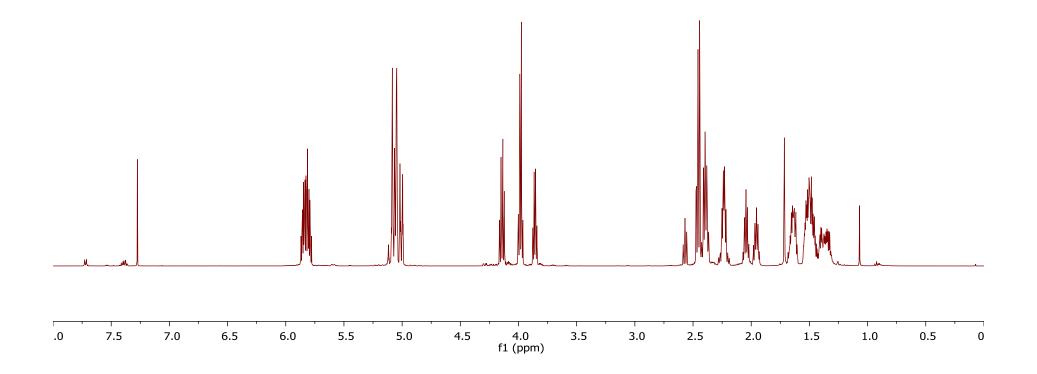


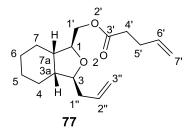

((1S, 3S, 3aR, 7aS) - 3 - Allyl-octahydro-isobenzofuran - 1 - ylmethoxy) - tert-butyldiphenylsilane~24

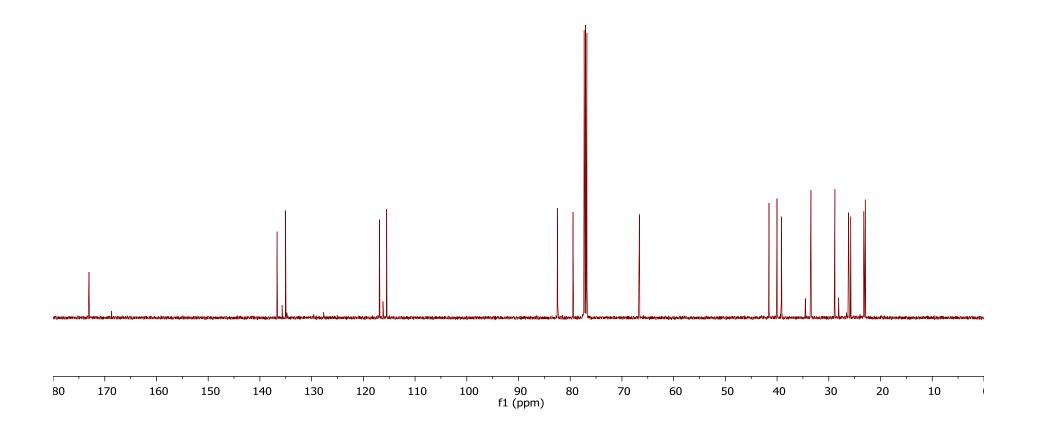


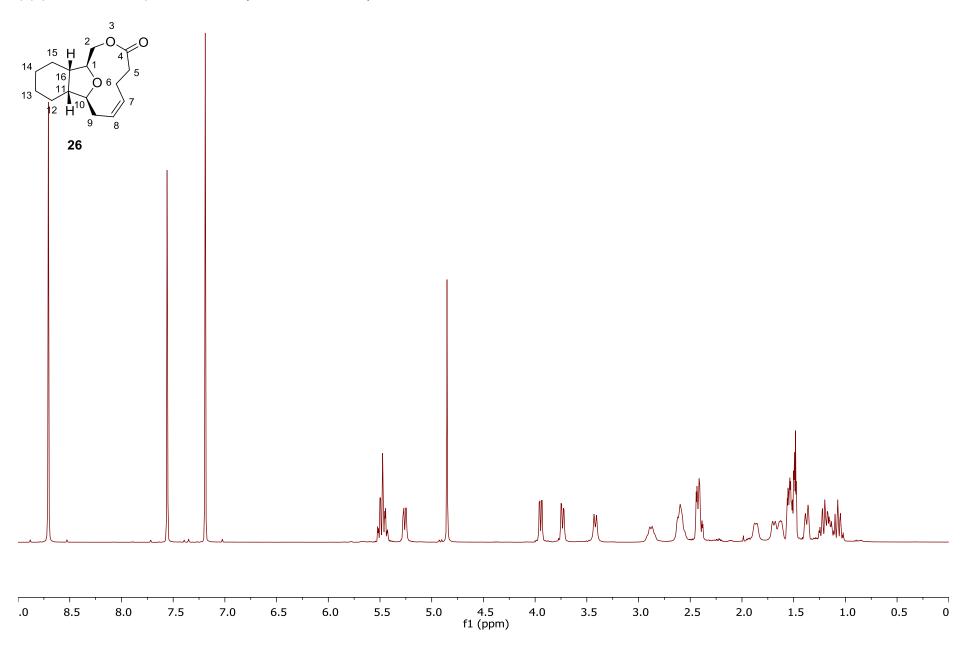

((15,35,3aR,7aS)-3-Allyl-octahydro-isobenzofuran-1-yl)-methanol 25

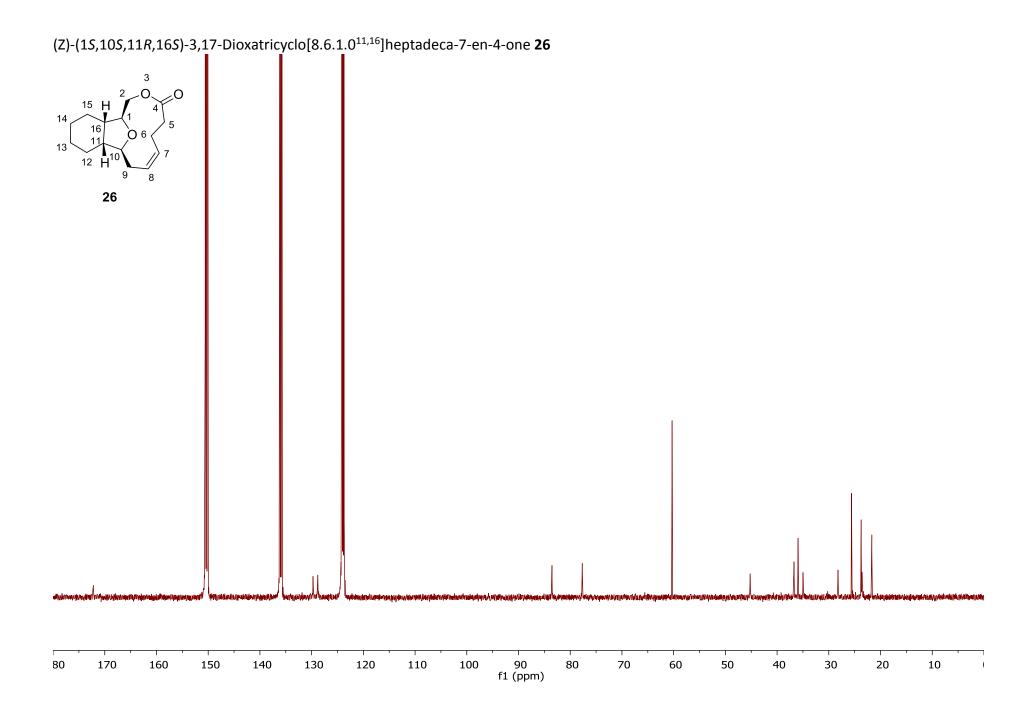


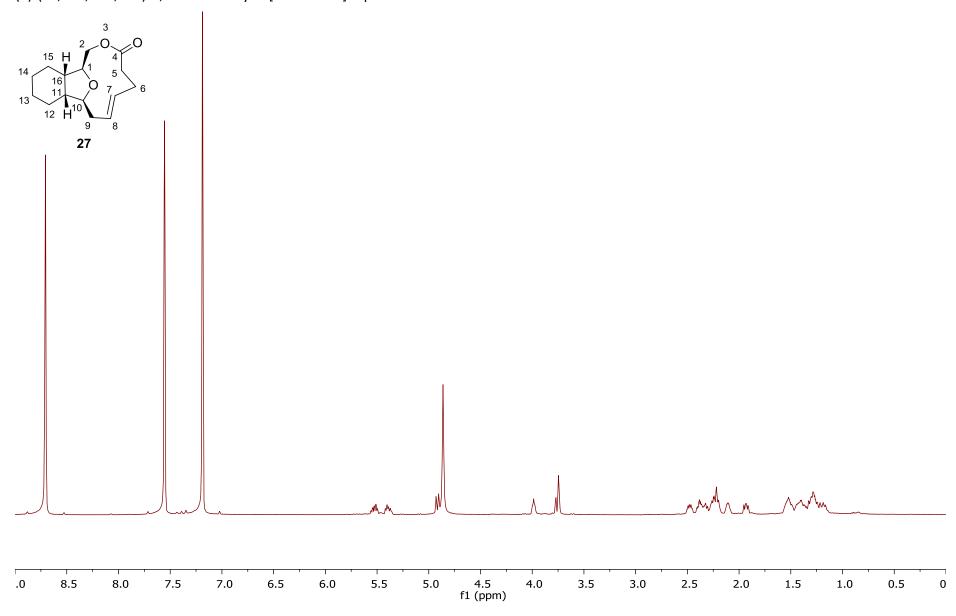

((15,35,3aR,7aS)-3-Allyl-octahydro-isobenzofuran-1-yl)-methanol 25

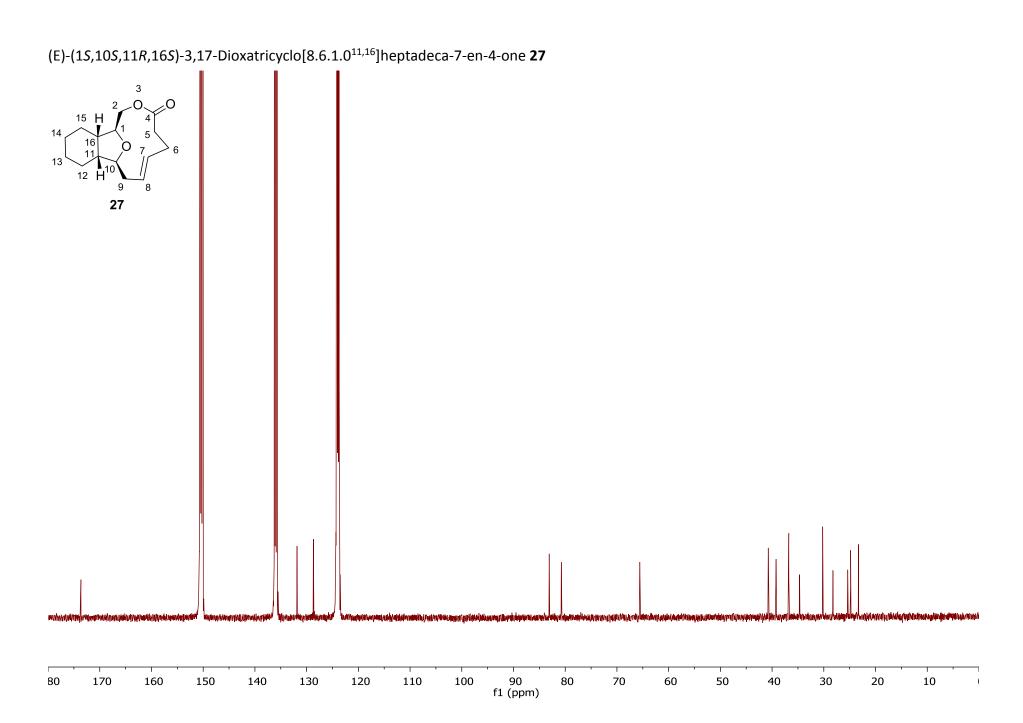


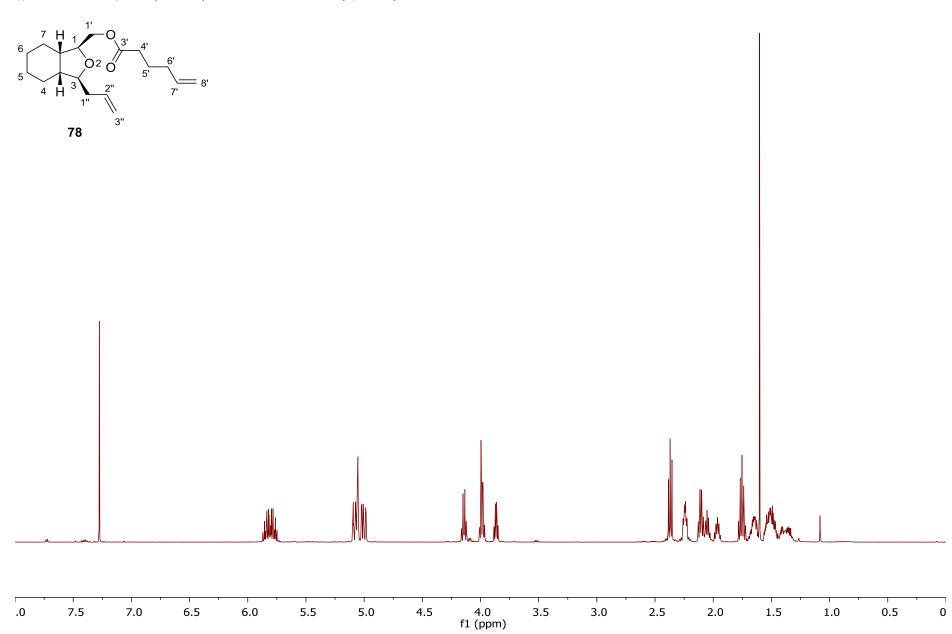

((1S,3S,3aR,7aS)-3-allyloctahydroisobenzofuran-1-yl)methyl pent-4-enoate 77

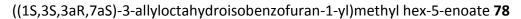


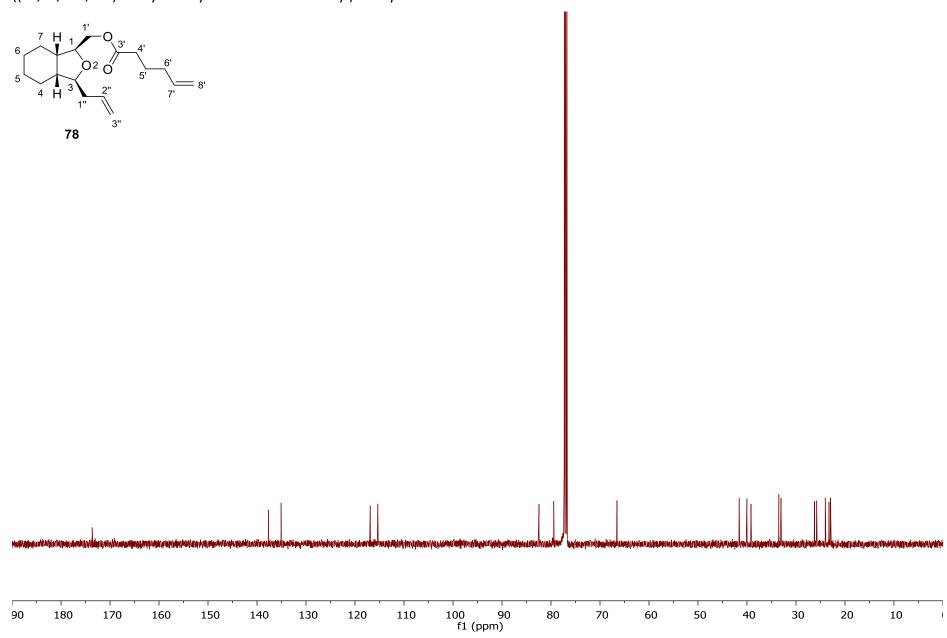

((1S,3S,3aR,7aS)-3-allyloctahydroisobenzofuran-1-yl)methyl pent-4-enoate 77

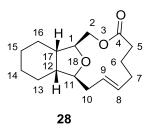


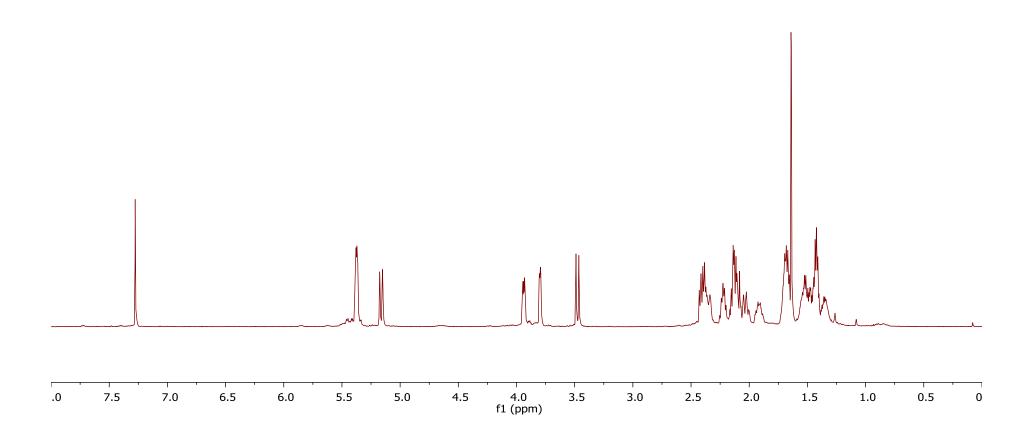

(Z)-(1S,10S,11R,16S)-3,17-Dioxatricyclo[8.6.1.0^{11,16}]heptadeca-7-en-4-one **26**

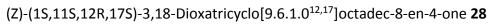


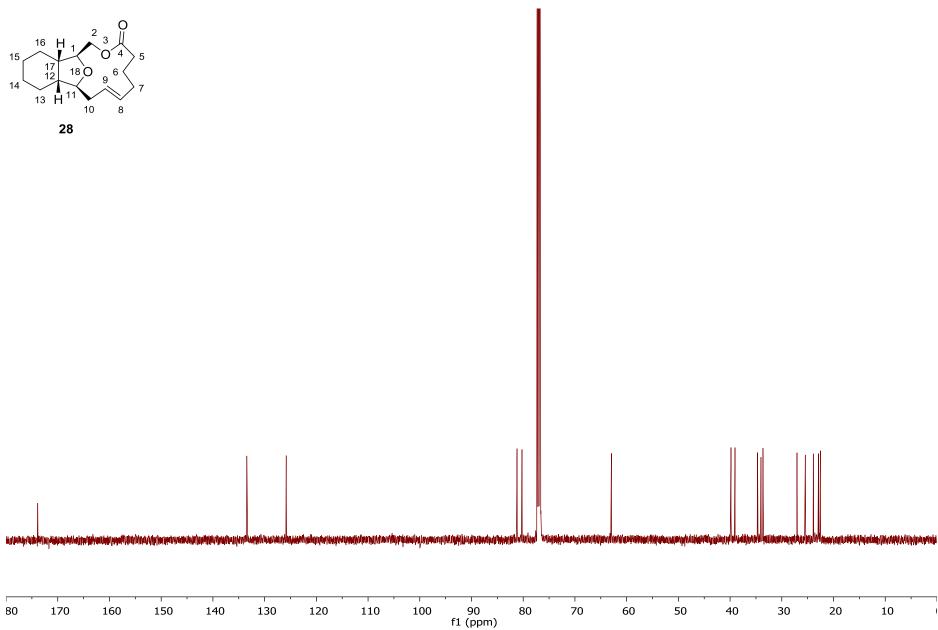




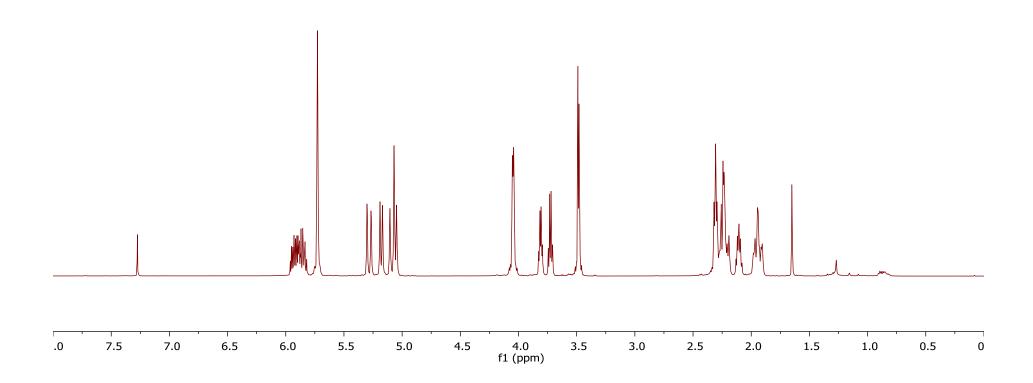


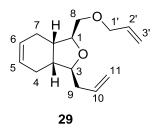


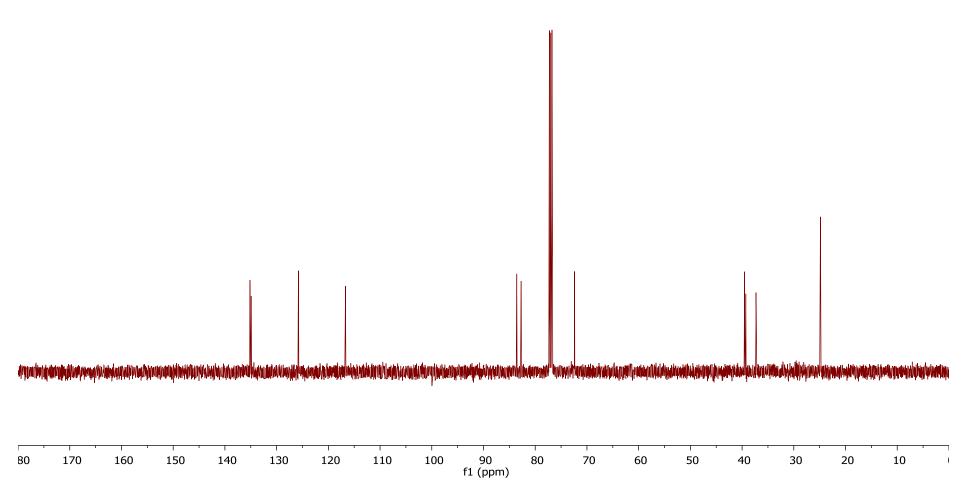


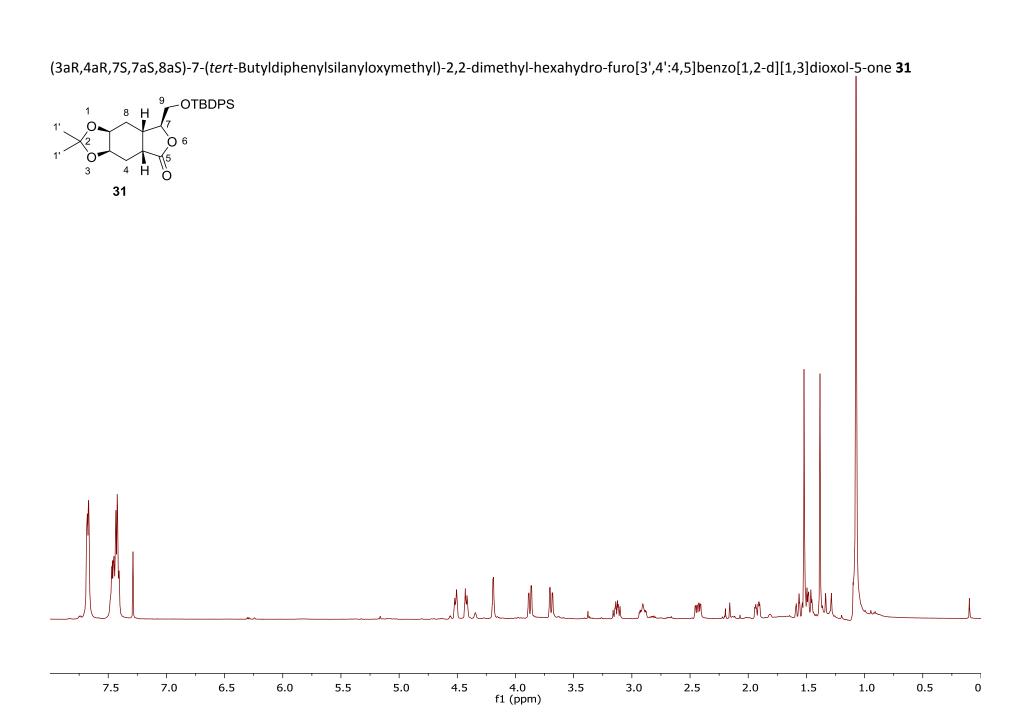


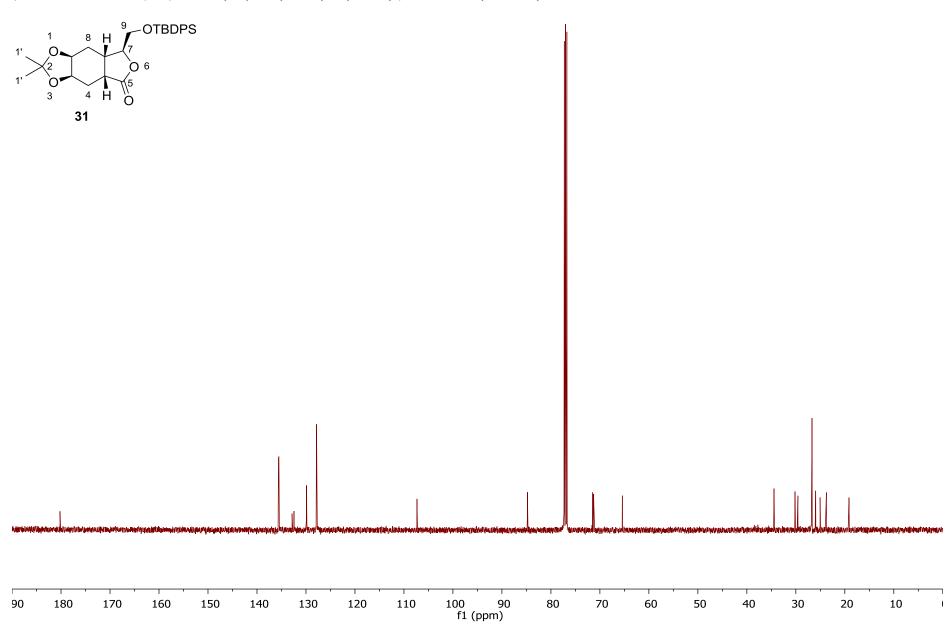
(Z)-(1S,11S,12R,17S)-3,18-Dioxatricyclo[9.6.1.0^{12,17}]octadec-8-en-4-one **28**

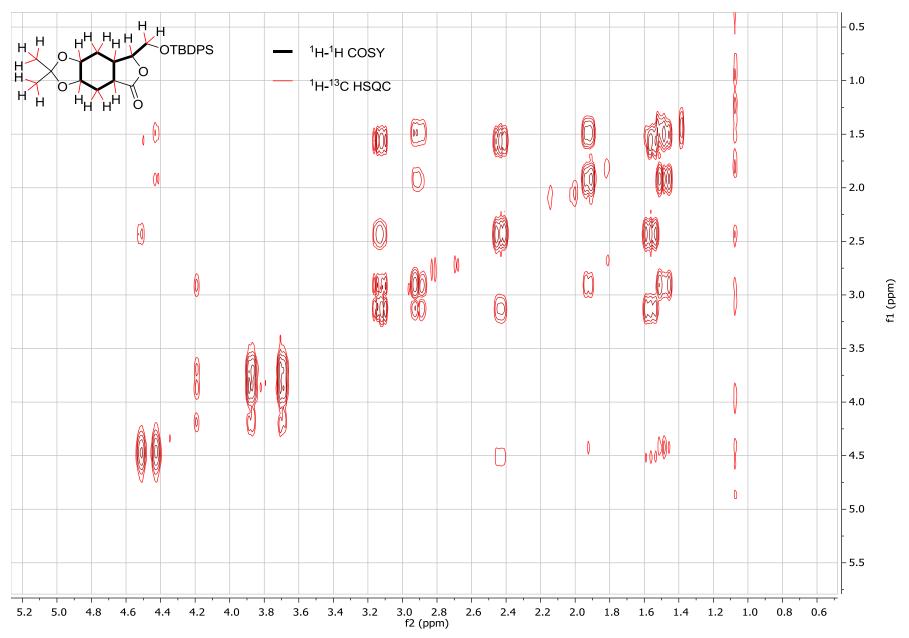


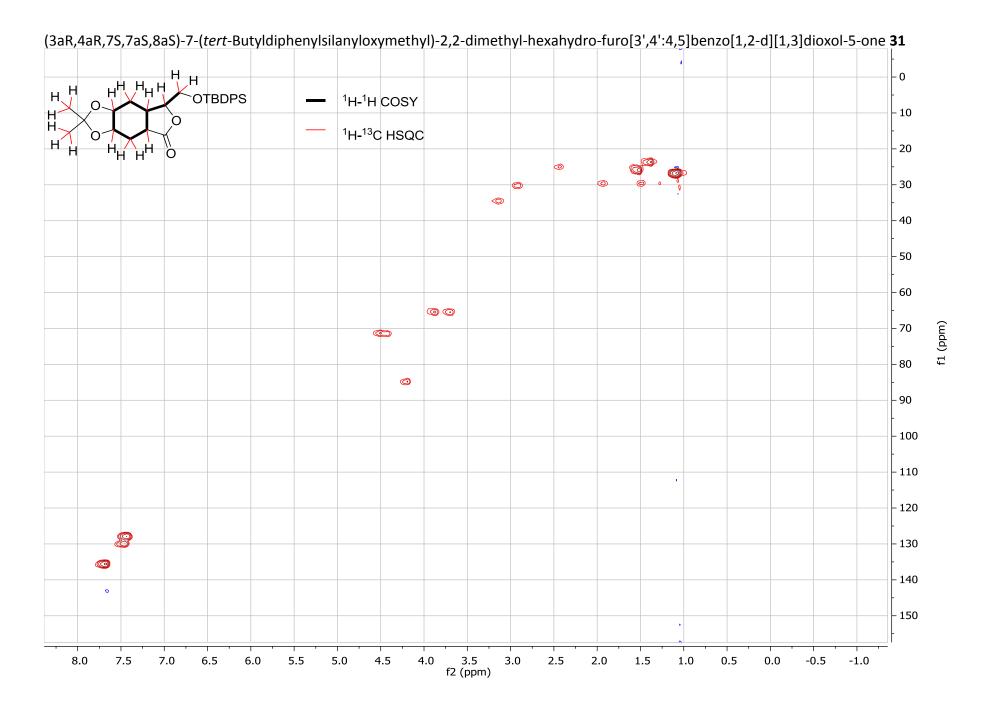


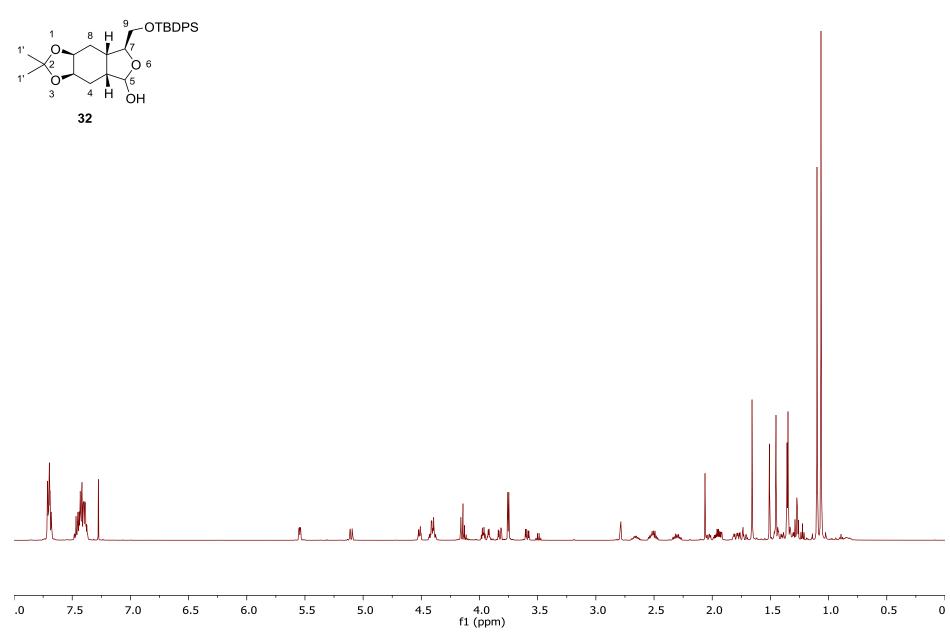


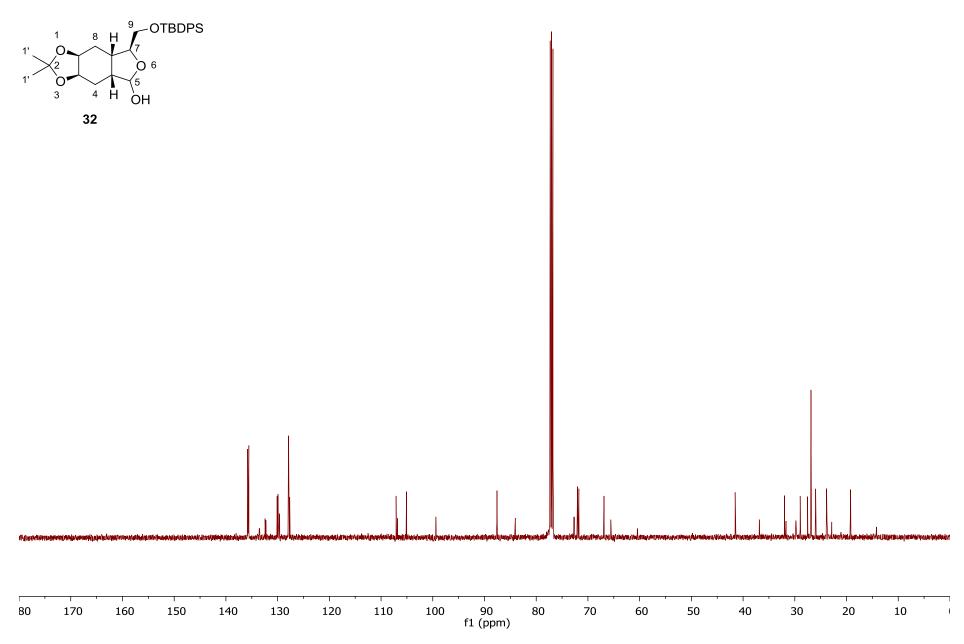

(15,35,3a5,7aR)-1-Allyl-3-(allyloxymethyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran 29

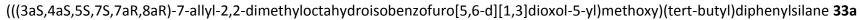

(1S,3S,3aS,7aR)-1-Allyl-3-(allyloxymethyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran 29

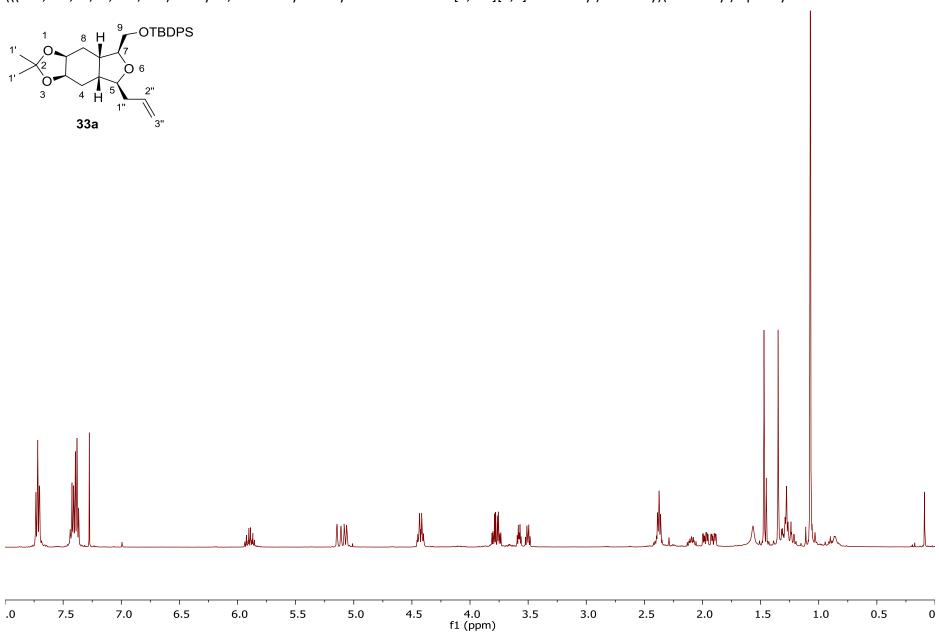


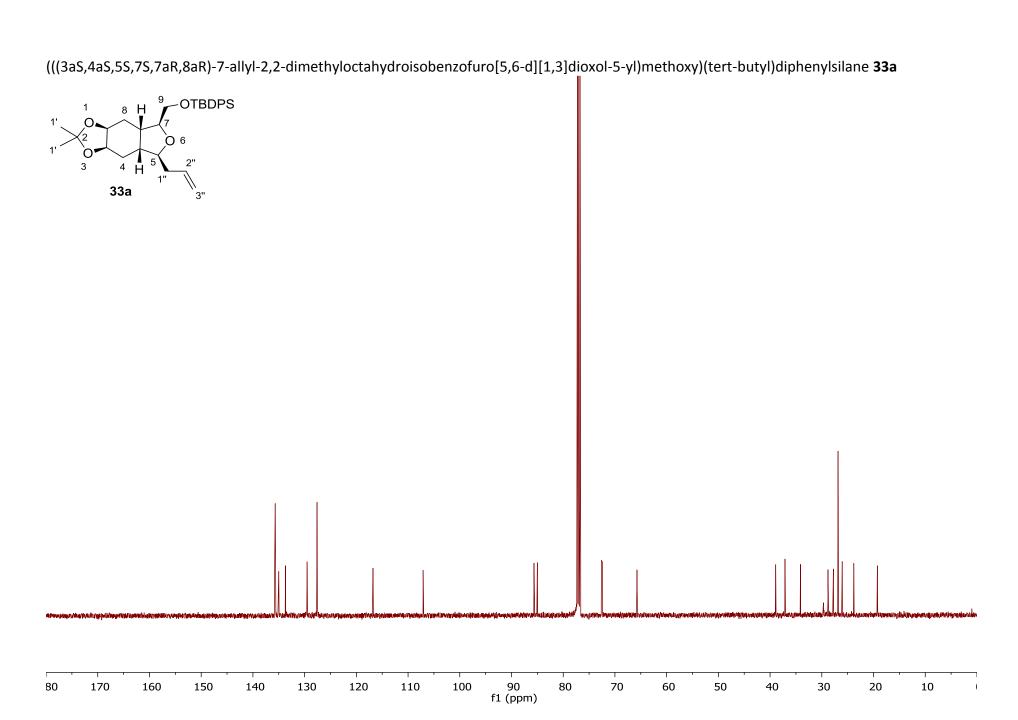



(3aR,4aR,7S,7aS,8aS)-7-(tert-Butyldiphenylsilanyloxymethyl)-2,2-dimethyl-hexahydro-furo[3',4':4,5]benzo[1,2-d][1,3]dioxol-5-one 31

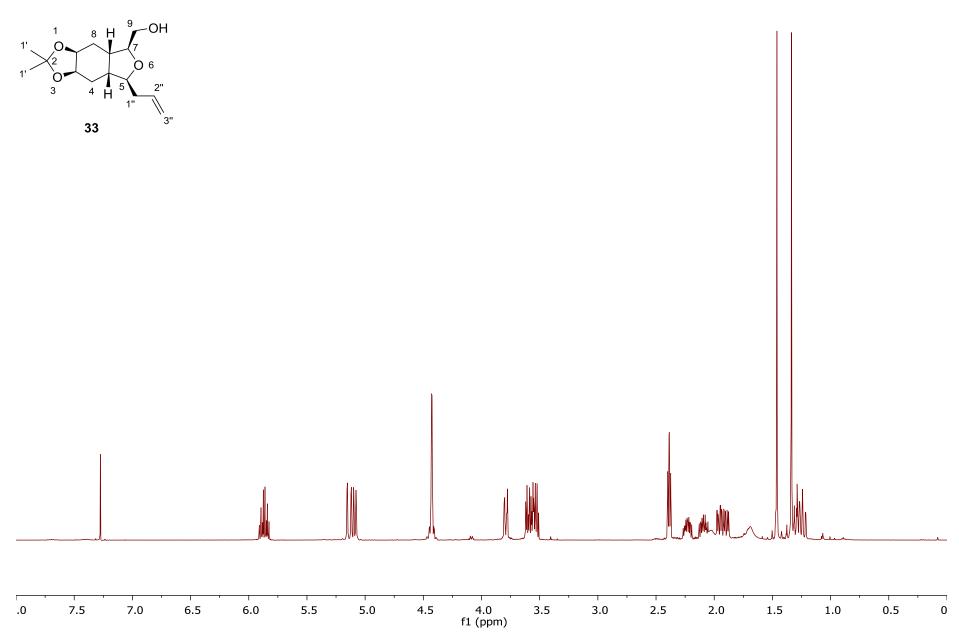

(3aR,4aR,7S,7aS,8aS)-7-(tert-Butyldiphenylsilanyloxymethyl)-2,2-dimethyl-hexahydro-furo[3',4':4,5]benzo[1,2-d][1,3]dioxol-5-one 31

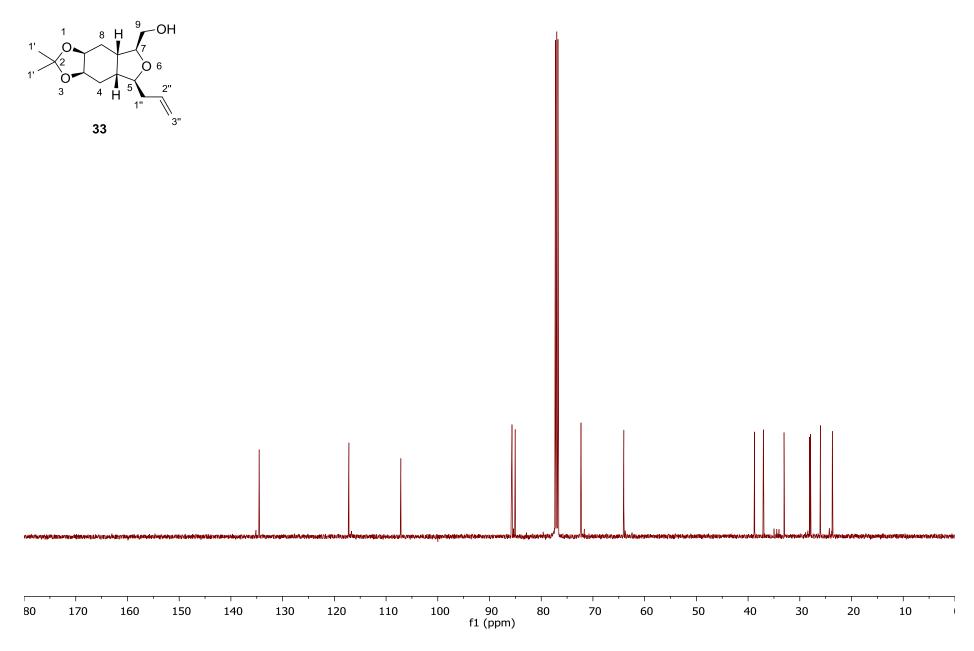


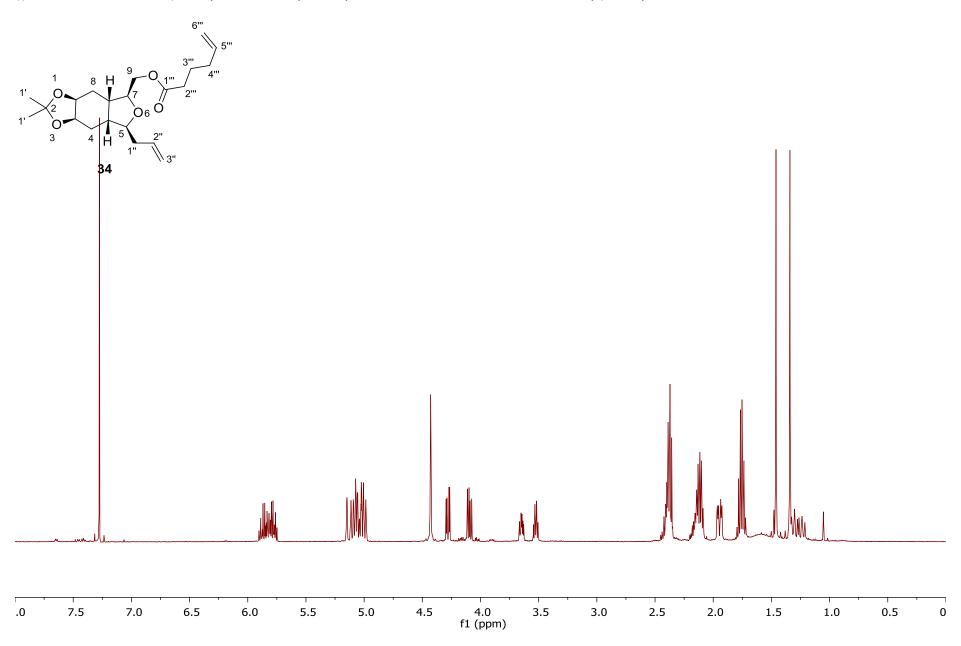


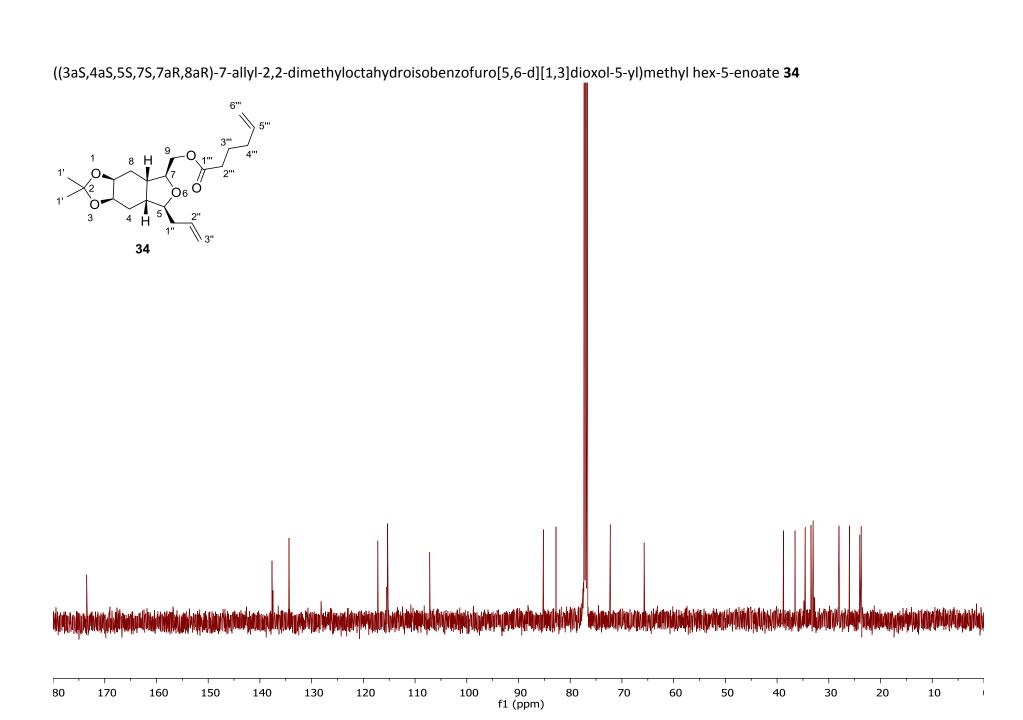


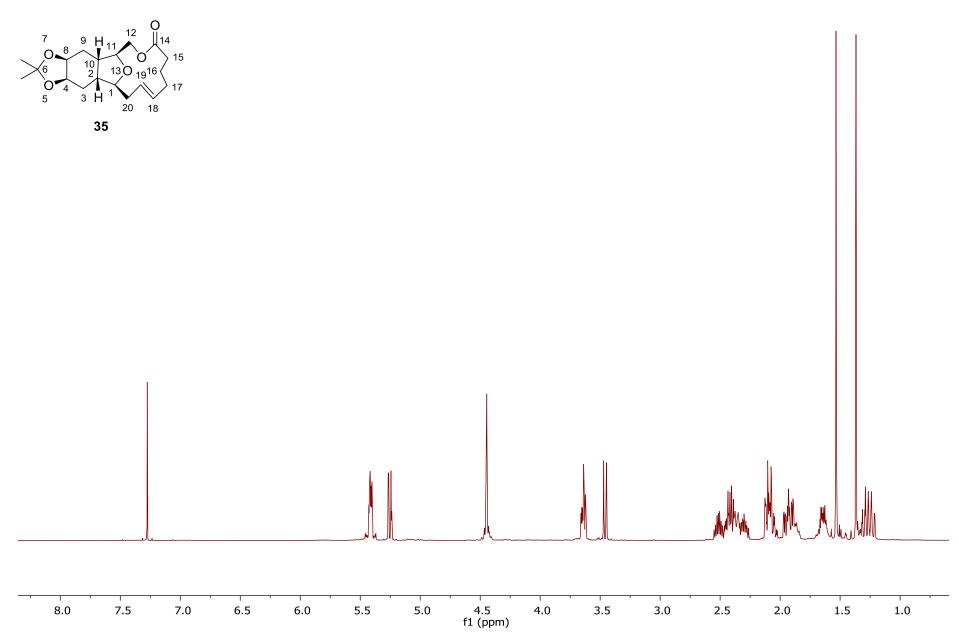
 $(3aR,4aR,7S,7aS,8aS)-7-(\textit{tert}-Butyldiphenylsilanyloxymethyl)-2,2-dimethyloctahydrofuro~[3',4':4,5]benzo\\[1,2-d][1,3]dioxol-5-ol~\textbf{32}$



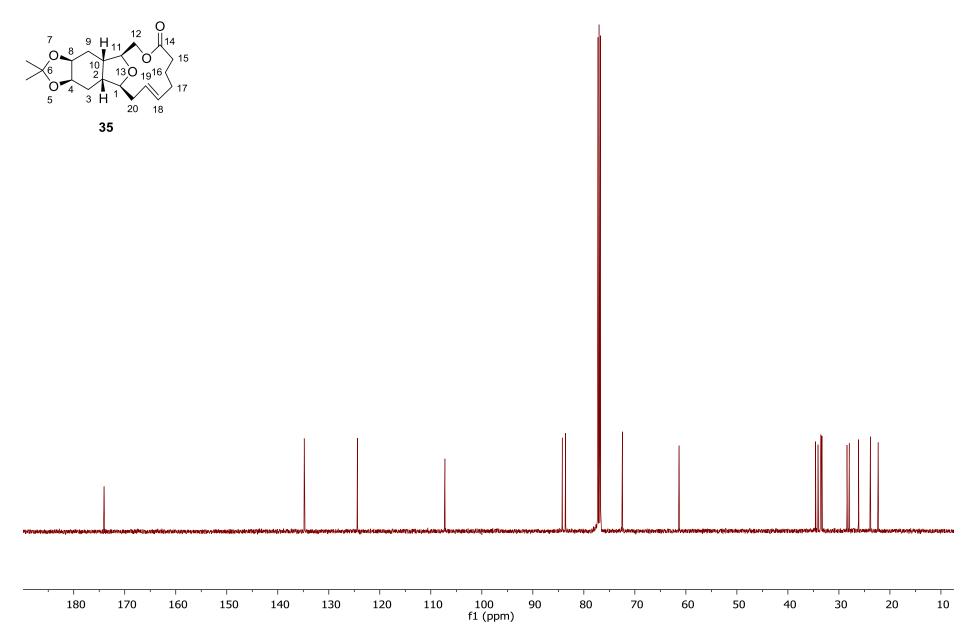


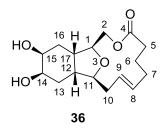


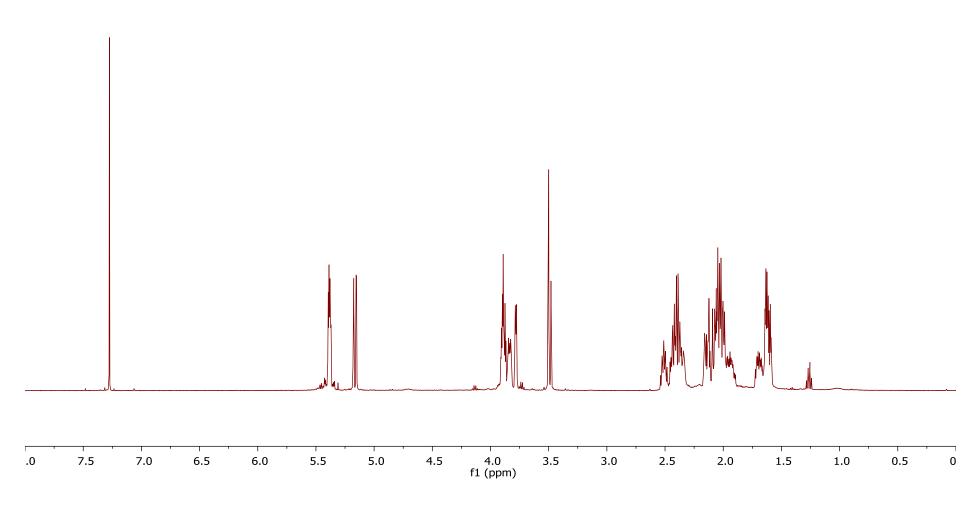

((3aS,4aS,5S,7S,7aR,8aR)-7-allyl-2,2-dimethyloctahydroisobenzofuro [5,6-d][1,3] dioxol-5-yl) methanol~33

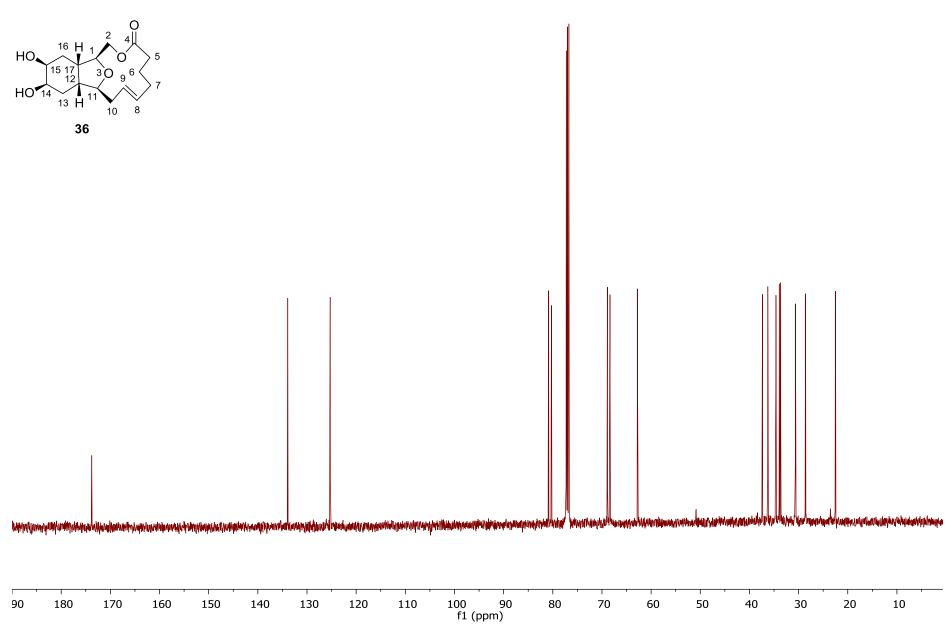


((3aS,4aS,5S,7S,7aR,8aR)-7-allyl-2,2-dimethyloctahydroisobenzofuro [5,6-d][1,3] dioxol-5-yl) methyl hex-5-enoate ~34 and the substitution of the substitution of

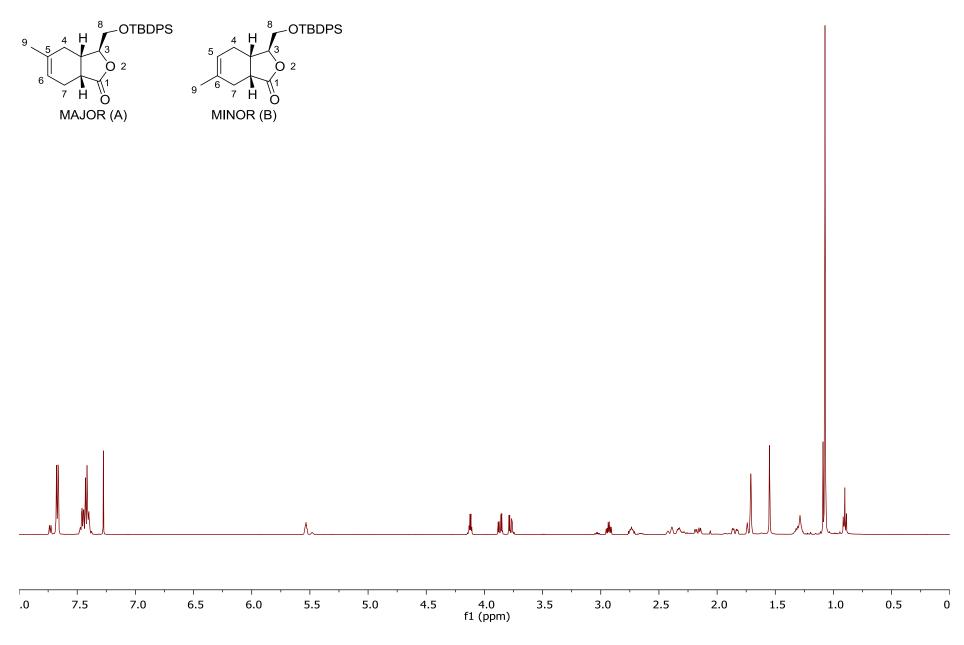


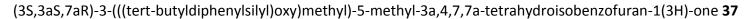


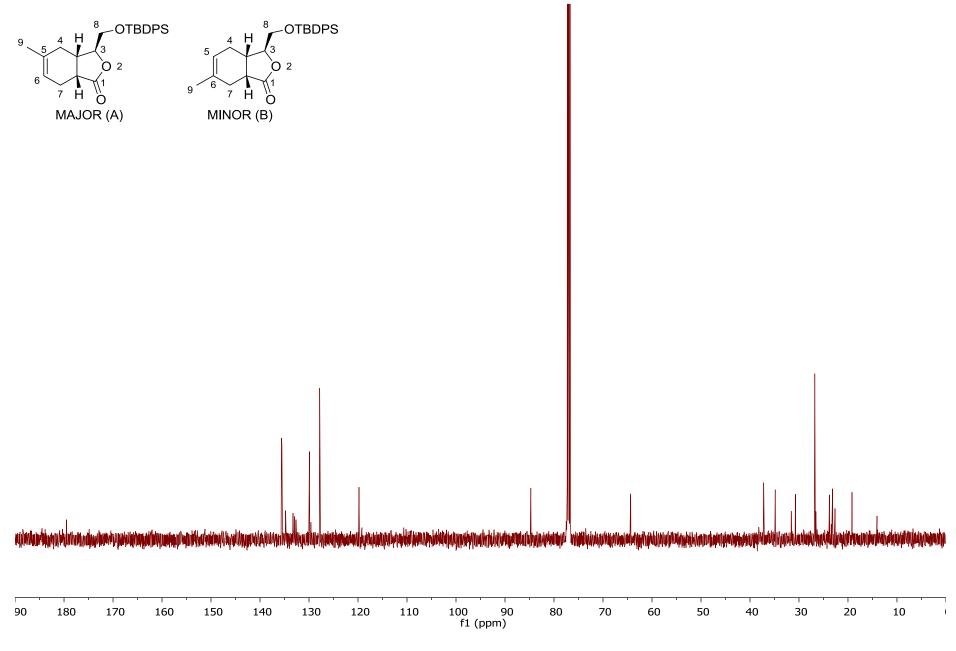

 $(15,2R,4R,8S,10S,11S,18E)-6,6-dimethyl-5,7,13,21-tetraoxatetracyclo[9.9.1.0^{2,10}.0^{4,8}] henicos-18-en-14-one~\textbf{35},100-e$

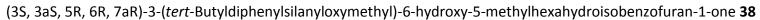


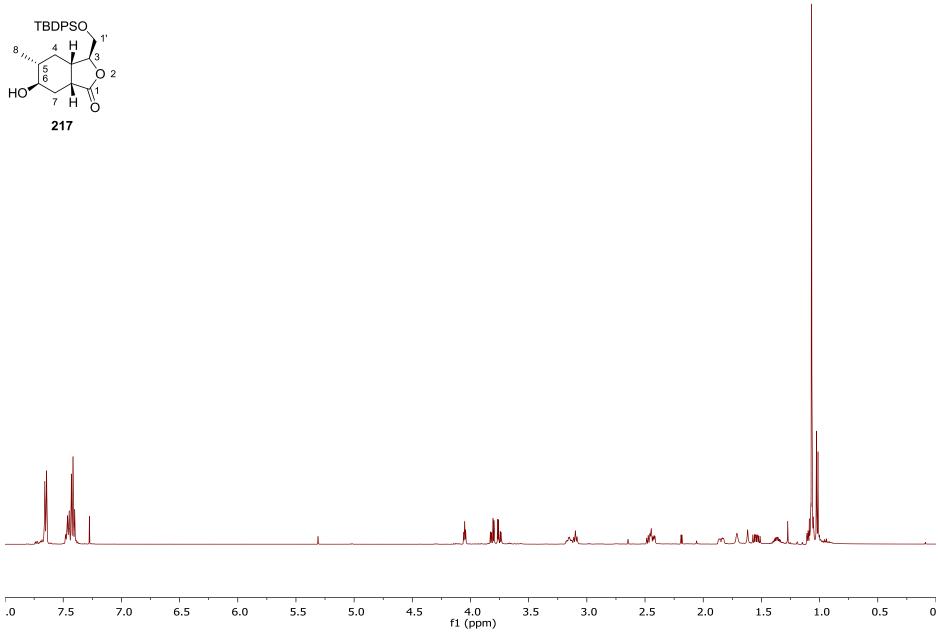
(1S,2R,4R,8S,10S,11S,18E)-6,6-dimethyl-5,7,13,21- tetraoxatetracyclo[9.9.1.0^{2,10}.0^{4,8}]henicos-18-en-14-one **35**

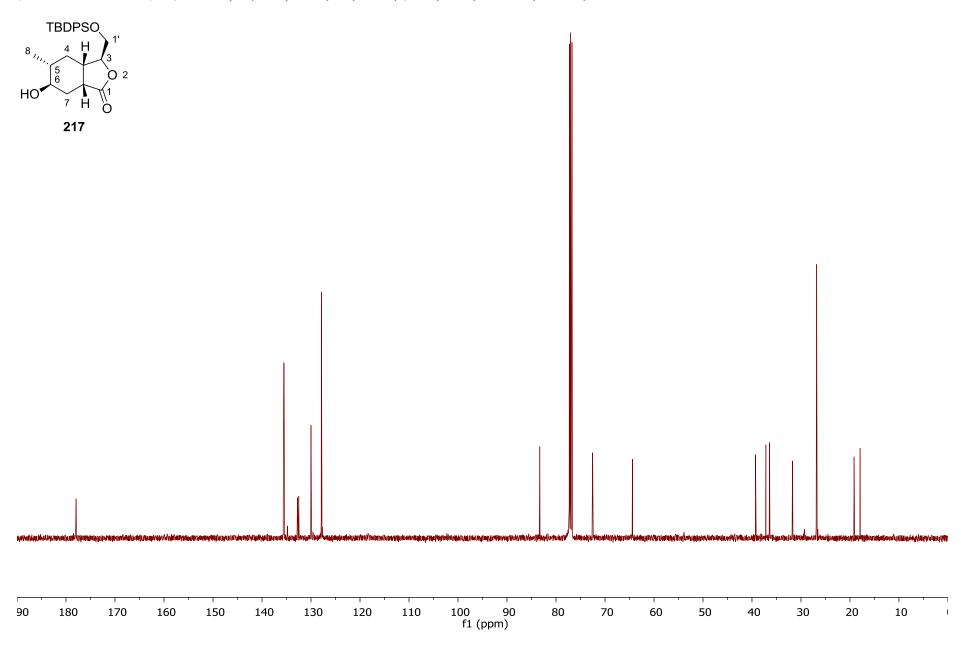


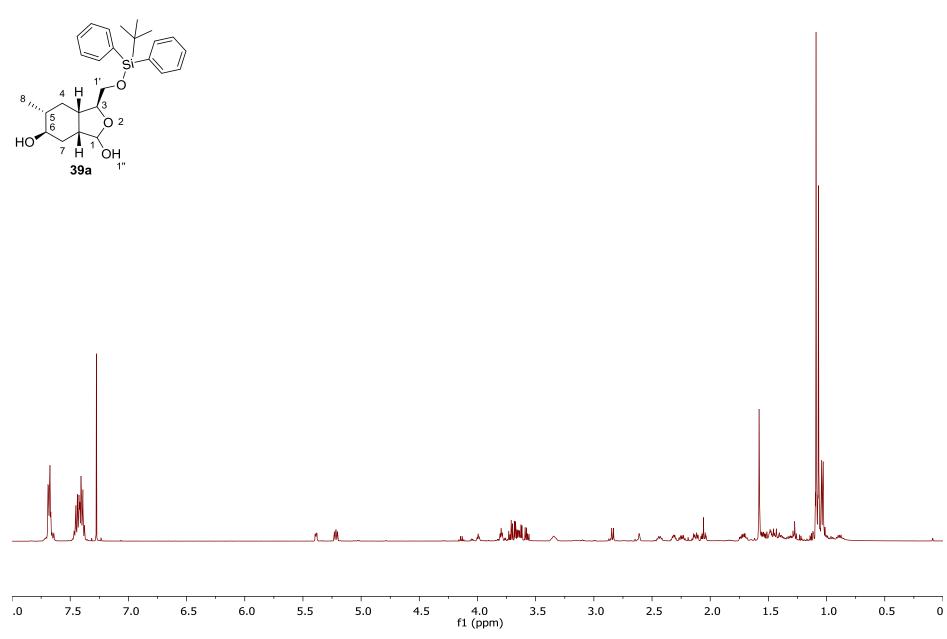


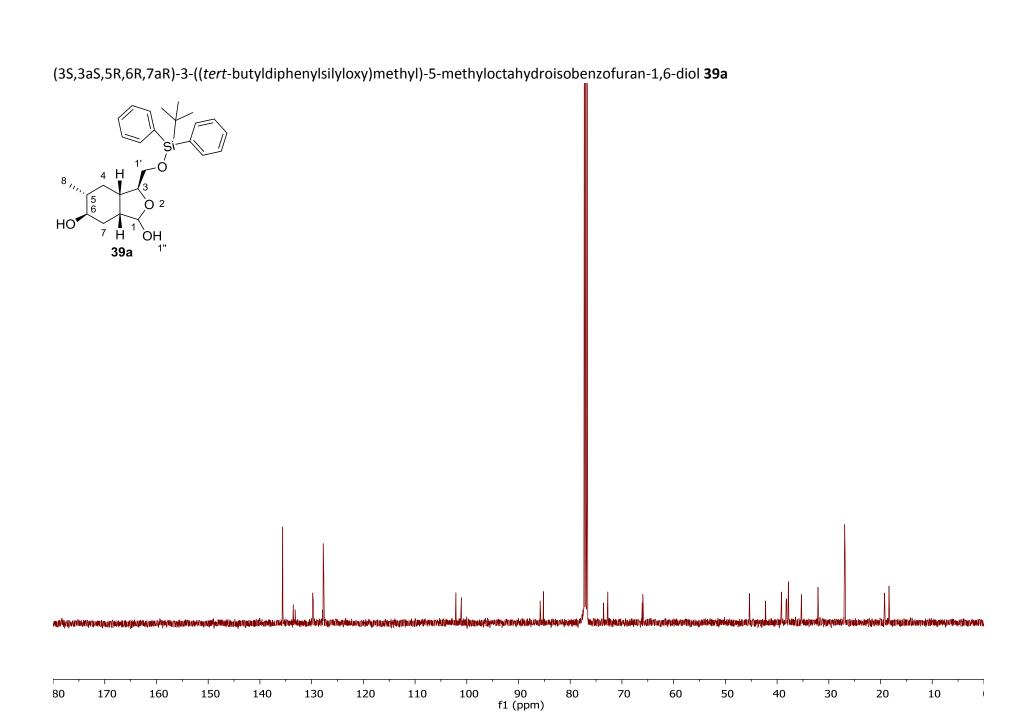


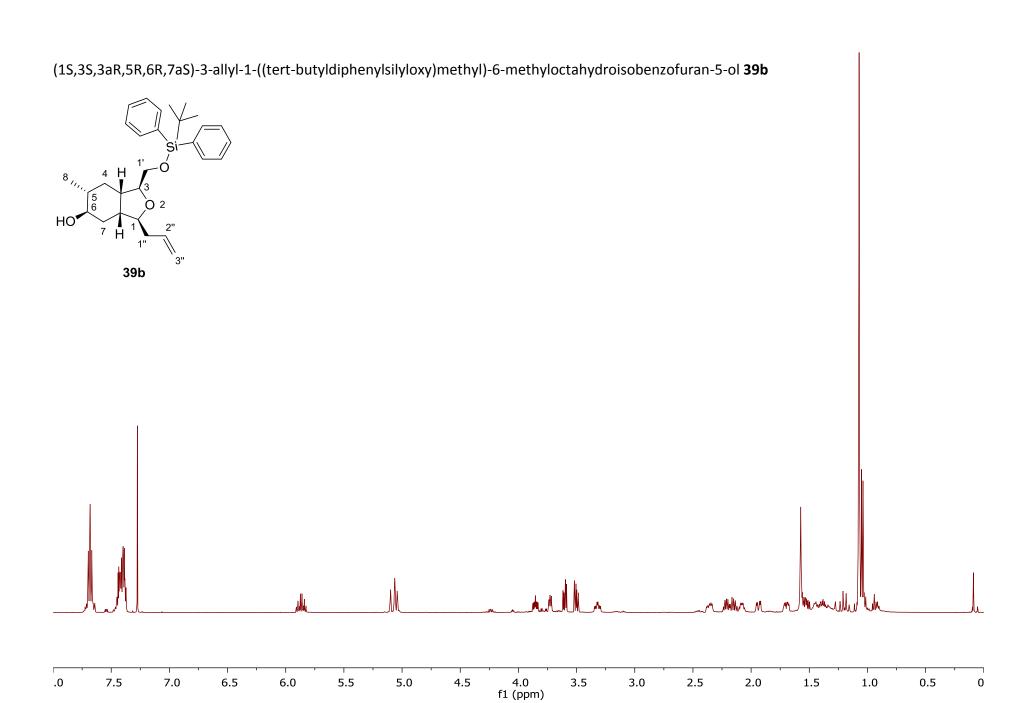


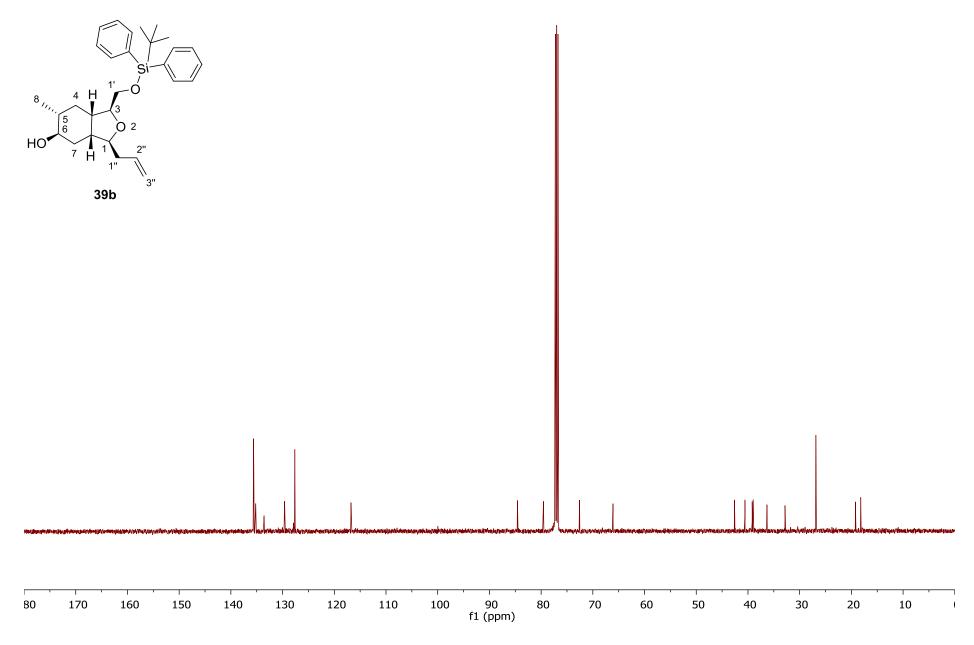

(3S,3aS,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-5-methyl-3a,4,7,7a-tetrahydroisobenzofuran-1(3H)-one 37

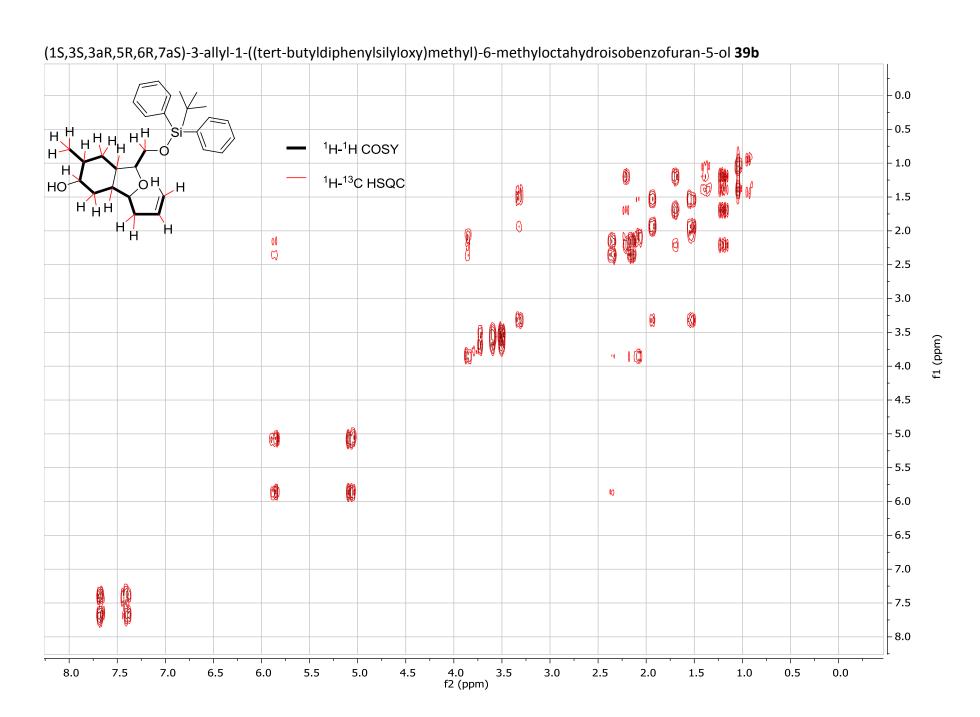






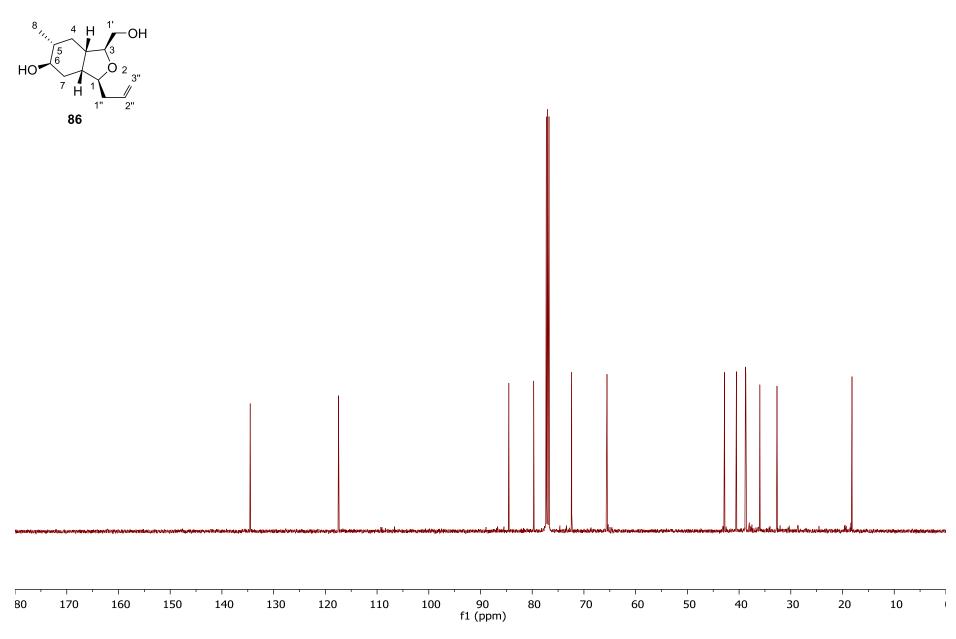


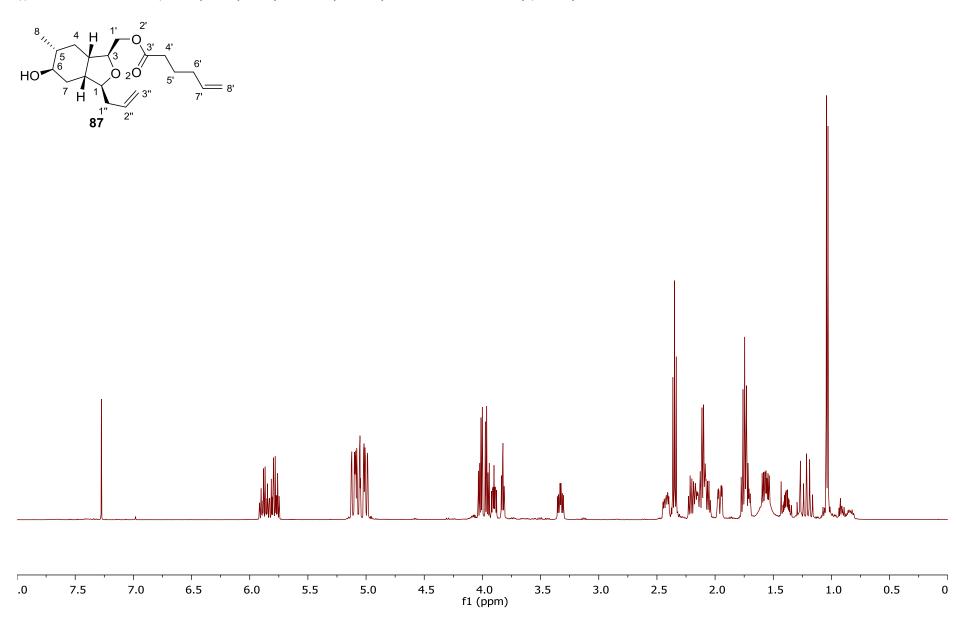


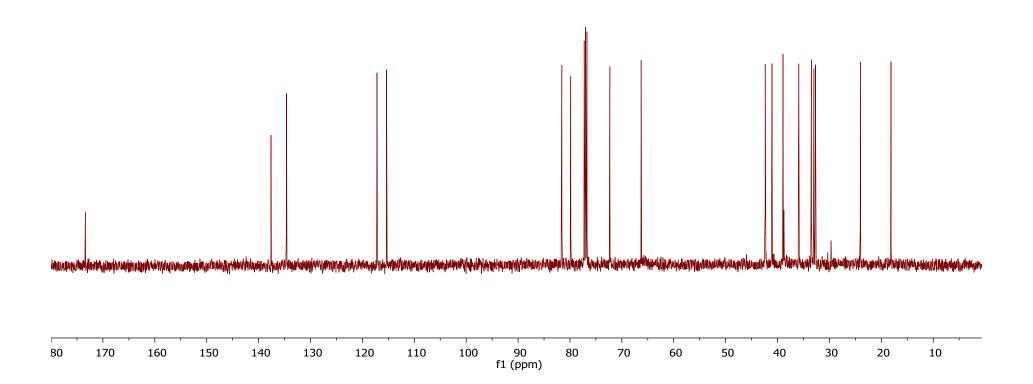


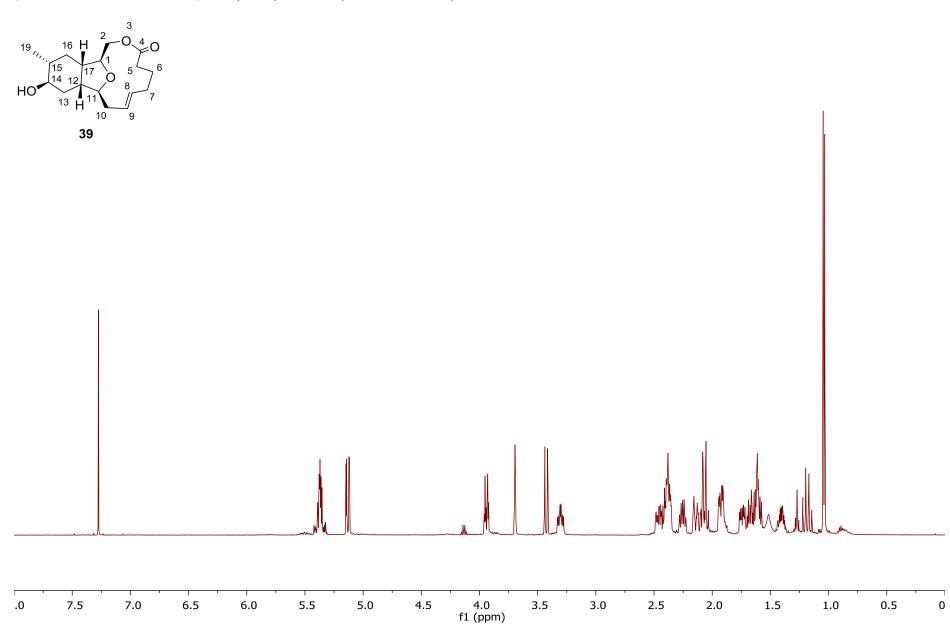


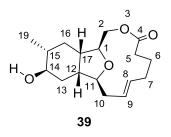


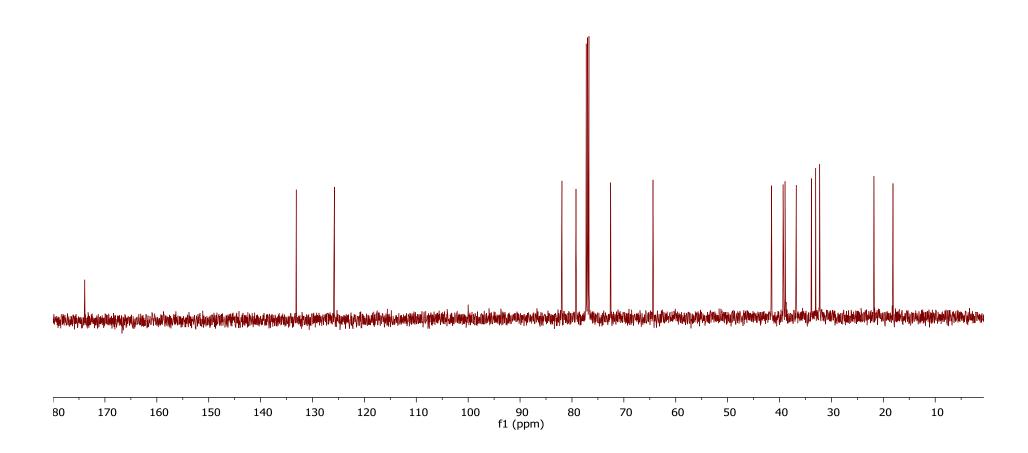

(1S, 3S, 3aR, 5R, 6R, 7aS) - 3-allyl - 1-((tert-butyldiphenylsilyloxy) methyl) - 6-methyloctahydroisobenzofuran - 5-ol~39b



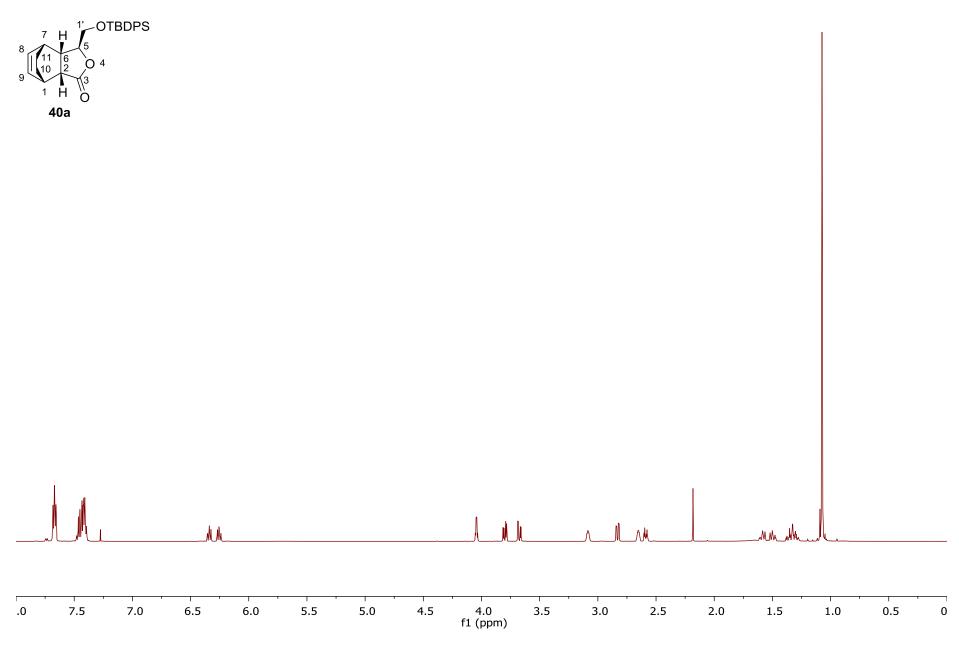



((1S,3S,3aR,5R,6R,7aS)-3-Allyl-5-hydroxy-6-methyloctahydroisobenzofuran-1-yl)methyl hex-5-enoate 87

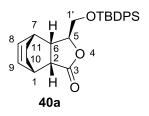

((1S,3S,3aR,5R,6R,7aS)-3-Allyl-5-hydroxy-6-methyloctahydroisobenzofuran-1-yl)methyl hex-5-enoate 87

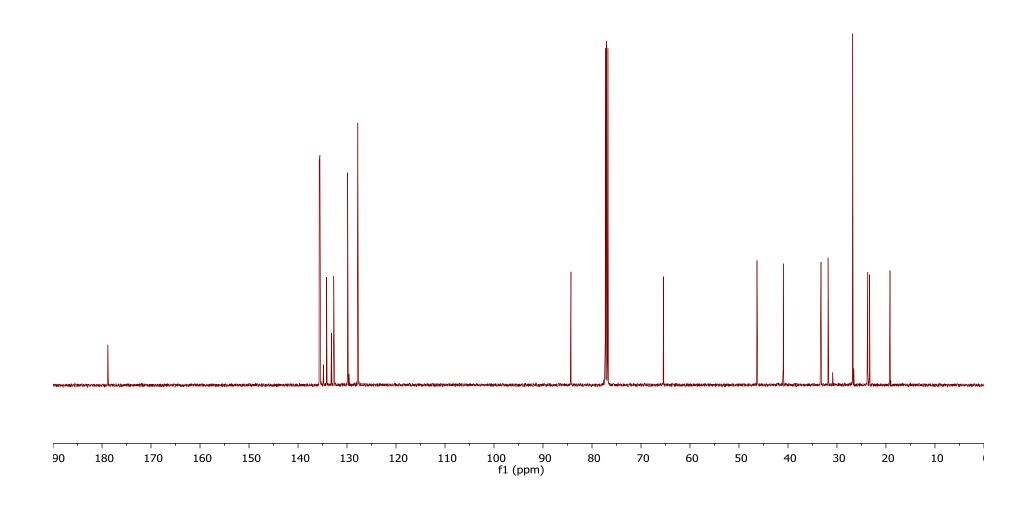


(1S,8E,11S,12R,14R,15R,17S)-14-hydroxy-15-methyl- 3,18-dioxatricyclo[9.6.1.0^{12,17}]octadec-8-en-4- one **39**

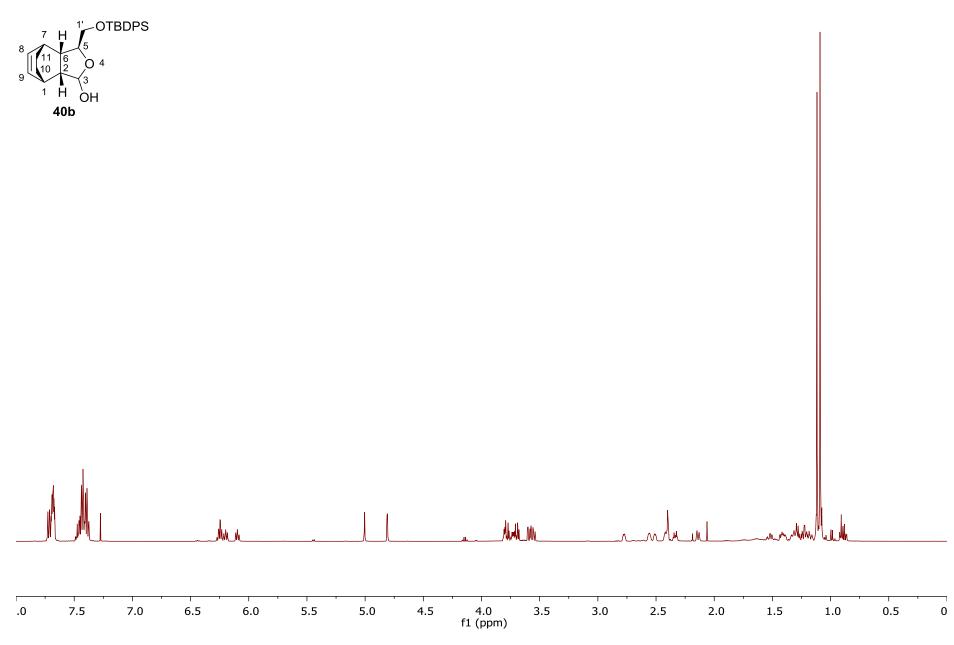


(1S,8E,11S,12R,14R,15R,17S)-14-hydroxy-15-methyl- 3,18-dioxatricyclo[9.6.1.0^{12,17}]octadec-8-en-4- one **39**

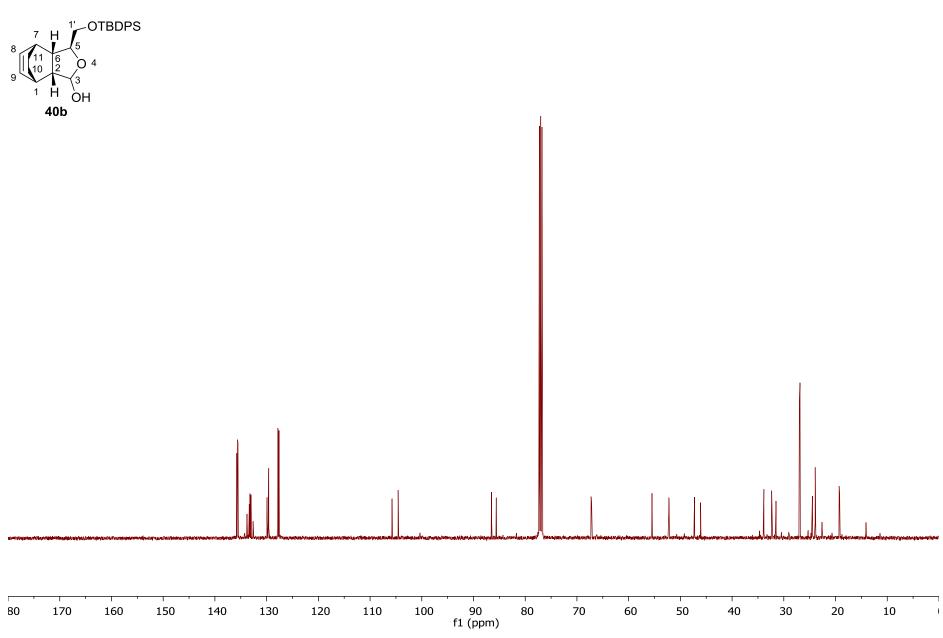


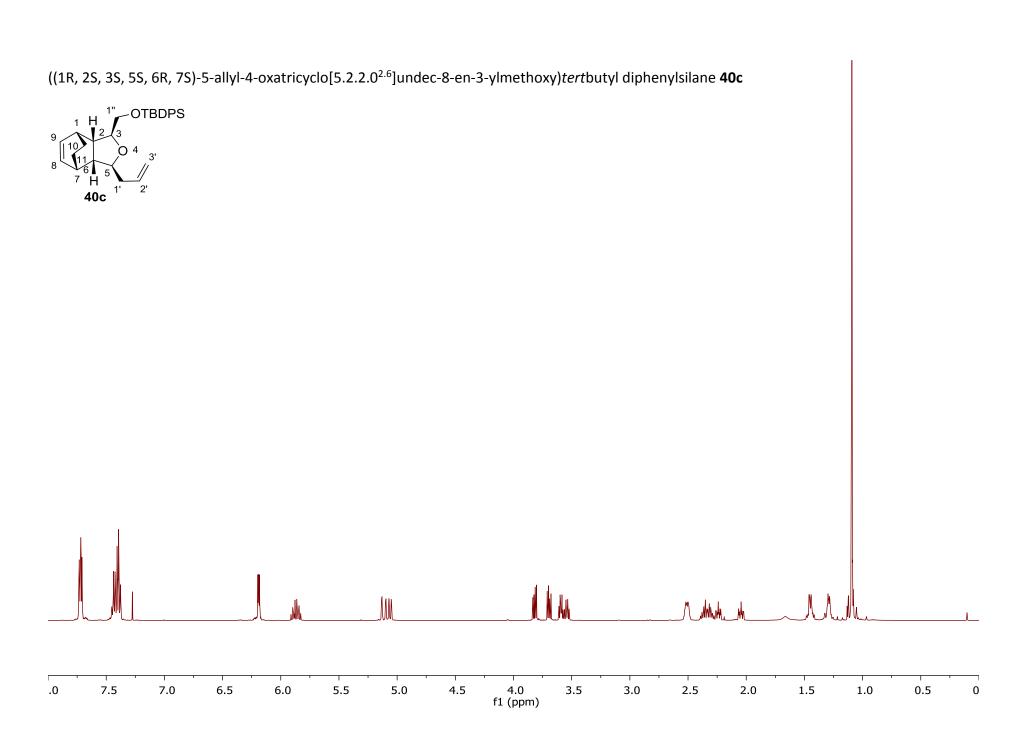


(1S,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanyloxymethyl)-4-oxa-tricyclo[5.2.2.0^{2,6}]undec-8-en-3-one **40a**

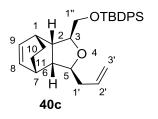


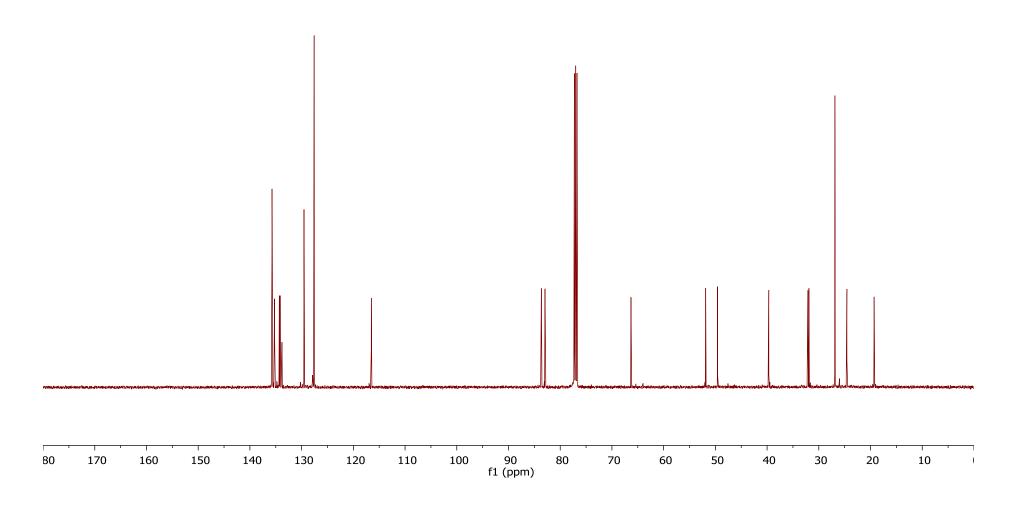
(1S,2R,5S,6S,7R)-5-(tert-Butyldiphenylsilanyloxymethyl)-4-oxa-tricyclo[5.2.2.0^{2,6}]undec-8-en-3-one **40a**

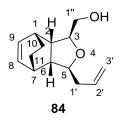


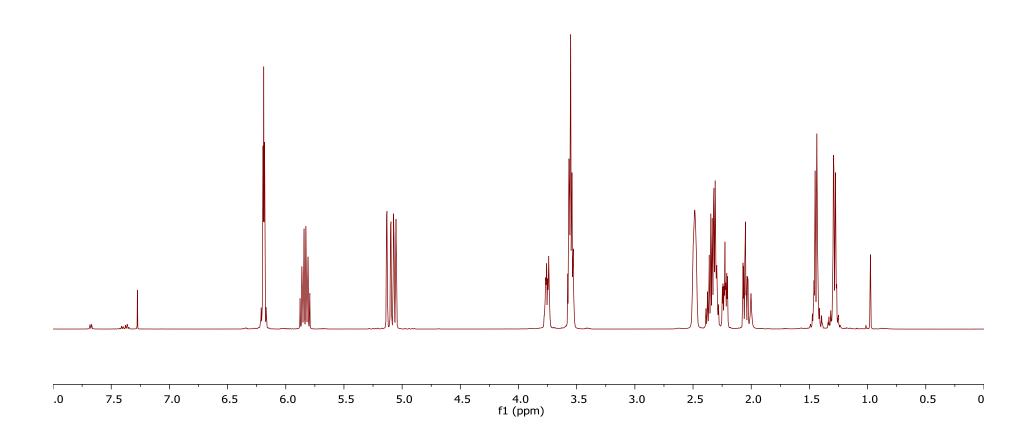


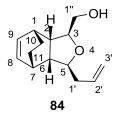
 $(1S,2R,5S,6S,7R)-5-(\textit{tert}-Butyldiphenylsilanyloxymethyl)-4-oxa-tricyclo [5.2.2.0^{2,6}] undec-8-en-3-ol~\textbf{40b}$

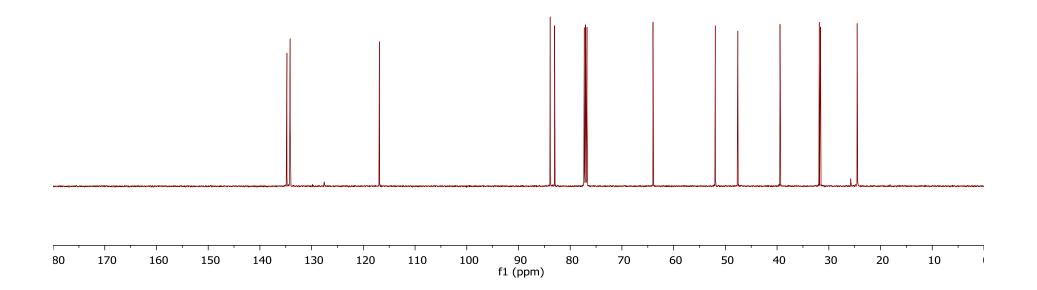


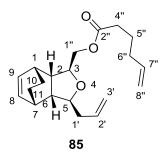

 $(1S,2R,5S,6S,7R)-5-(\textit{tert}-Butyldiphenylsilanyloxymethyl)-4-oxa-tricyclo [5.2.2.0^{2,6}] undec-8-en-3-ol~\textbf{40b}$

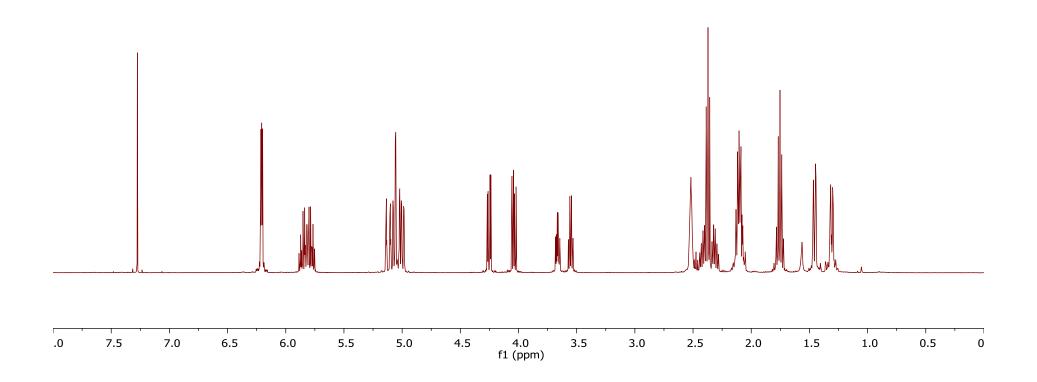


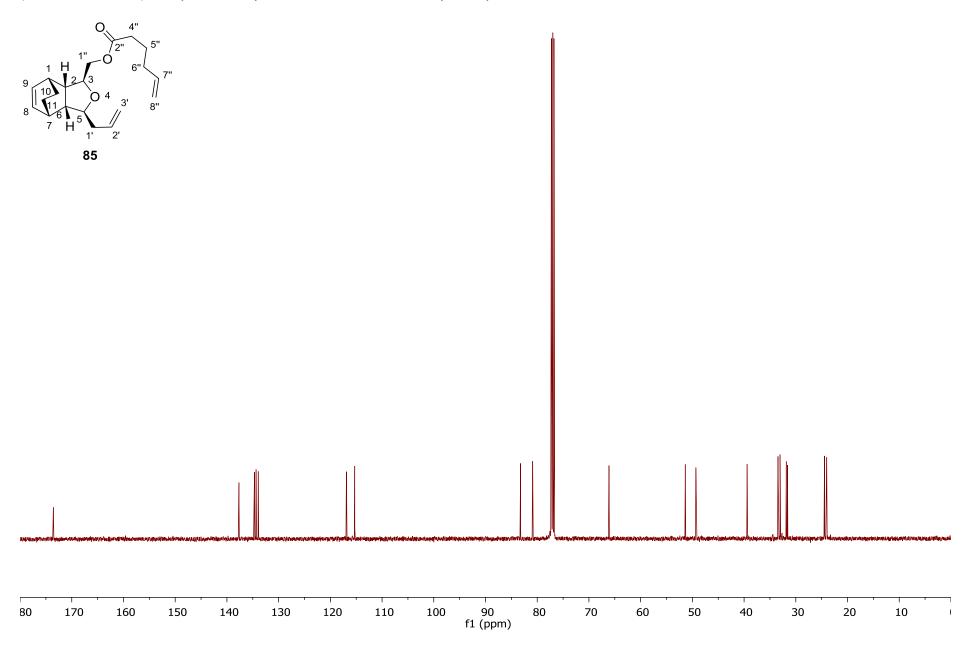

 $((1R,2S,3S,5S,6R,7S)-5-allyl-4-oxatricyclo[5.2.2.0^{2.6}] undec-8-en-3-ylmethoxy) \textit{tert} butyl diphenylsilane \textbf{40c} butyl diphenylsilane \textbf$



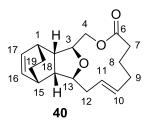

((1R, 2S, 3S, 5S, 6R, 7S)-5-allyl-4-oxatricyclo[5.2.2.0^{2.6}]undec-8-en-3-yl)-methanol **84**

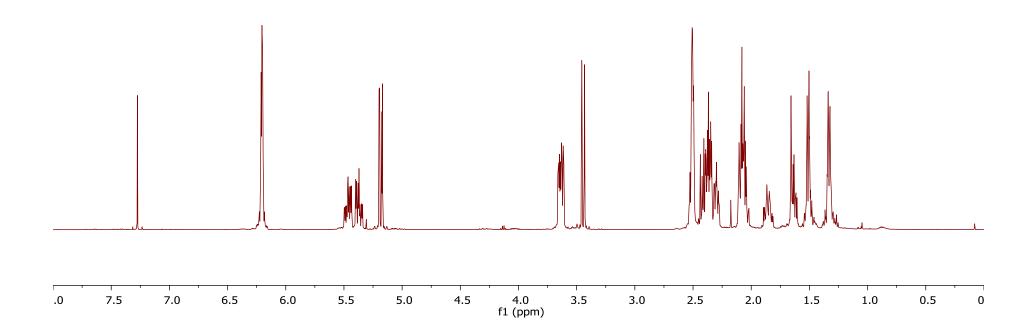



((1R, 2S, 3S, 5S, 6R, 7S)-5-allyl-4-oxatricyclo[5.2.2.0^{2.6}]undec-8-en-3-yl)-methanol **84**

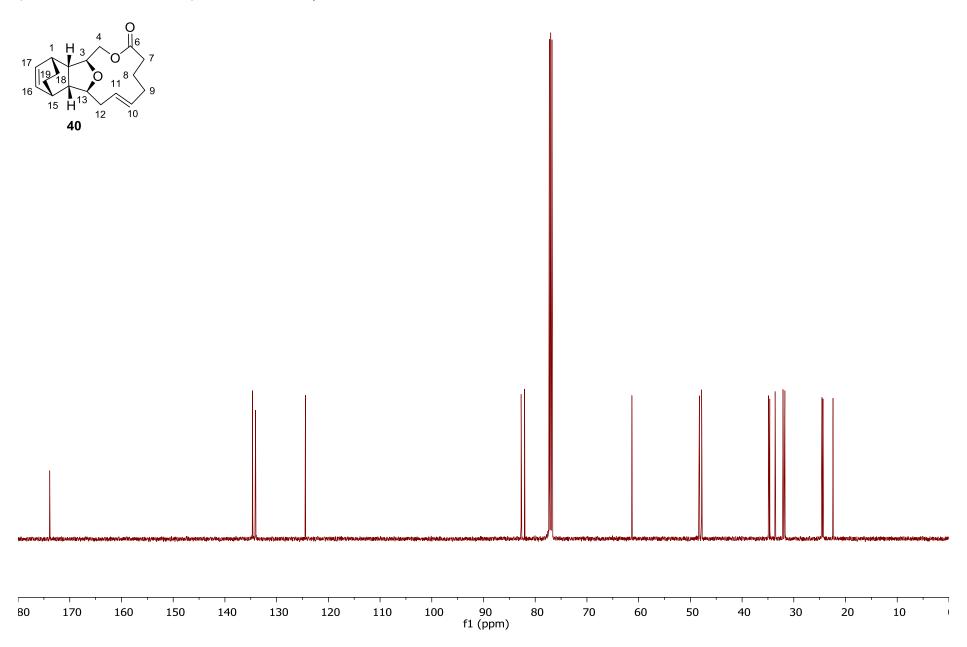


(1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.2.0^{2,6}]undec-8-en-3-ylmethyl hex-5-enoate **85**

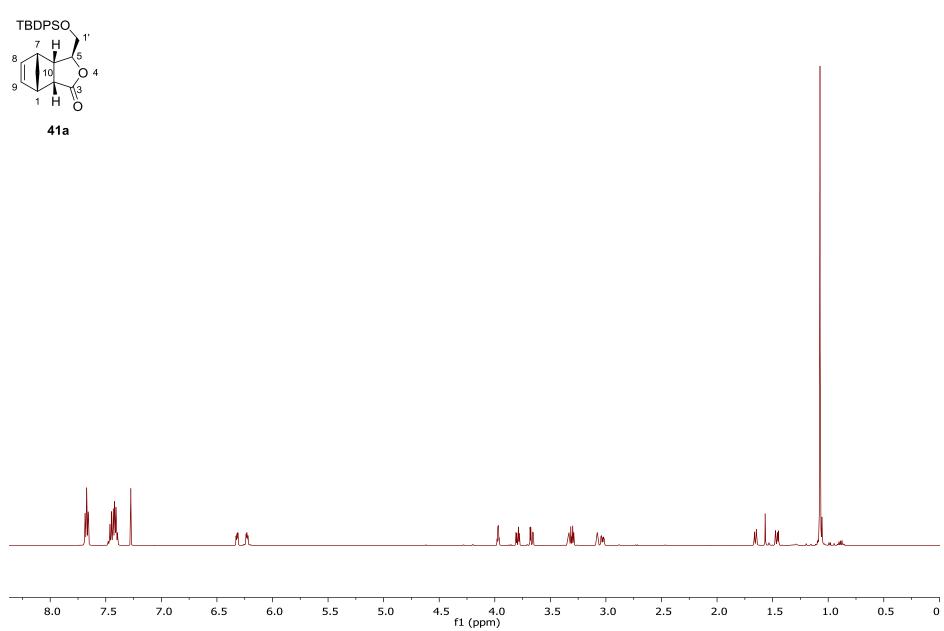


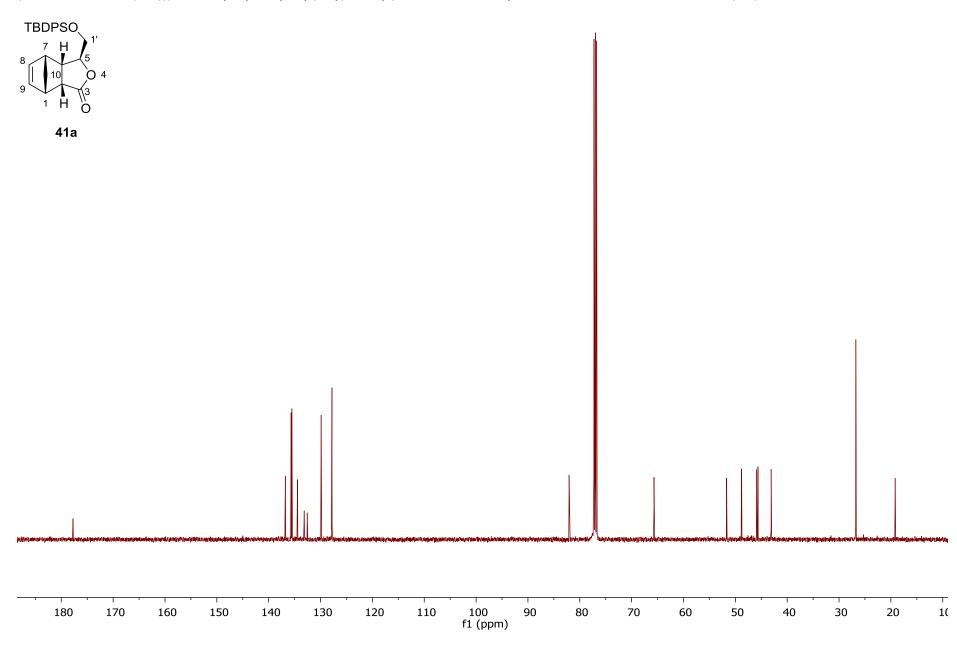


(1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxatricyclo[5.2.2.0^{2,6}]undec-8-en-3-ylmethyl hex-5-enoate **85**

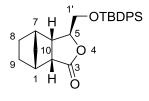


(1R,2S,3S,10E,13S,14R,15S)-5,20- dioxatetracyclo[13.2.2.1^{3,13}.0^{2,14}]icosa- 10,16-dien-6-one **40**

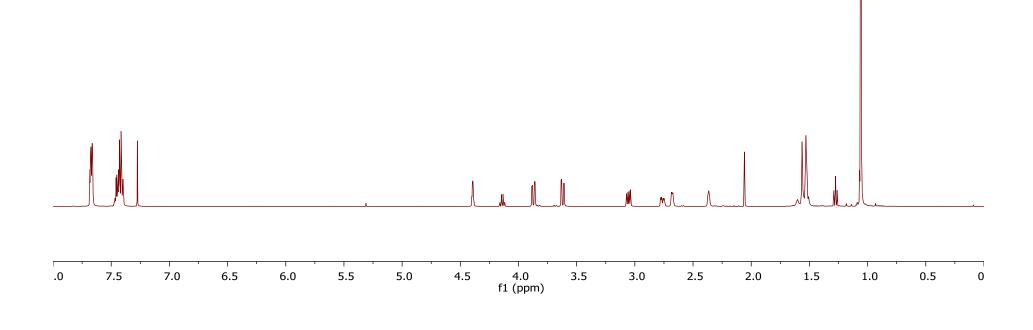


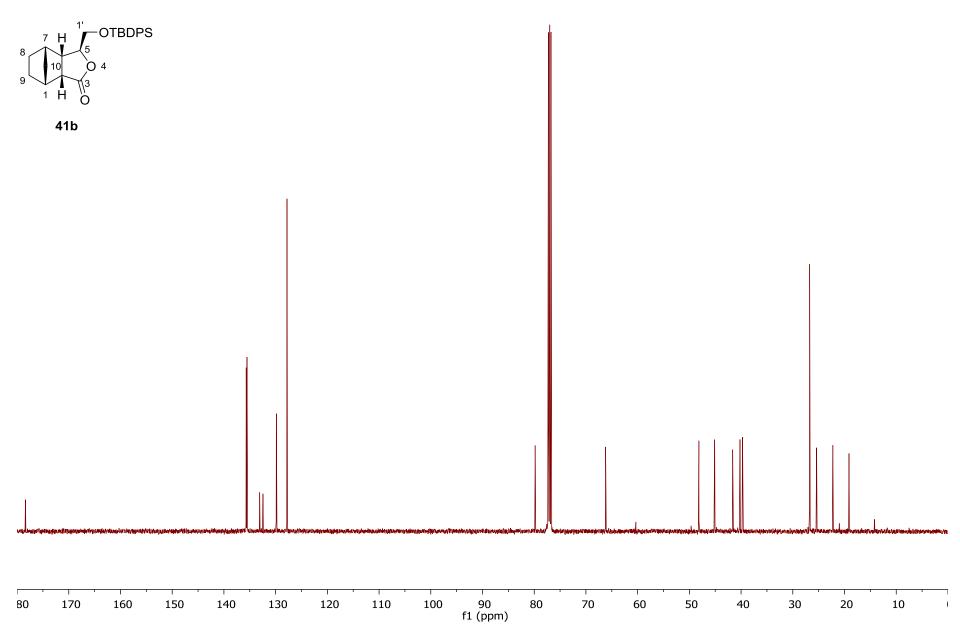


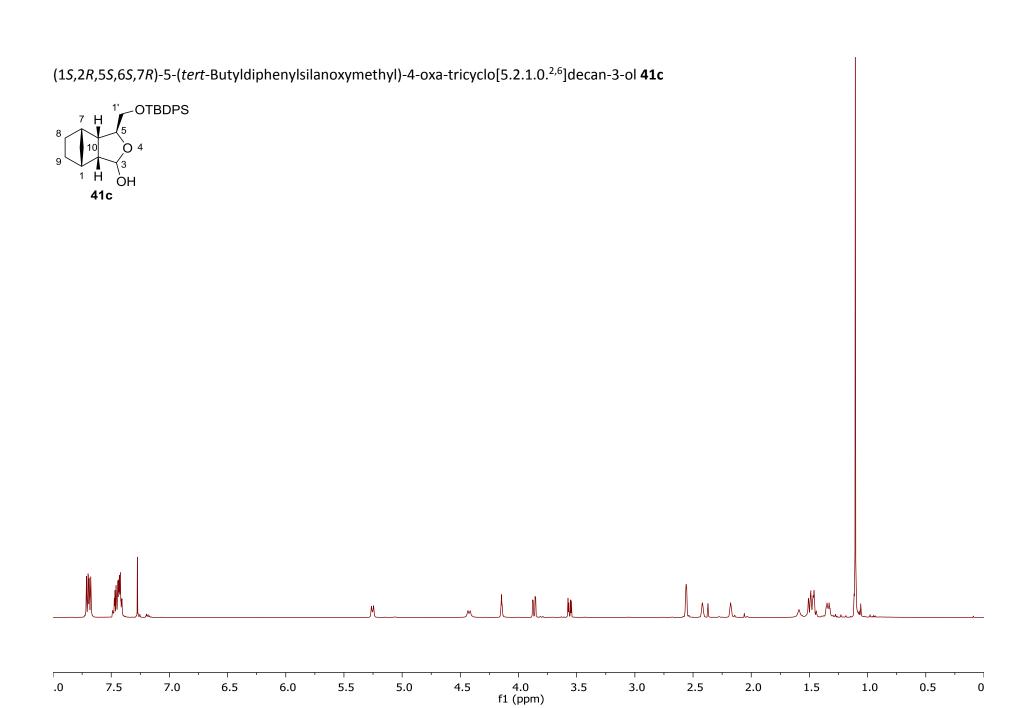
(1R,2S,3S,10E,13S,14R,15S)-5,20- dioxatetracyclo[13.2.2.1^{3,13}.0^{2,14}]icosa- 10,16-dien-6-one **40**



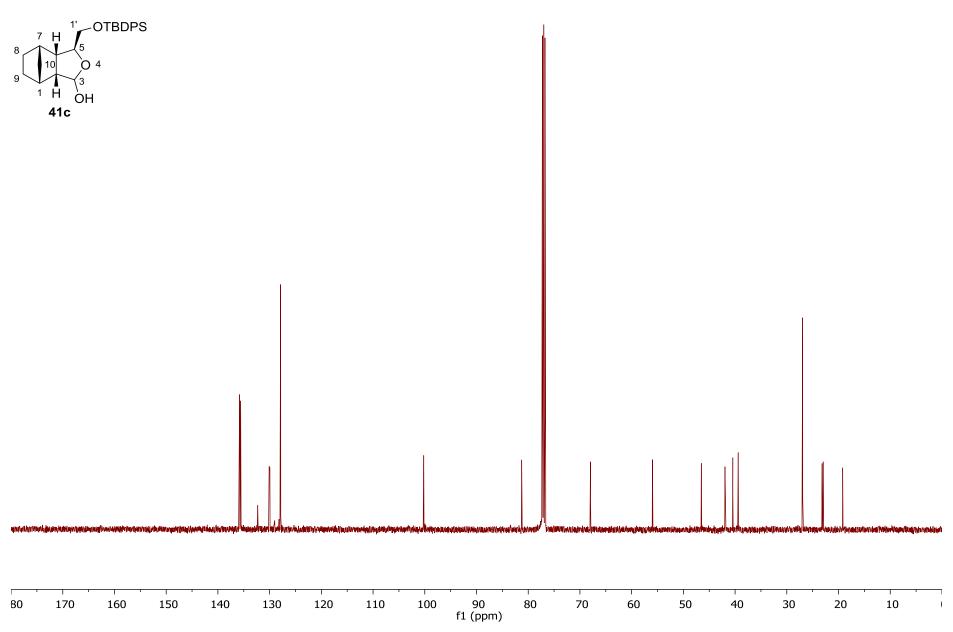
(3S,3aS,4R,7S,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one 41a

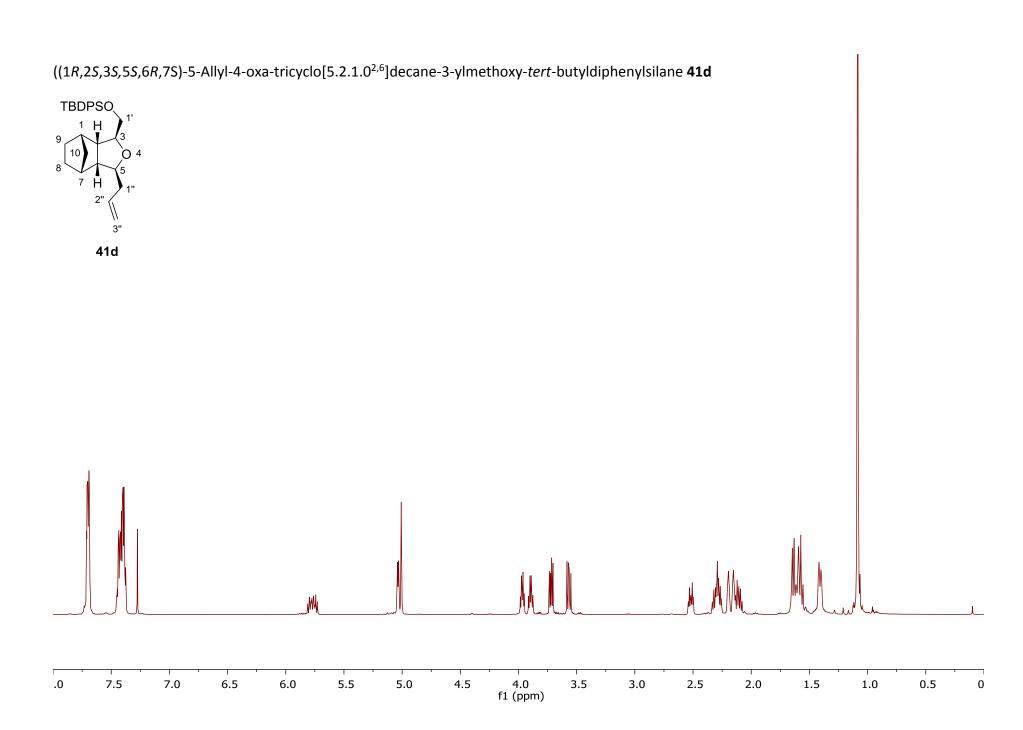


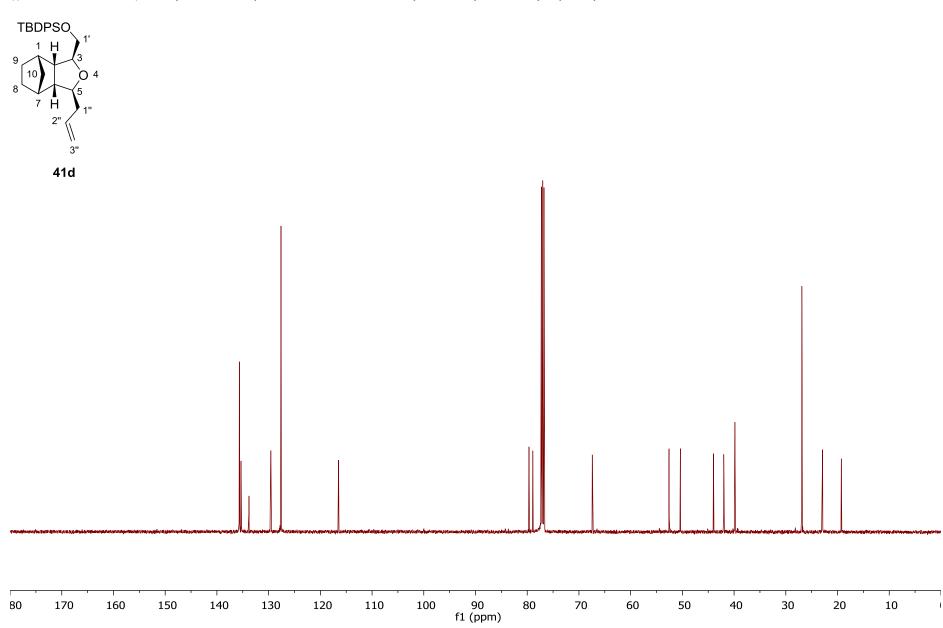


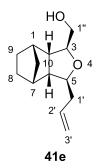


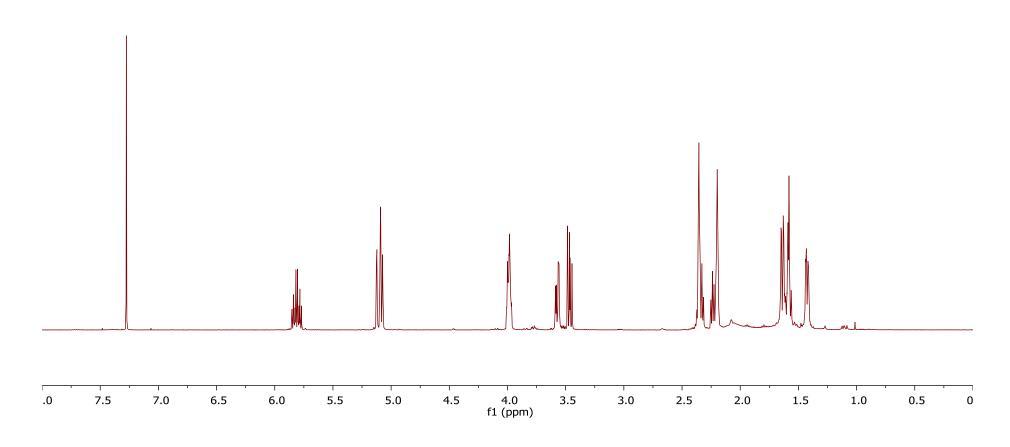
41b

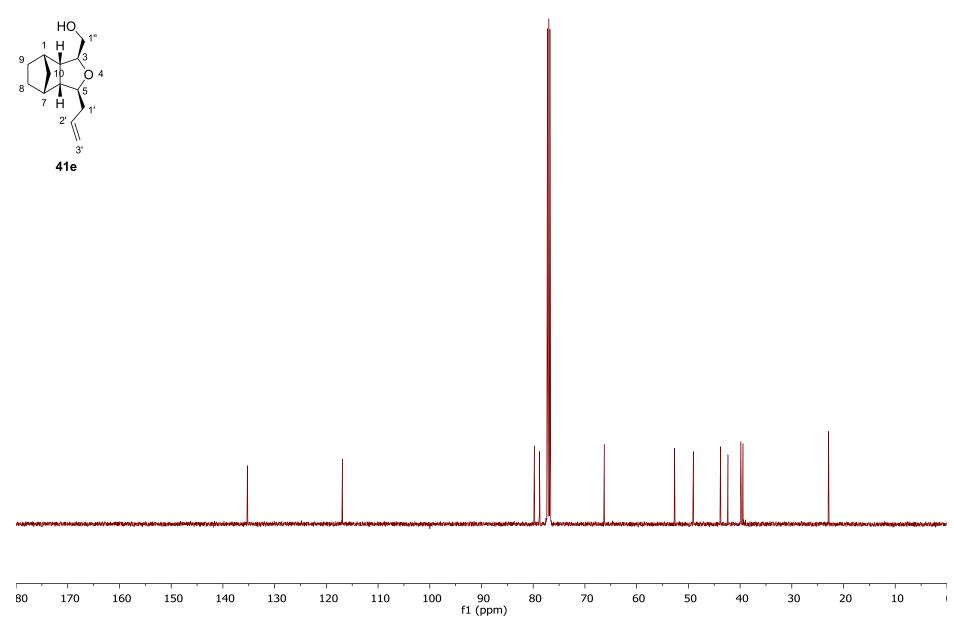



 $(1S,2R,5S,6S,7R)-5-(tert-\text{Butyldiphenylsilanoxymethyl})-4-\text{oxa-tricyclo}[5.2.1.0.^{2,6}] decan-3-\text{one } \textbf{41b}$

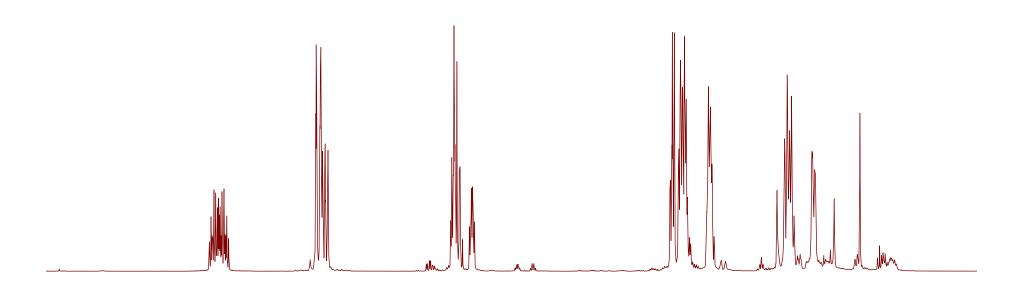


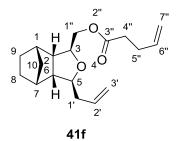

 $(1S,2R,5S,6S,7R)-5-(tert-\text{Butyldiphenylsilanoxymethyl})-4-\text{oxa-tricyclo}[5.2.1.0.^{2,6}] decan-3-\text{ol } \textbf{41c}$

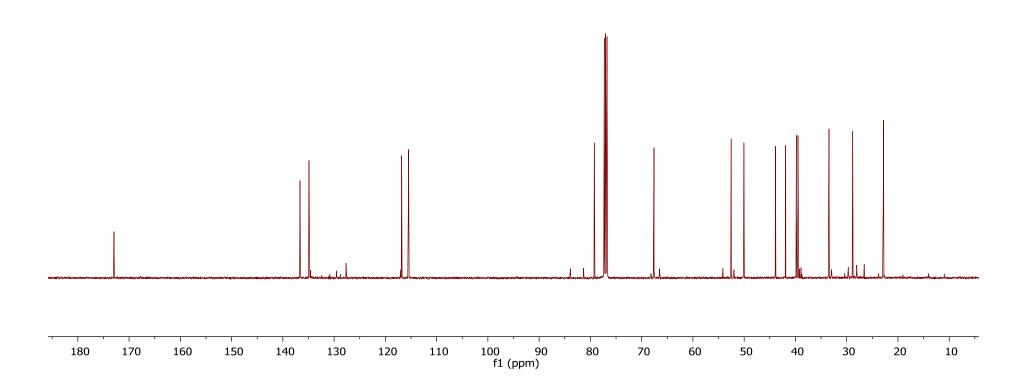


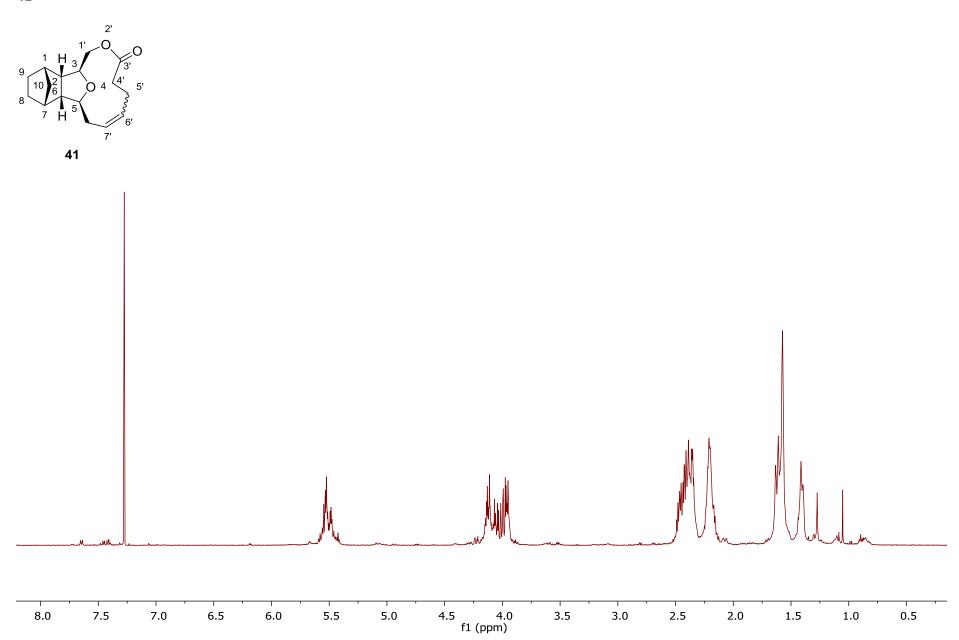


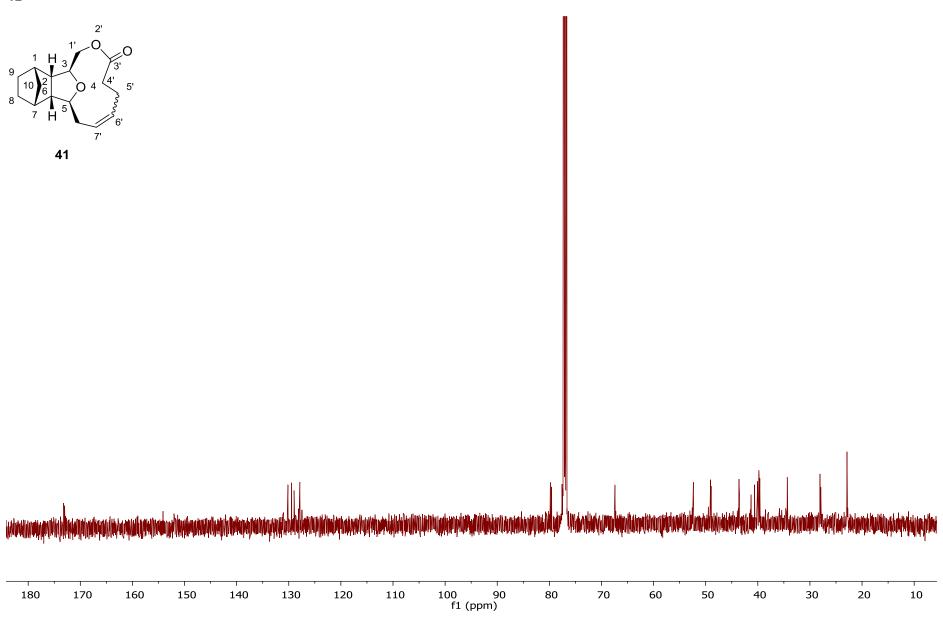
((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxa-tricyclo[5.2.1.02,6]decan-3-yl)-methanol **41e**

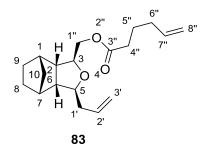


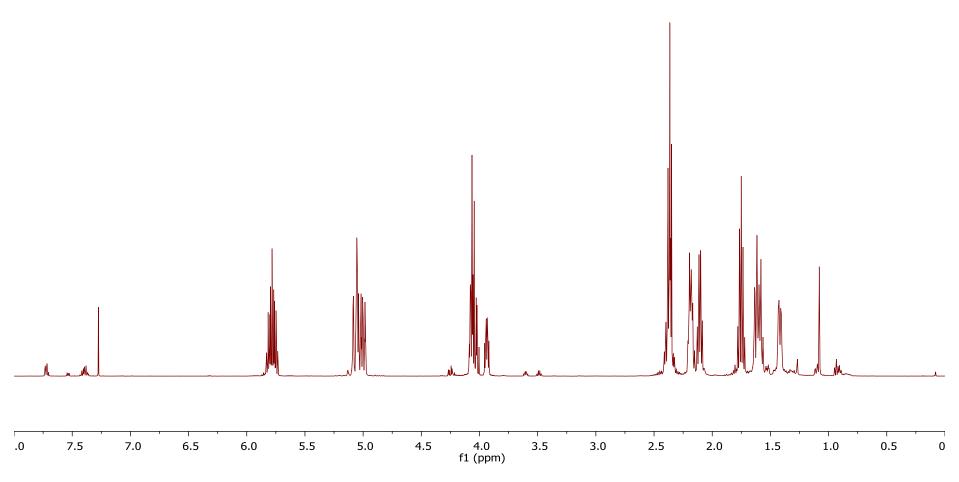


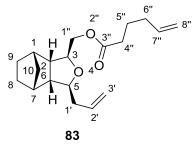

((1R,2S,3S,5S,6R,7S)-5-Allyl-4-oxa-tricyclo[5.2.1.02,6]decan-3-yl)-methanol **41e**

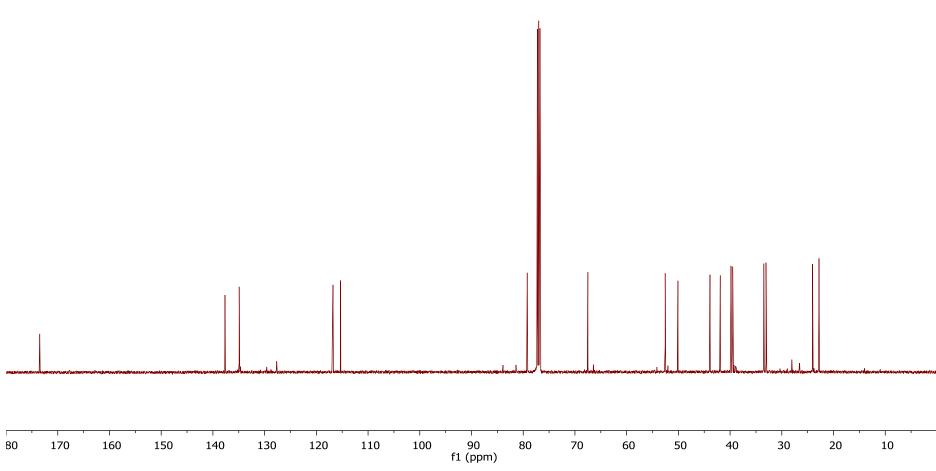



((1S,3S,3aR,4R,7S,7aS)-3-allyloctahydro-4,7-methanoisobenzofuran-1-yl)methyl pent-4-enoate 41f

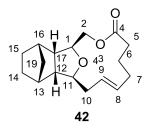


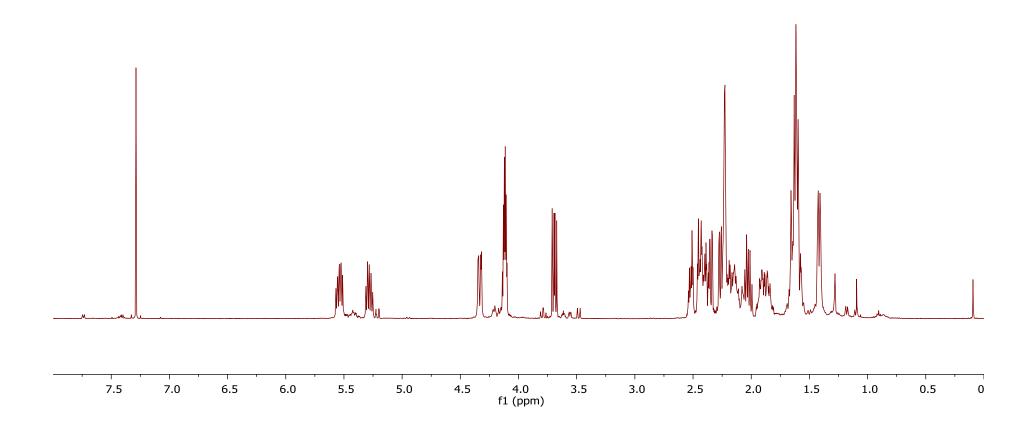


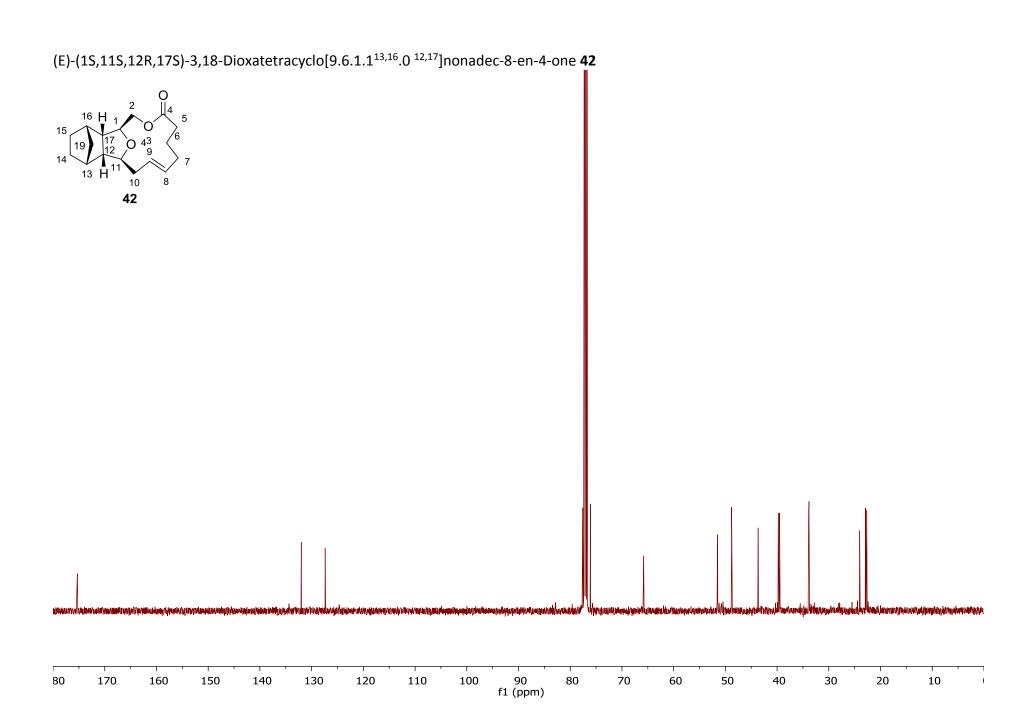


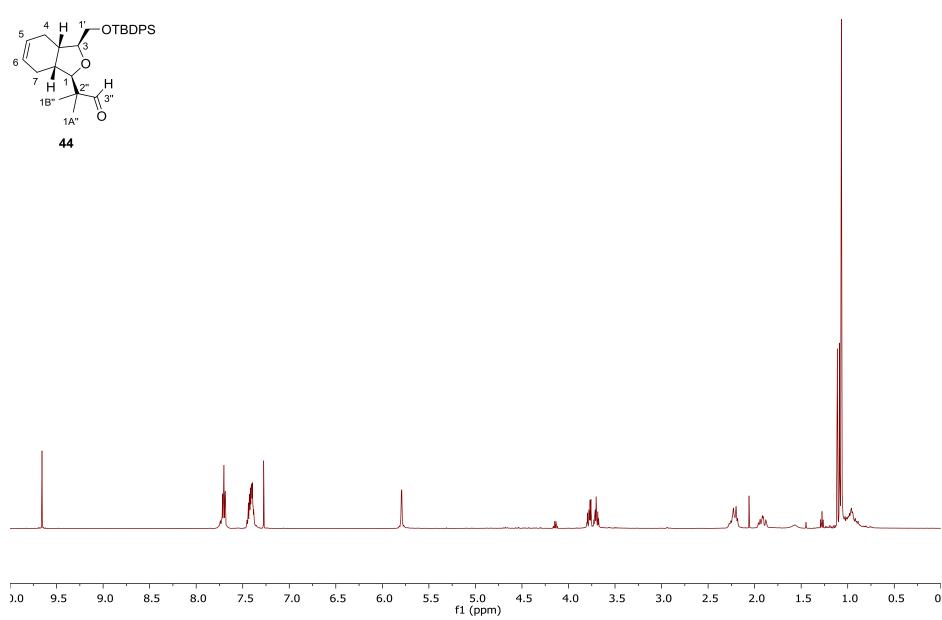


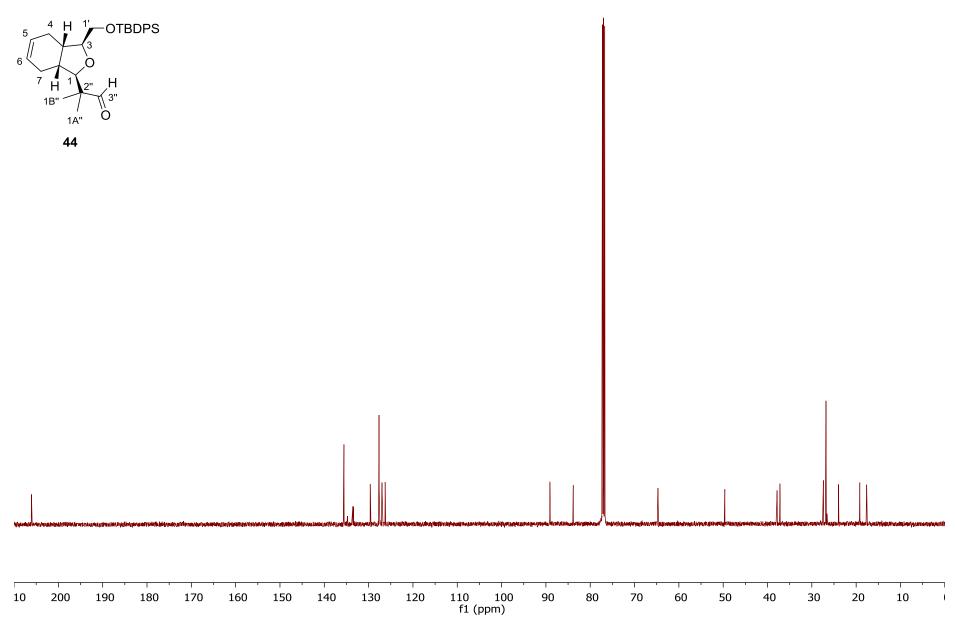
(1S,2S,3S,5S,6R,7R)-5-Allyl-4-oxatricyclo[5.2.1.0^{2,6}]dec-3-ylmethyl hex-5-enoate **83**

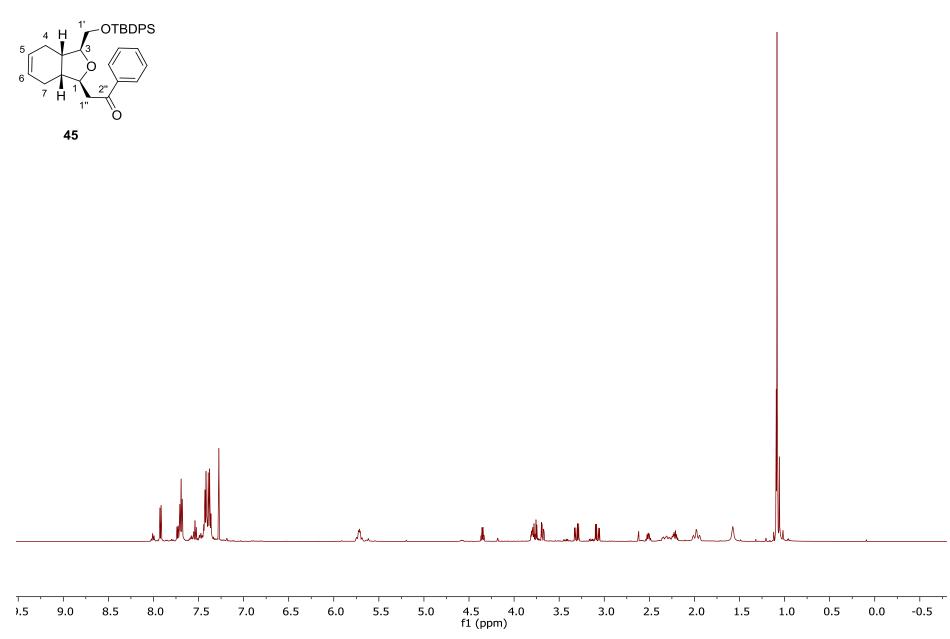




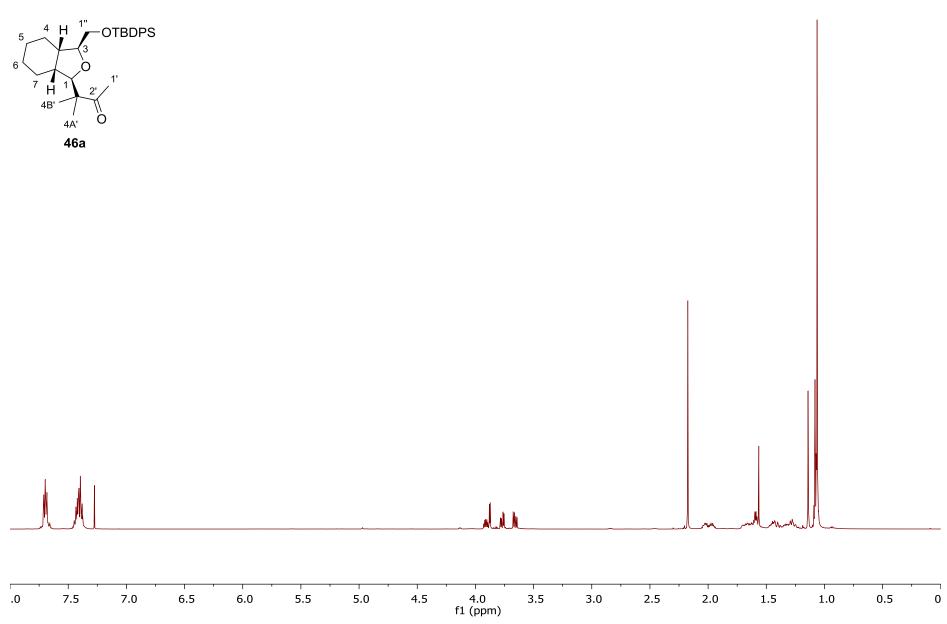


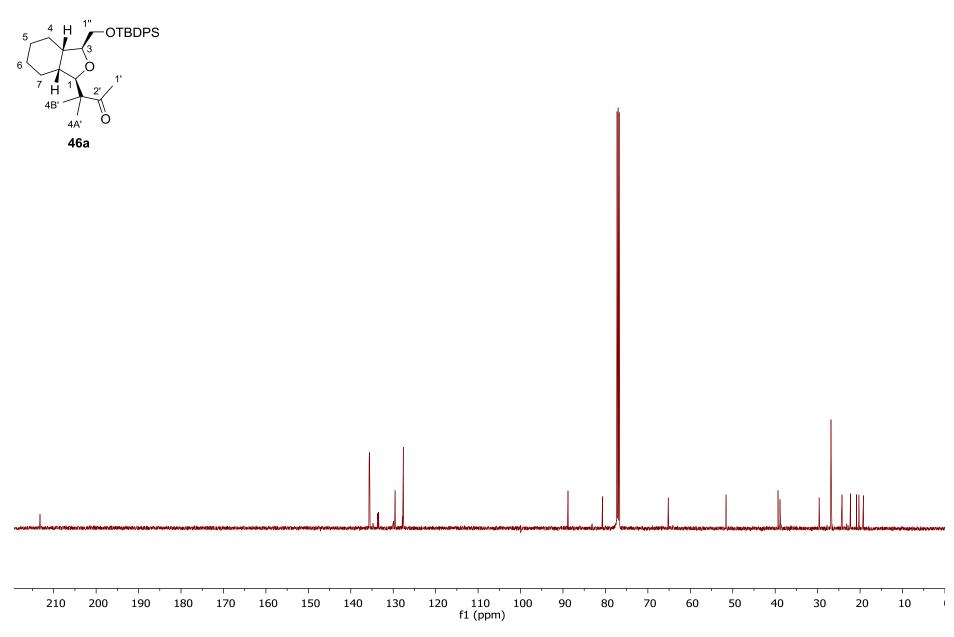


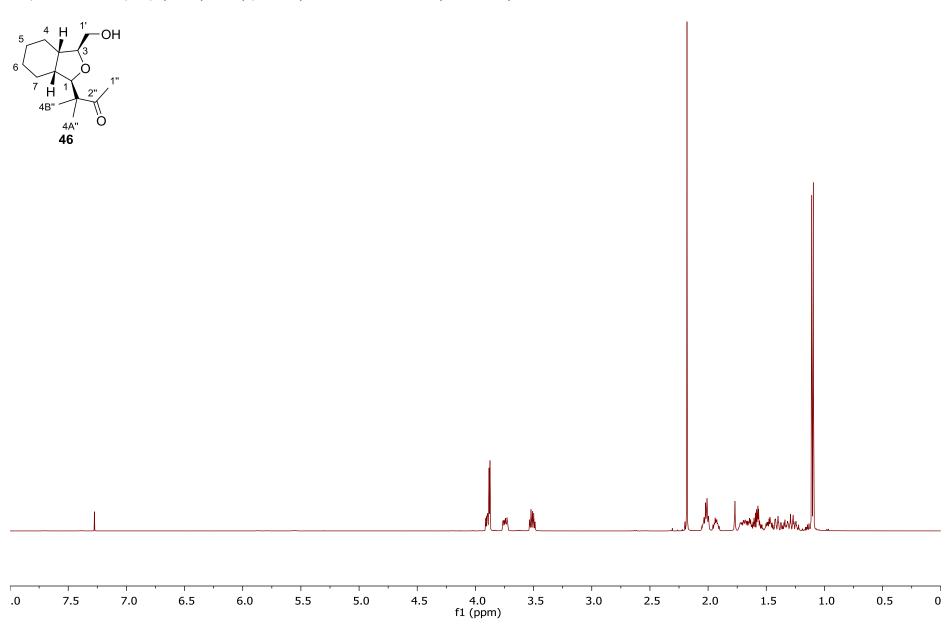

(E)-(1S,11S,12R,17S)-3,18-Dioxatetracyclo[$9.6.1.1^{13,16}.0^{12,17}$]nonadec-8-en-4-one **42**

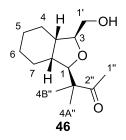


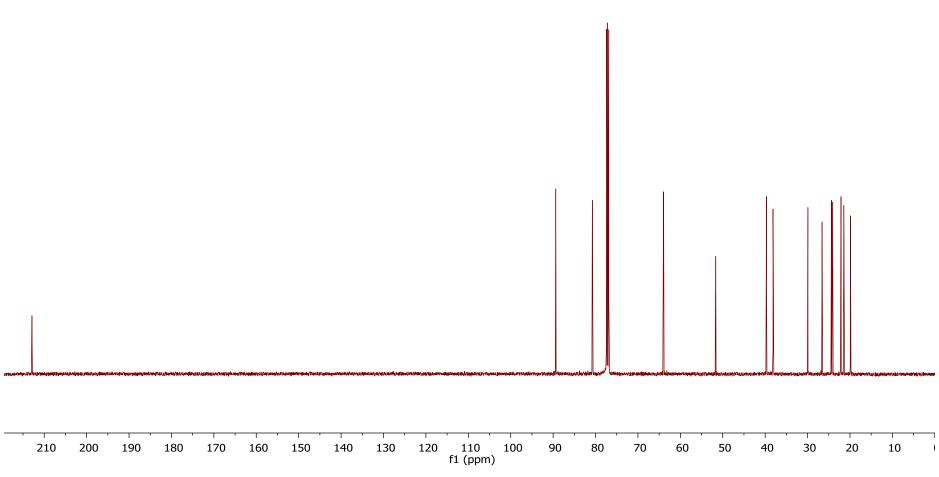




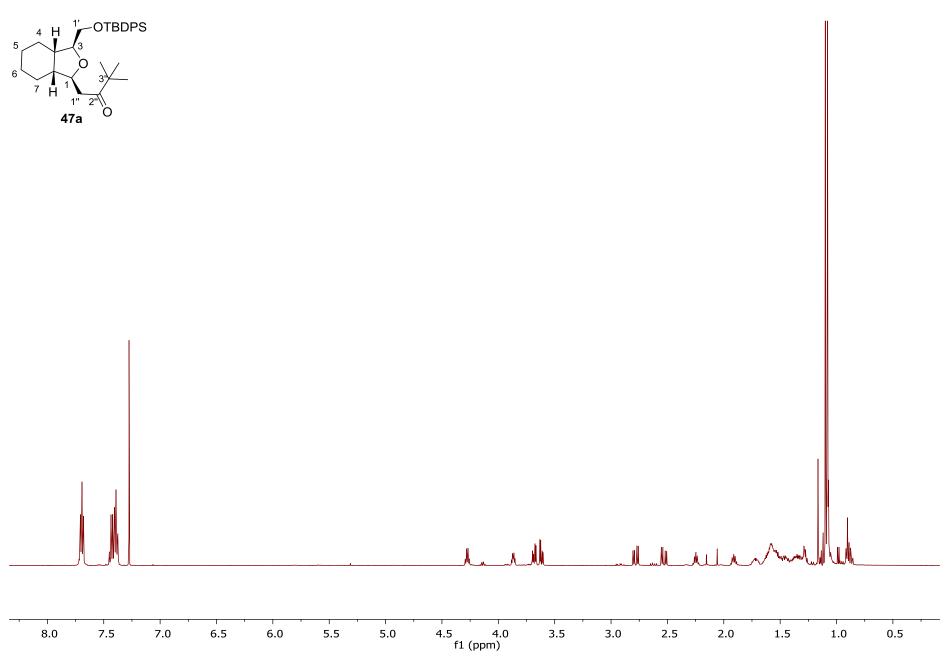


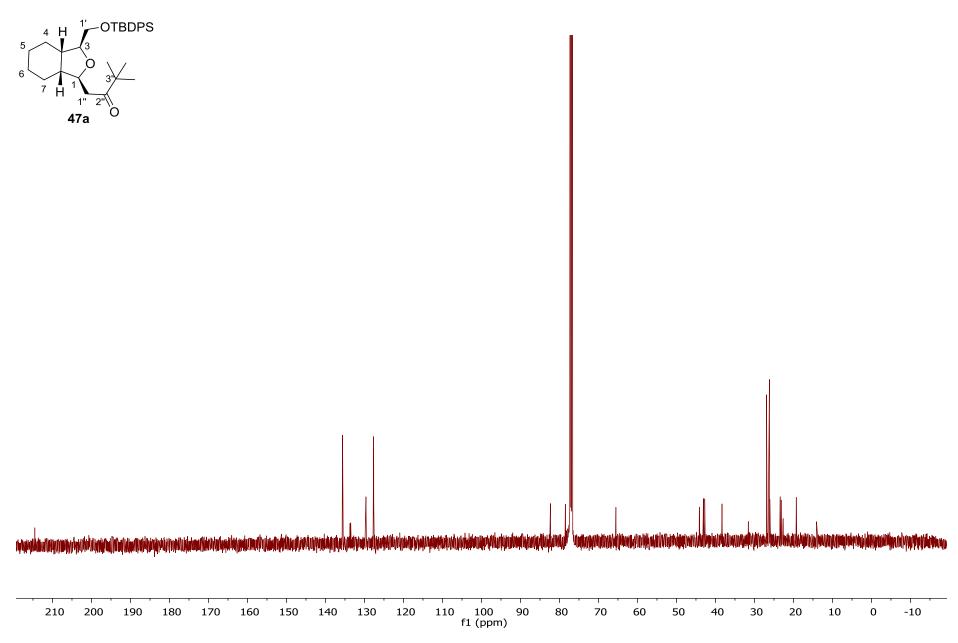


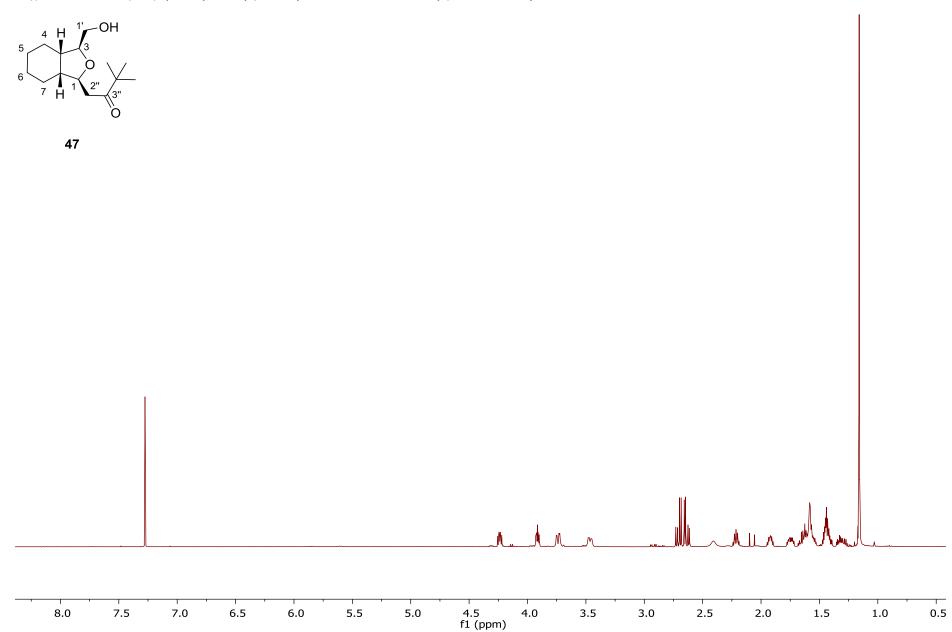

3-[(1R,3S,3aS,7aR)-3-{[(tert-Butyldiphenylsilyl)oxy]methyl}-octahydro-2-benzofuran-1-yl]-3-methylbutan-2-one **46a**

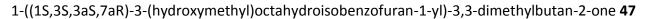


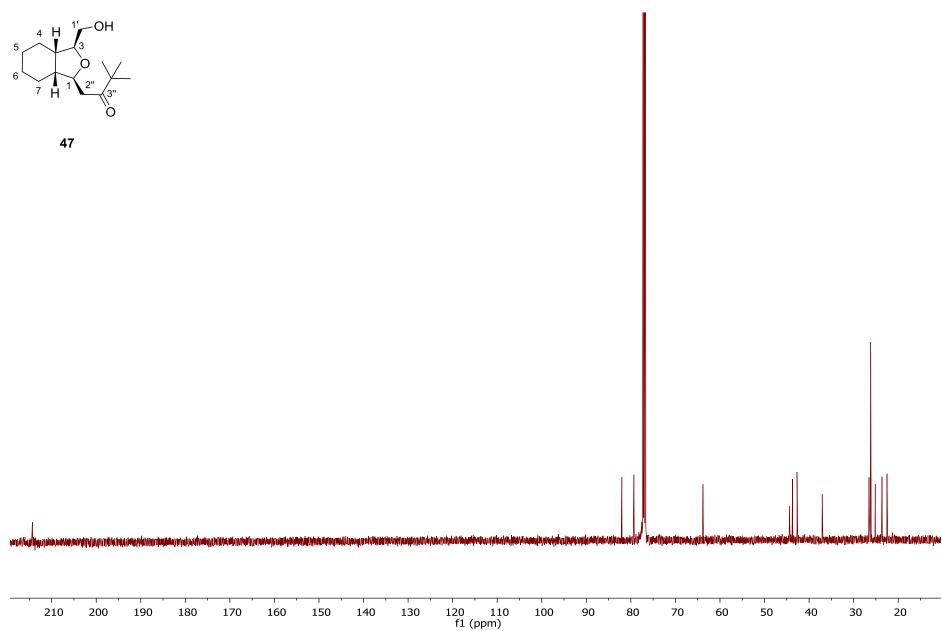
 $3-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert}-Butyldiphenylsilyl)oxy]methyl\}-octahydro-2-benzofuran-1-yl]-3-methylbutan-2-one~\textbf{46a}-1-yl]-3-met$

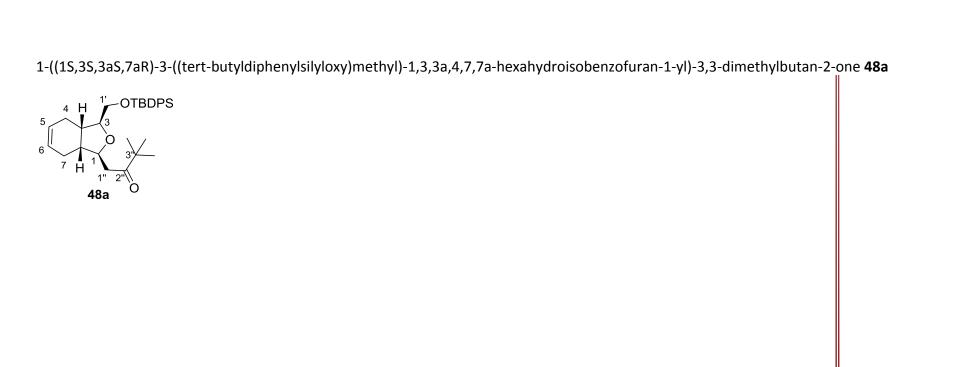


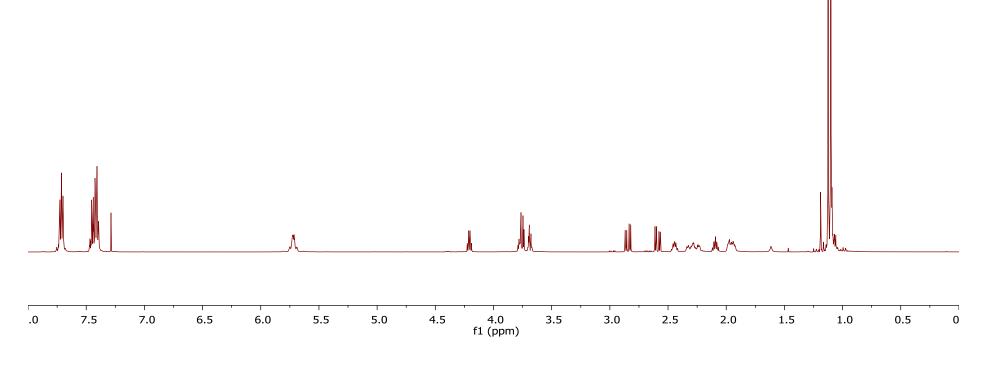


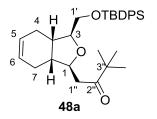


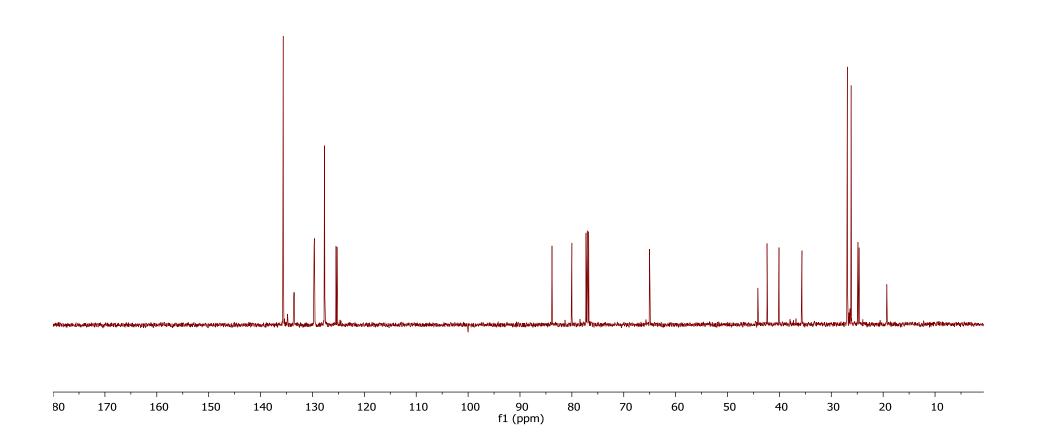


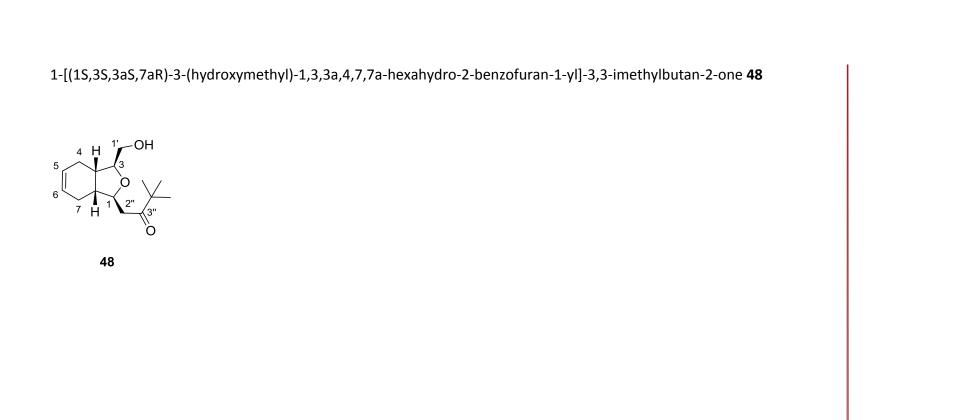

1-((1S,3S,3aS,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)octahydroisobenzofuran-1-yl)-3,3-dimethylbutan-2-one 47

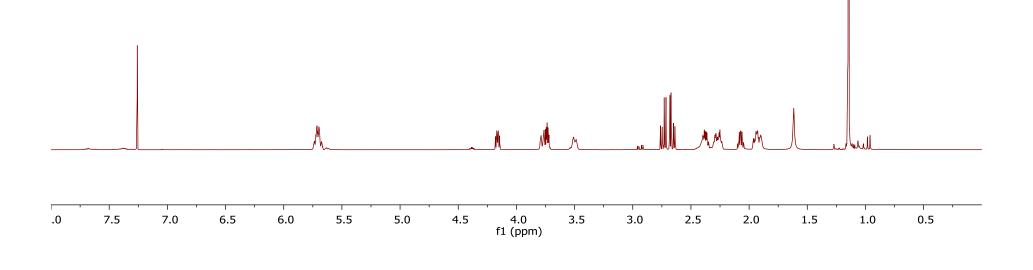


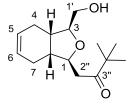


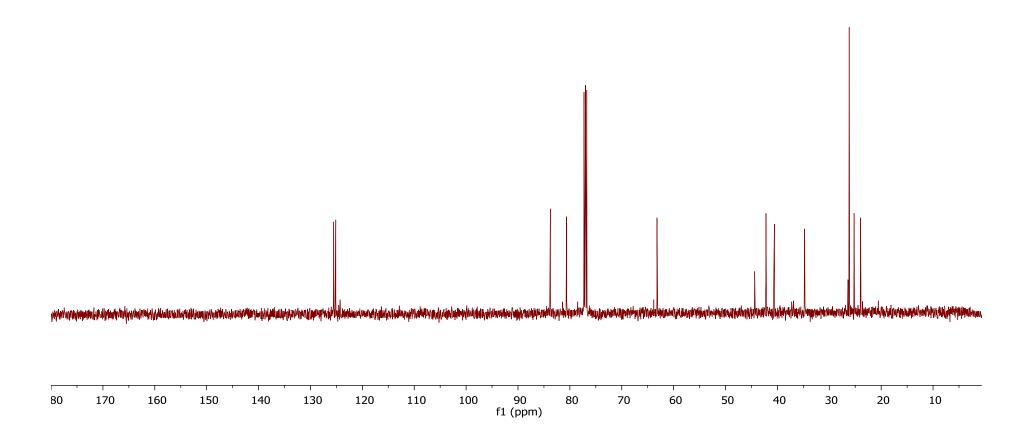


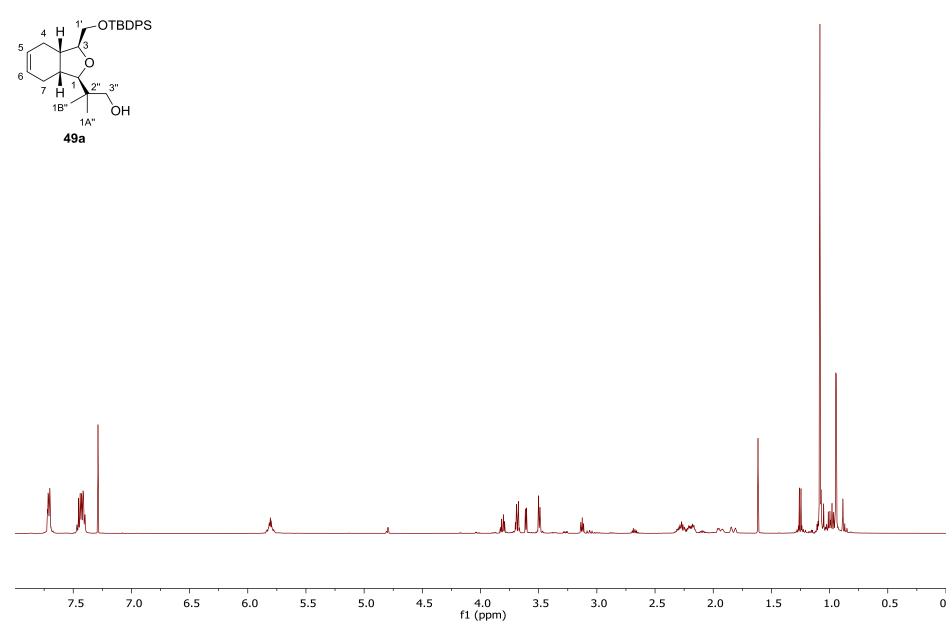


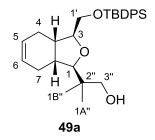


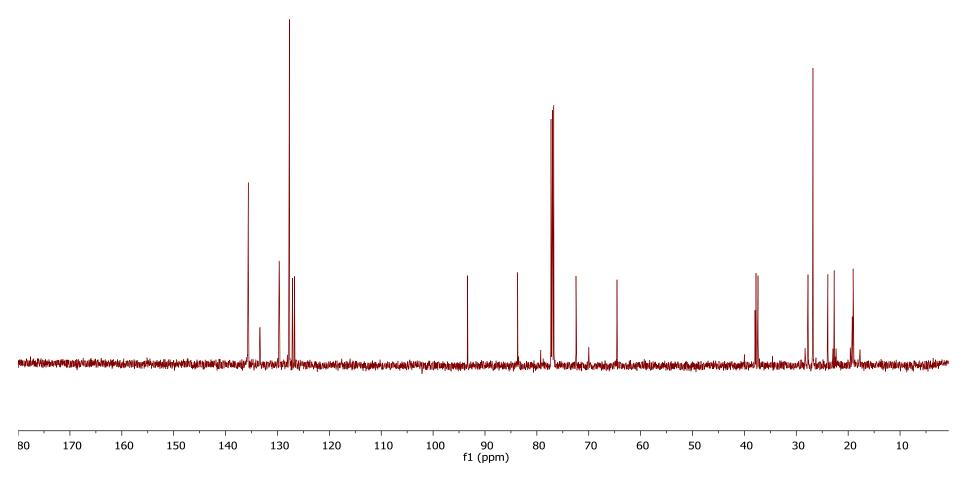


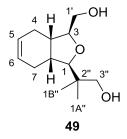

1-((15,35,3a5,7aR)-3-((tert-butyldiphenylsilyloxy)methyl)-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-yl)-3,3-dimethylbutan-2-one~48a

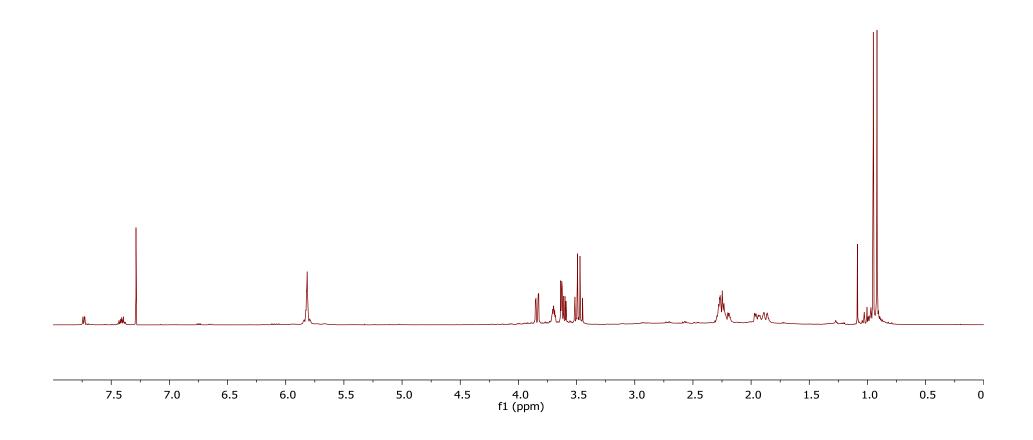


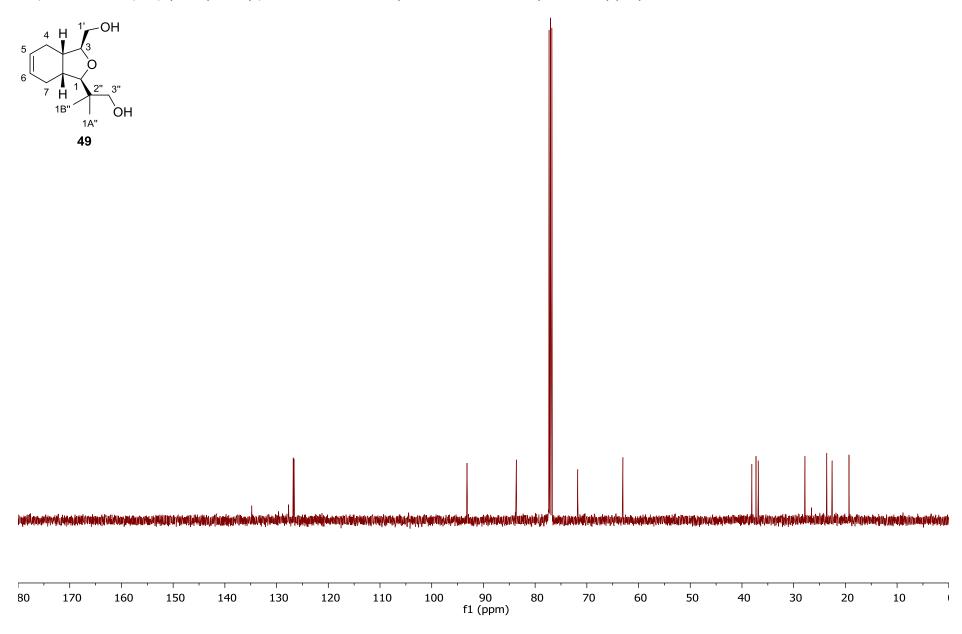


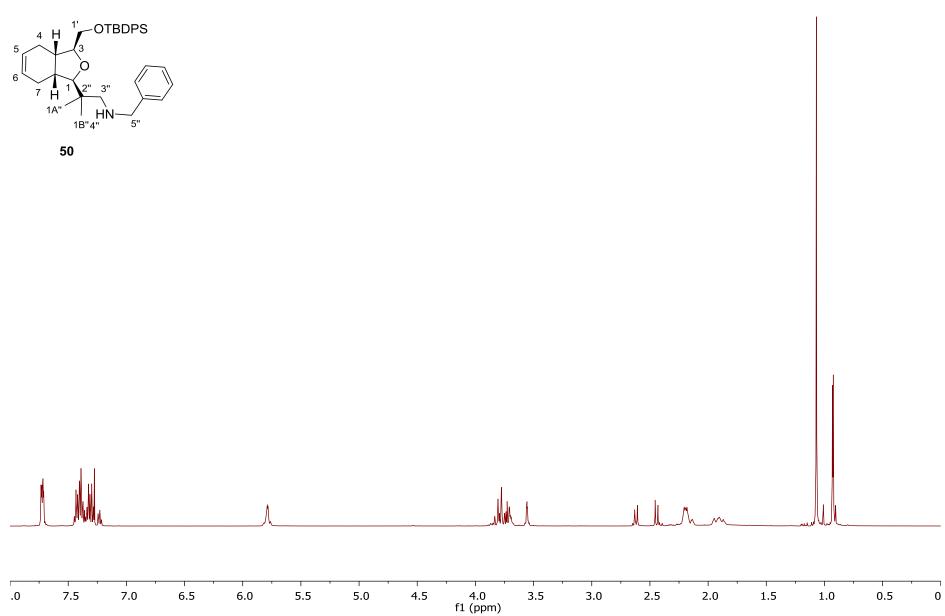




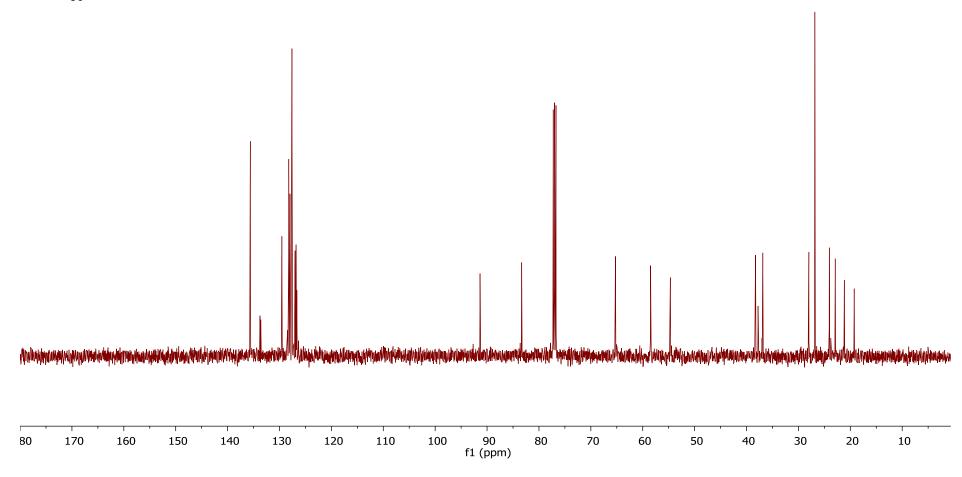


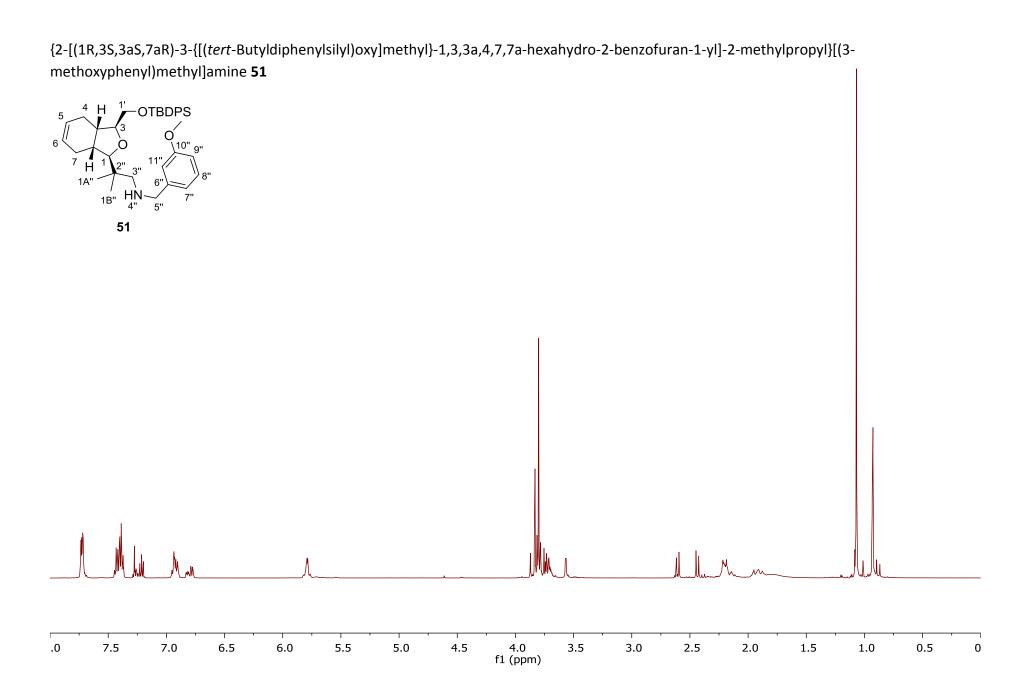


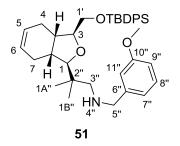


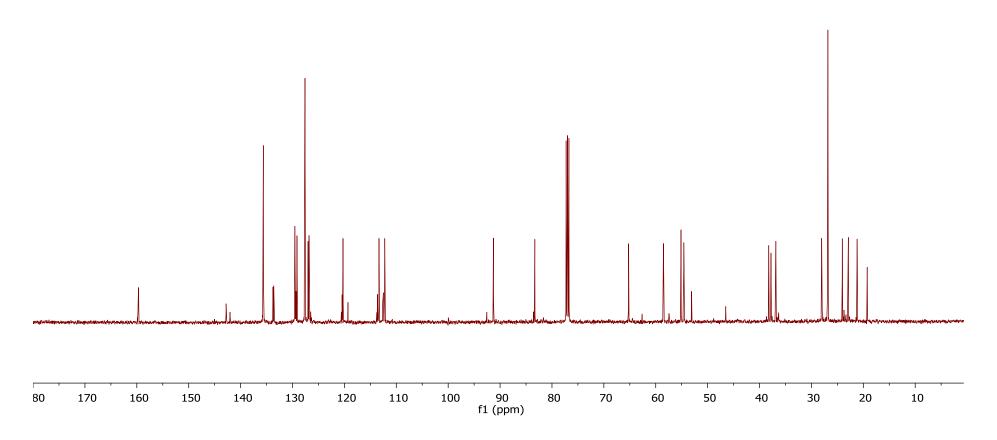


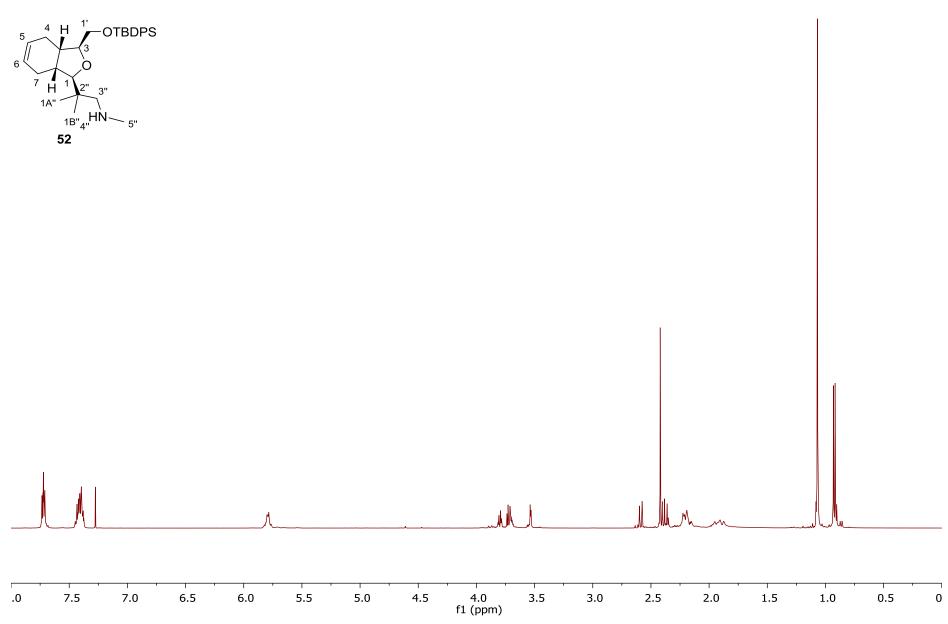
2-[(1R,3S,3aS,7aR)-3-(hydroxymethyl)-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropan-1-ol 49



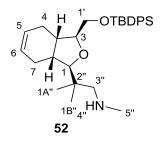


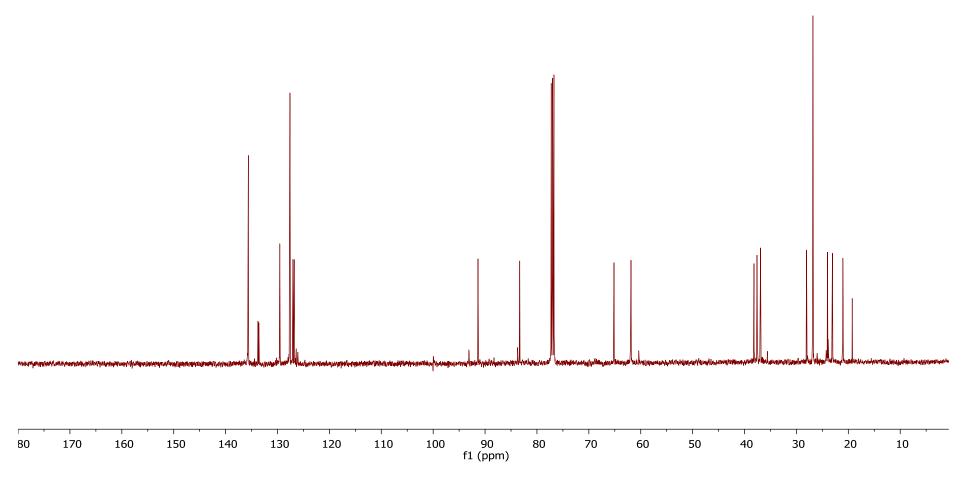


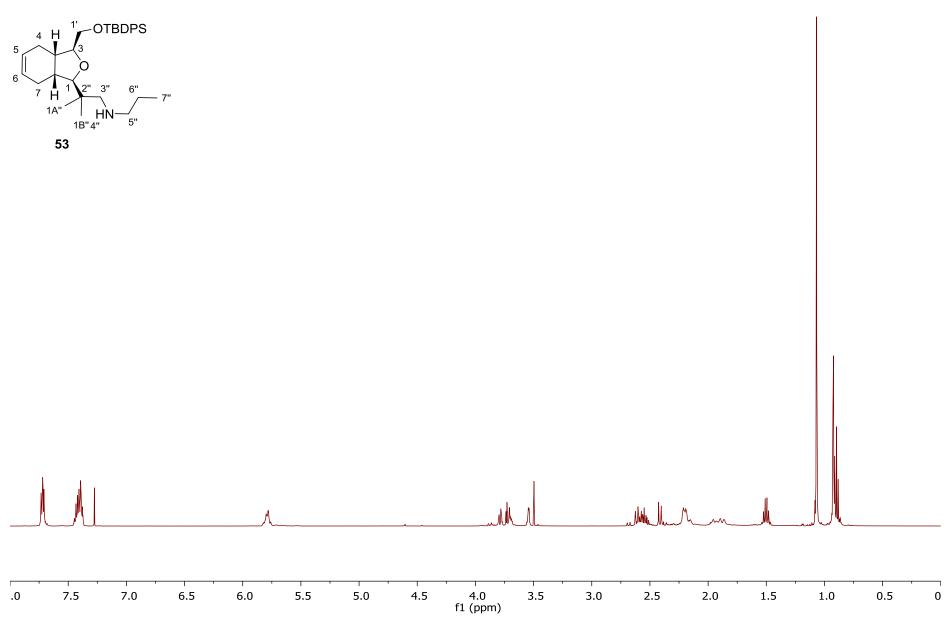


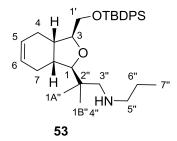


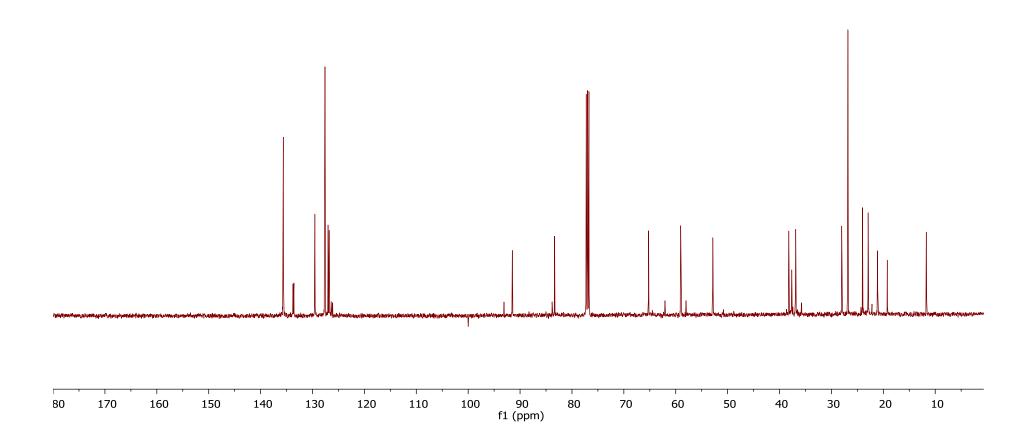
{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}[(3-methoxyphenyl)methyl]amine **51**

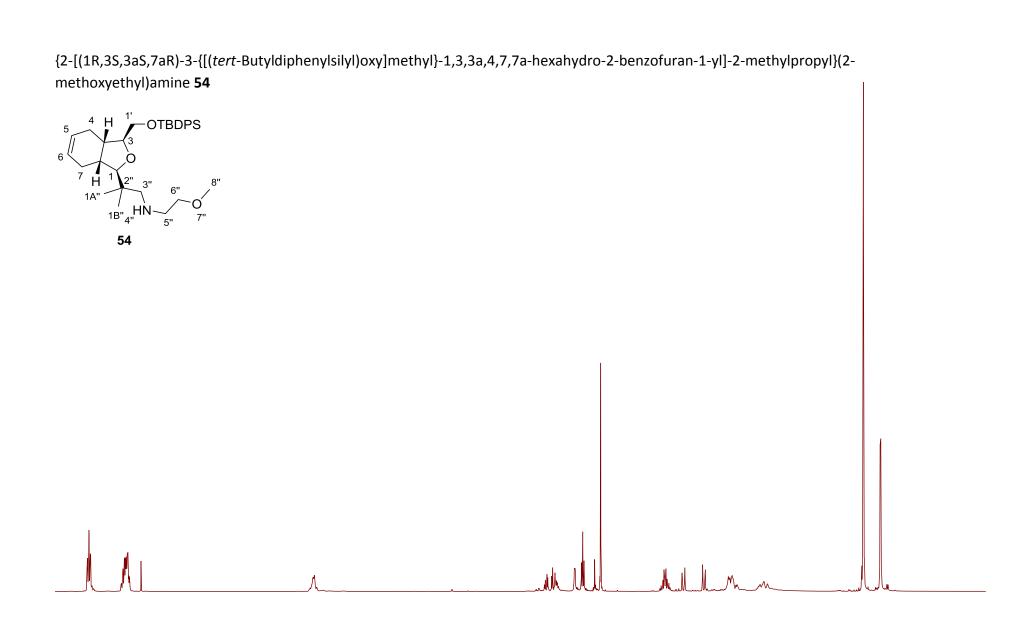





 $\{2-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert}-Butyldiphenylsilyl)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl\} (methyl)amine \textbf{52} \}$




 $\{2-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert}-Butyldiphenylsilyl)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl\}(methyl)amine \textbf{52} \}$



4.0 f1 (ppm)

3.5

3.0

2.5

2.0

1.5

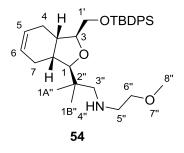
1.0

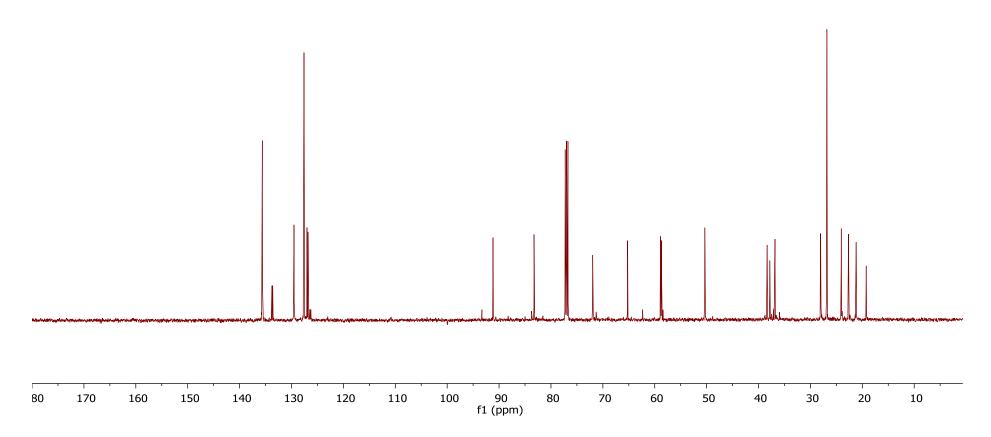
0.5

7.5

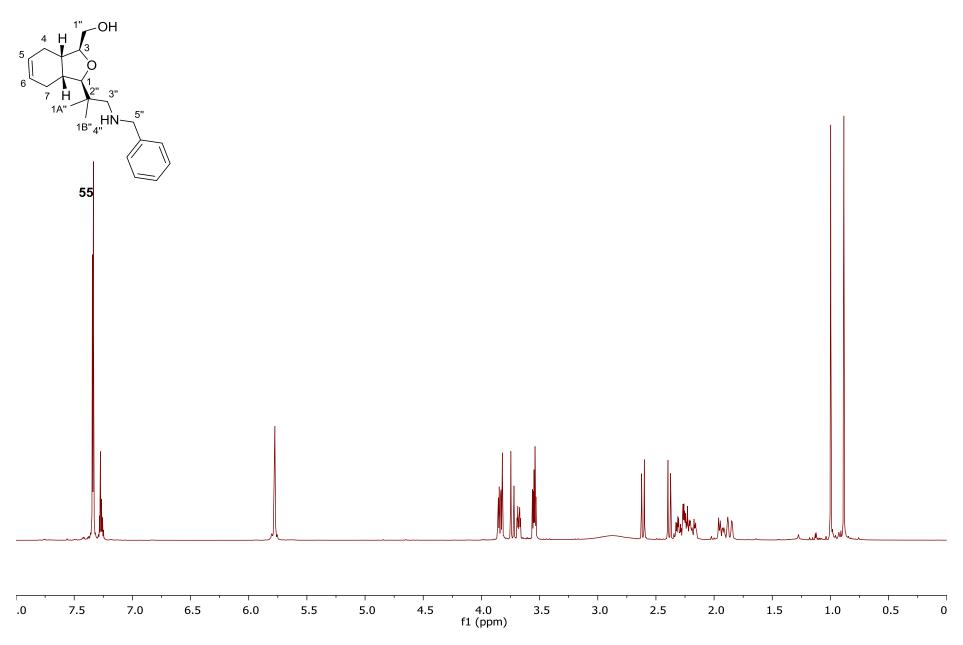
7.0

6.5

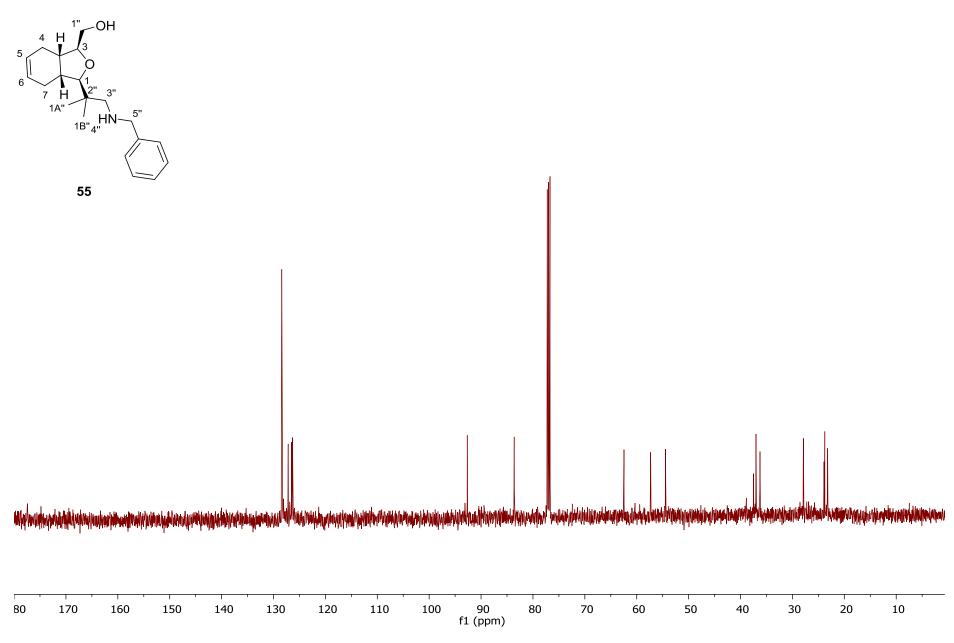

6.0

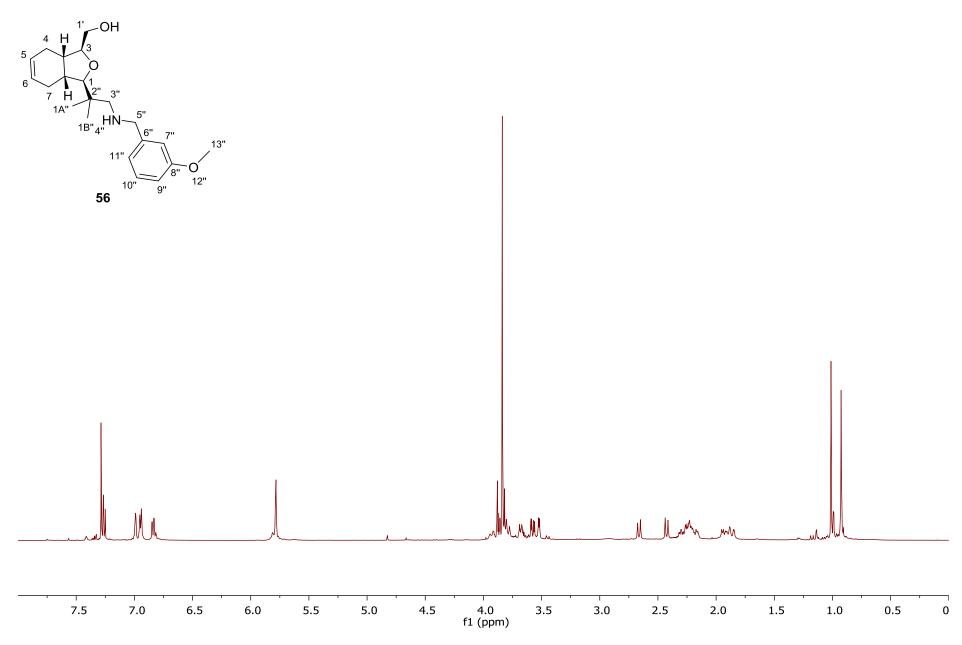

5.5

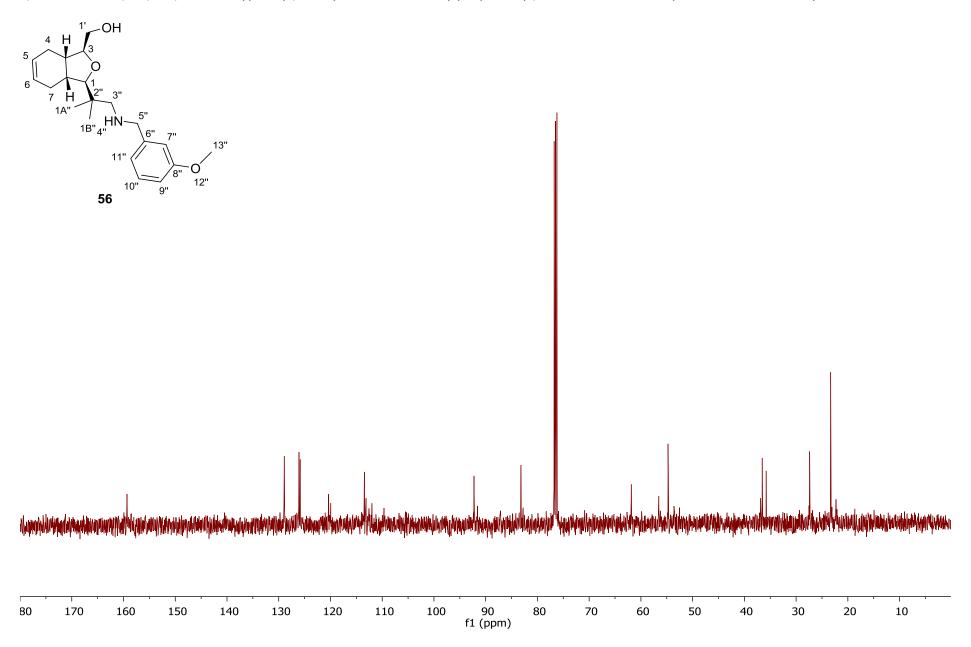
5.0

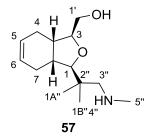

4.5

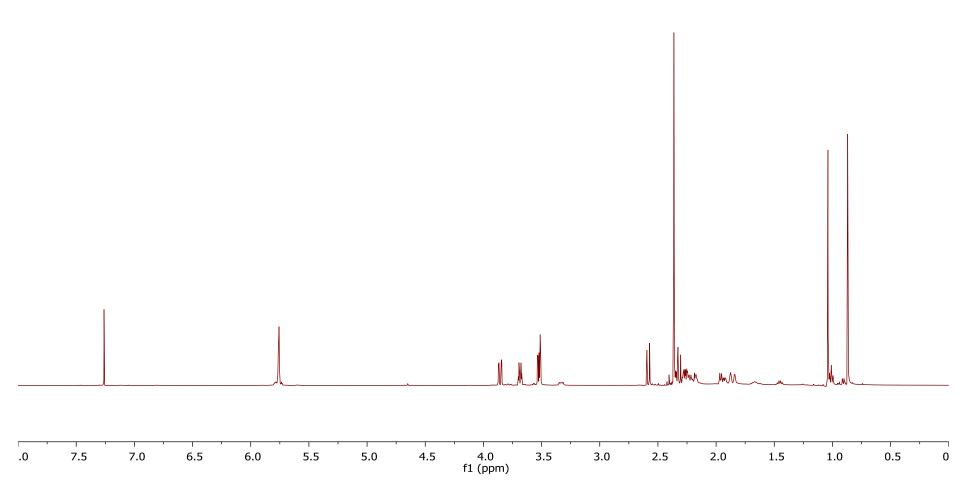
{2-[(1R,3S,3aS,7aR)-3-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-2-methylpropyl}(2-methoxyethyl)amine **54**



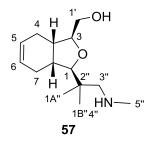

 $[(1S,3R,3aR,7aS)-3-[1-(benzylamino)-2-methylpropan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl] methanol~\bf 55$

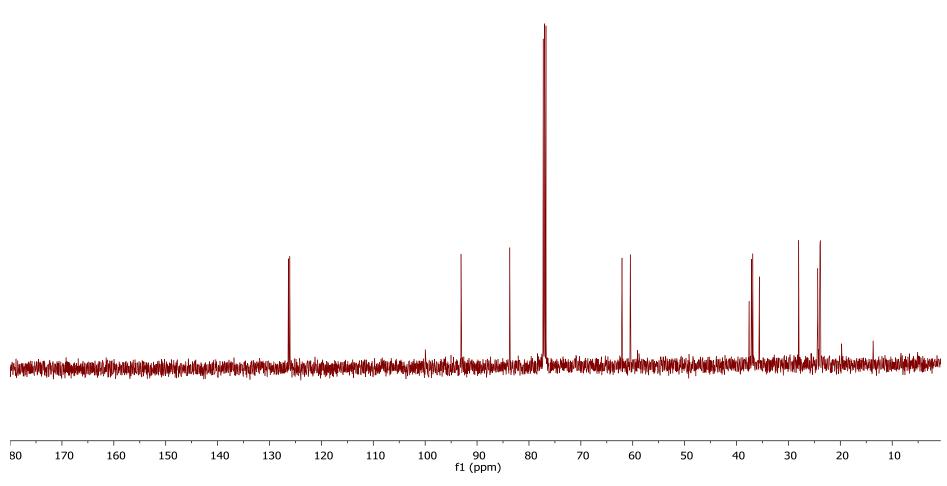


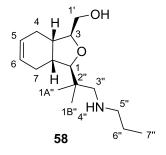

 $[(1S,3R,3aR,7aS)-3-[1-(benzylamino)-2-methylpropan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl] methanol~\bf 55$

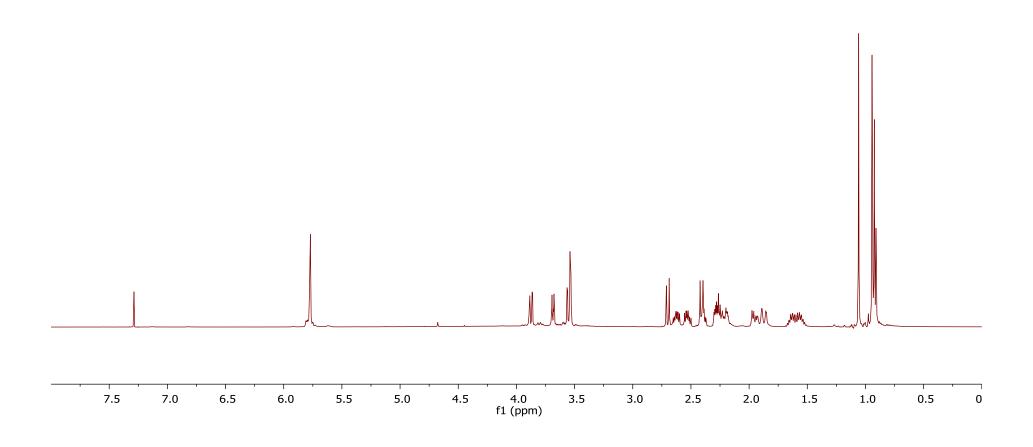


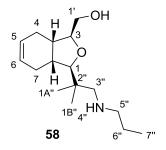
 $[(1S,3R,3aR,7aS)-3-(1-\{[(3-Methoxyphenyl)methyl]amino\}-2-methylpropan-2-yl)-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]methanol~\bf 56-1,000-1,00$

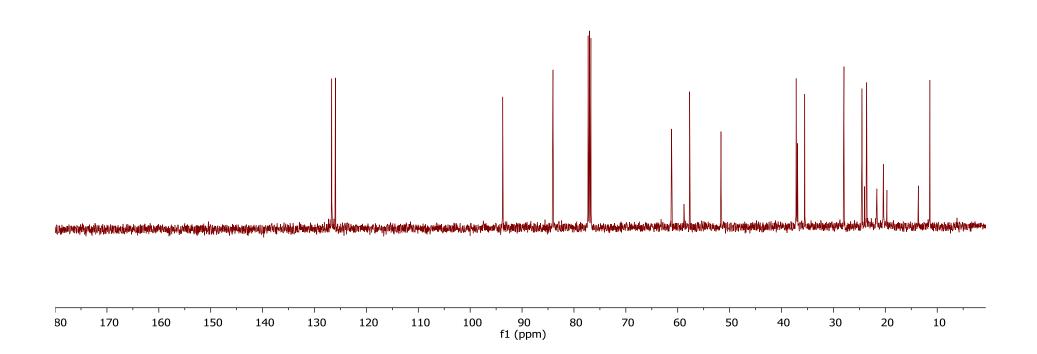


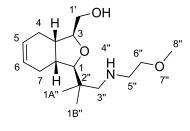


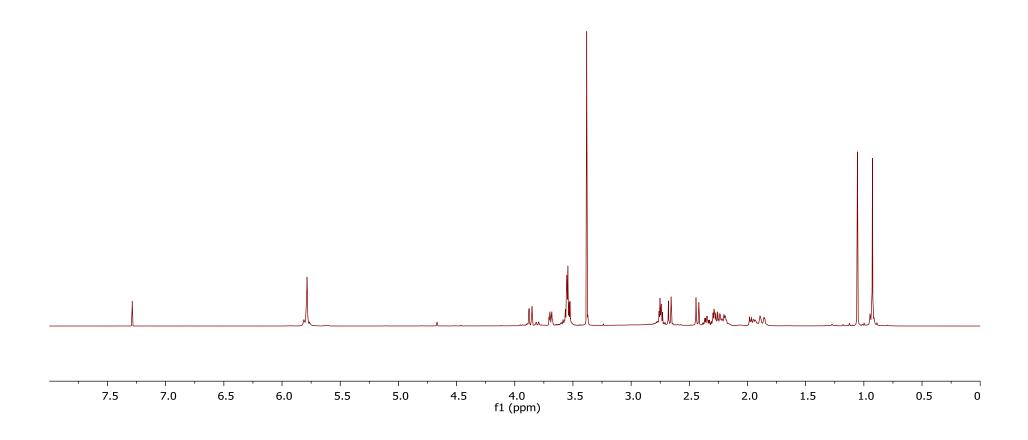



 $[(1S,3R,3aR,7aS)-3-[2-Methyl-1-(methylamino)propan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl] methanol~\bf 57$

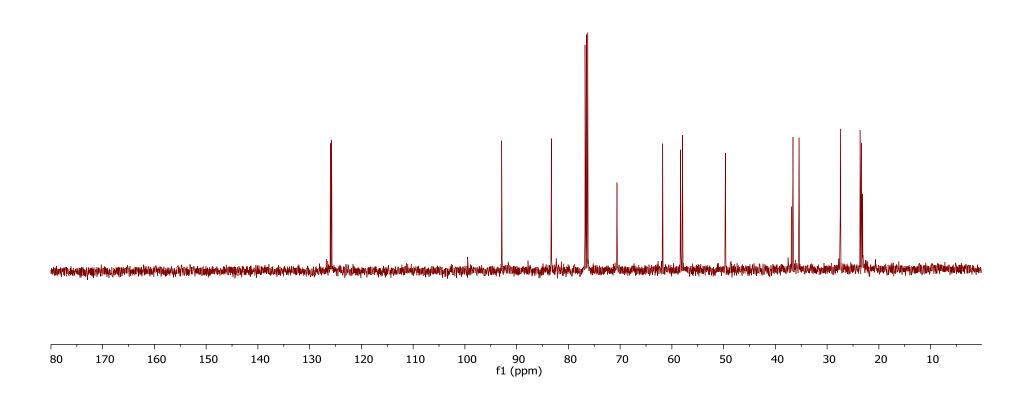


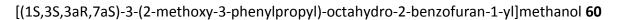

 $[(1S,3R,3aR,7aS)-3-[2-methyl-1-(propylamino)propan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl] methanol~\bf 58$

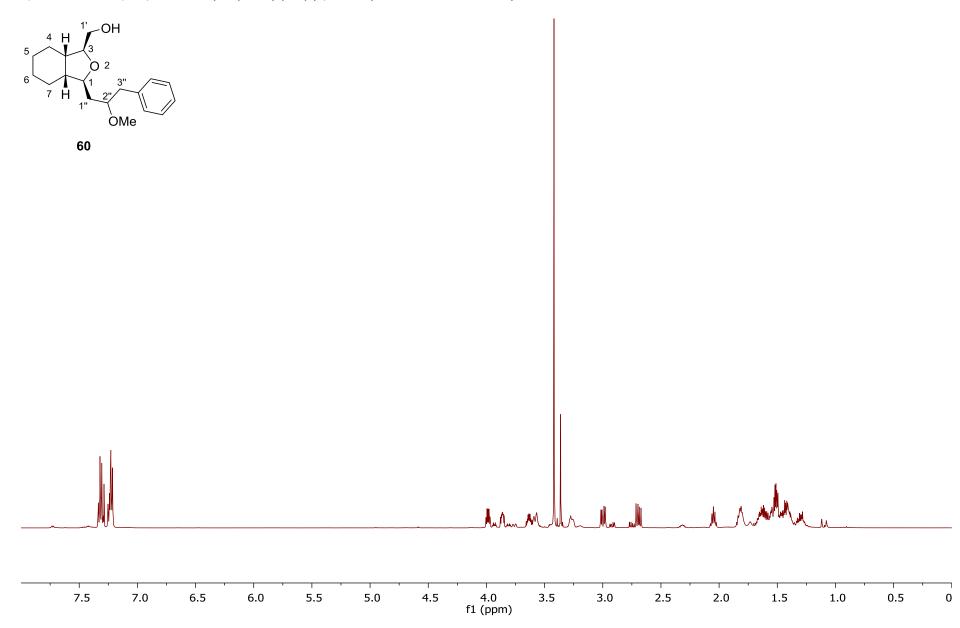


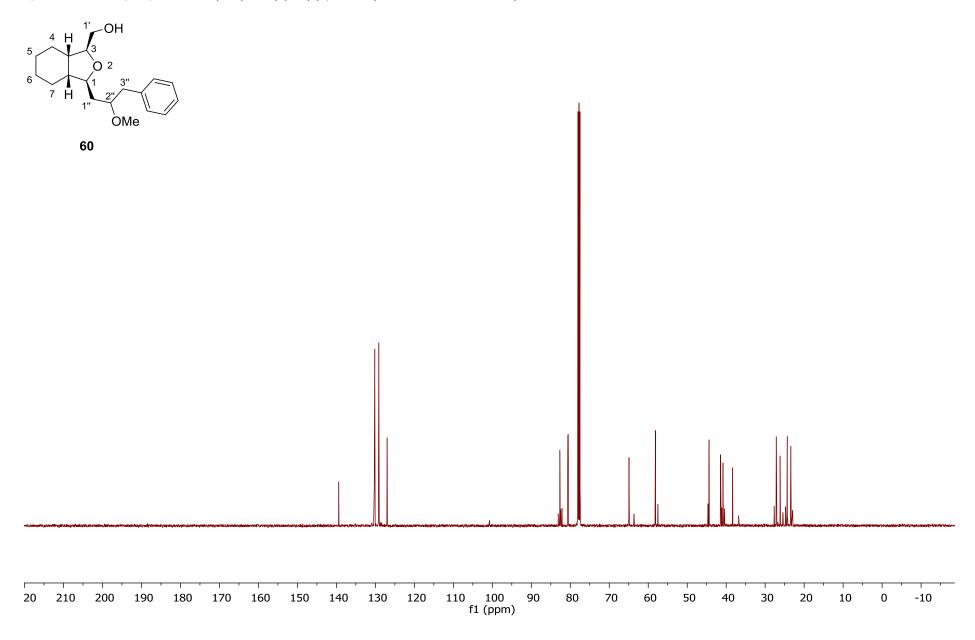


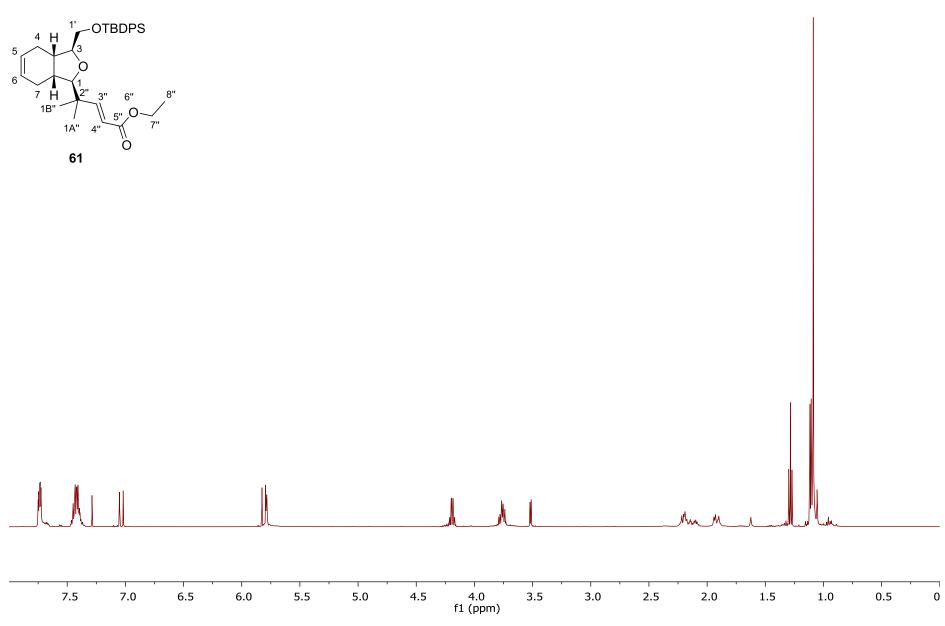
 $[(1S,3R,3aR,7aS)-3-[2-methyl-1-(propylamino)propan-2-yl]-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl] methanol~\bf 58$

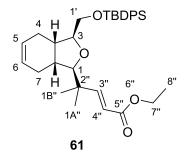


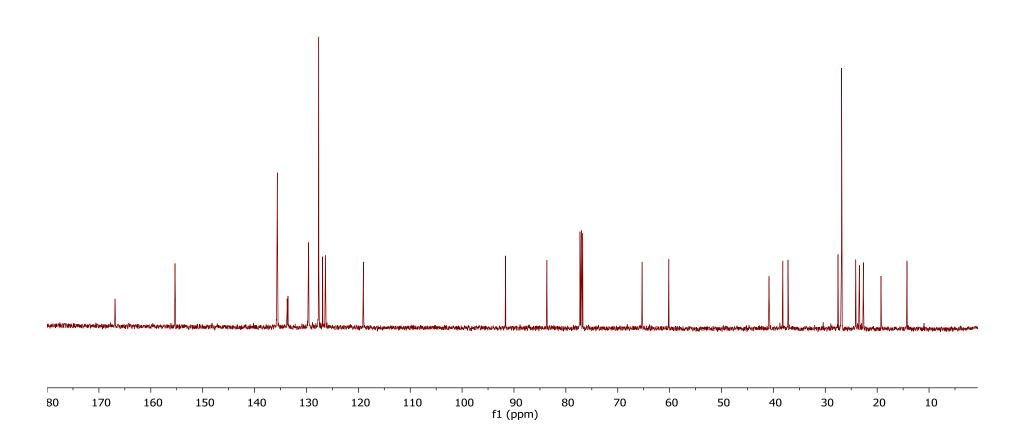




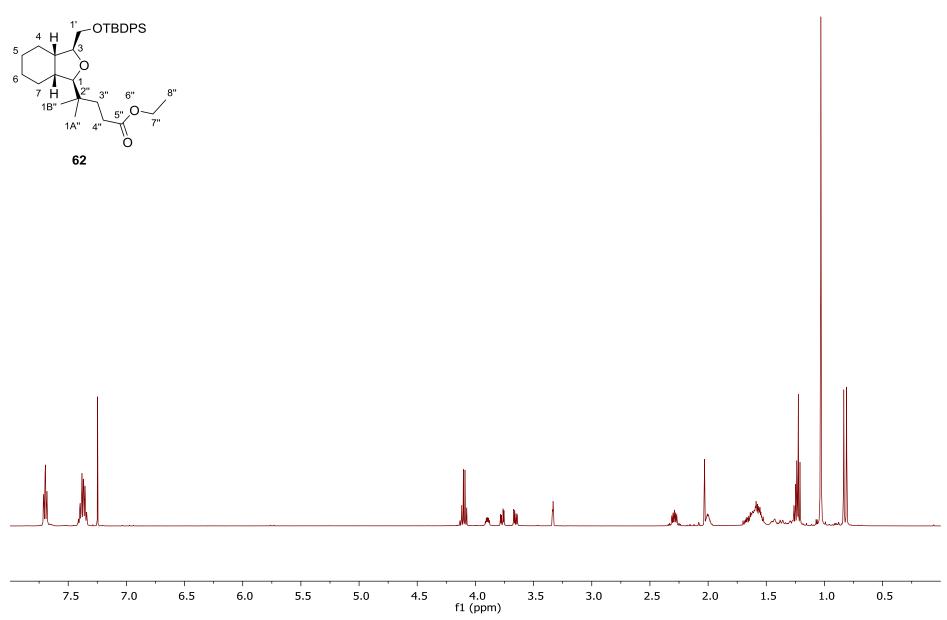




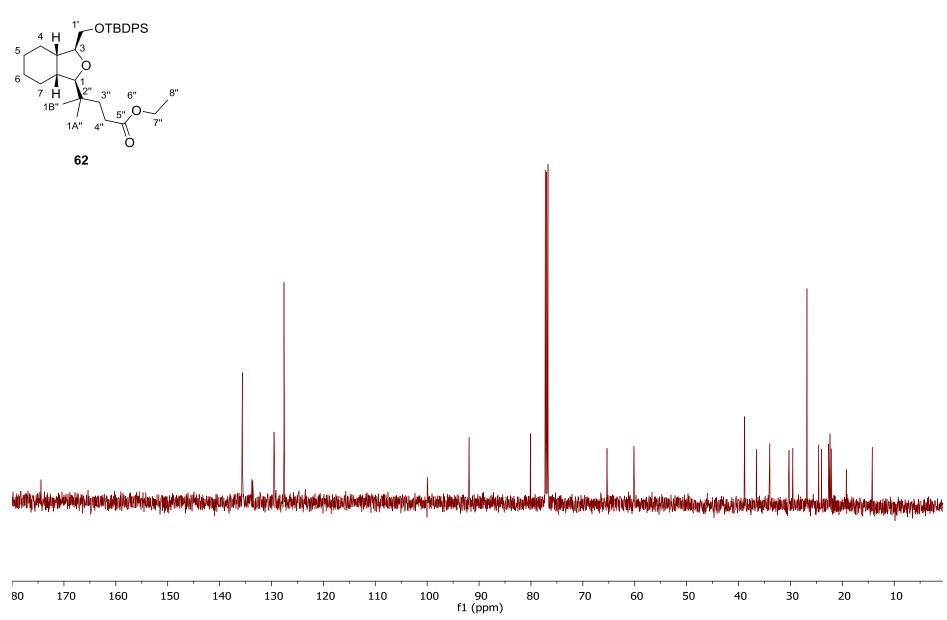

[(1S,3S,3aR,7aS)-3-(2-methoxy-3-phenylpropyl)-octahydro-2-benzofuran-1-yl]methanol 60



 $Ethyl\ (2E)-4-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert}-Butyldiphenylsilyl)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate\ \textbf{61}-1,2,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate\ \textbf{61}-1,2,3a,4,3a,4,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate\ \textbf{61}-1,2,3a,4,3a,4,4,7,$



 $Ethyl\ (2E)-4-[(1R,3S,3aS,7aR)-3-\{[(\textit{tert}-Butyldiphenylsilyl)oxy]methyl\}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate\ \textbf{61}-1,3,3a,4,7,7a-hexahydro-2-benzofuran-1-yl]-4-methylpent-2-enoate\ \textbf{61}-1,3,3a,4,7,7a-hexahydro-2$



Ethyl 4-[(1R,3S,3aS,7aR)-3-{[(tert-butyldiphenylsilyl)oxy]methyl} octahydro-2-benzofuran-1-yl]-4-methylpentanoate 62

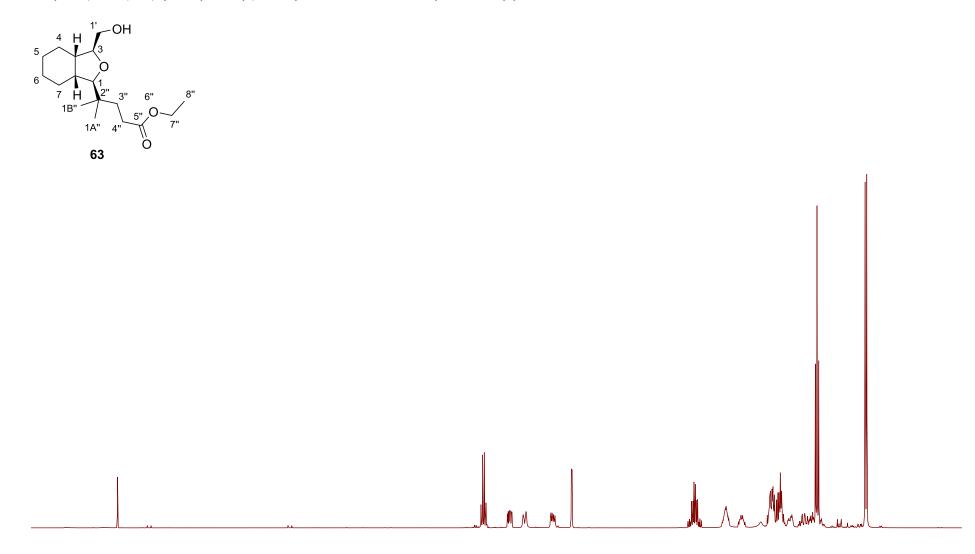
Ethyl 4-[(1R,3S,3aS,7aR)-3-{[(tert-butyldiphenylsilyl)oxy]methyl} octahydro-2-benzofuran-1-yl]-4-methylpentanoate 62

Ethyl 4-[(1R,3S)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoate 63

.0

7.5

7.0


6.5

6.0

5.5

5.0

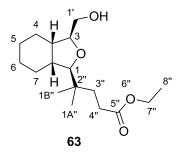
4.5

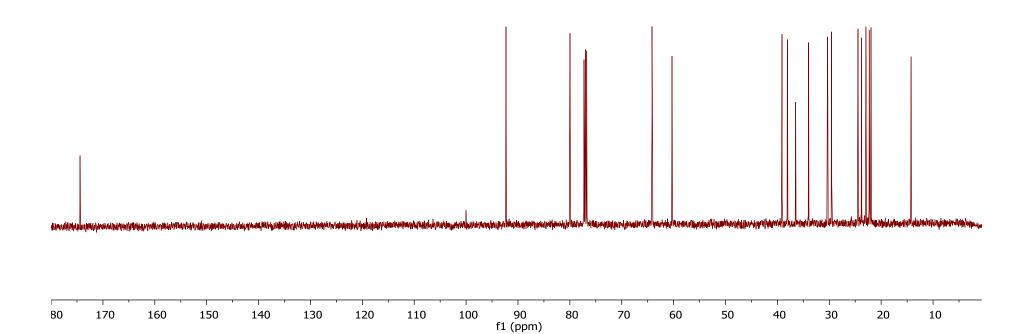
4.0 f1 (ppm)

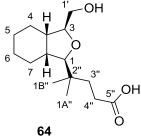
3.5

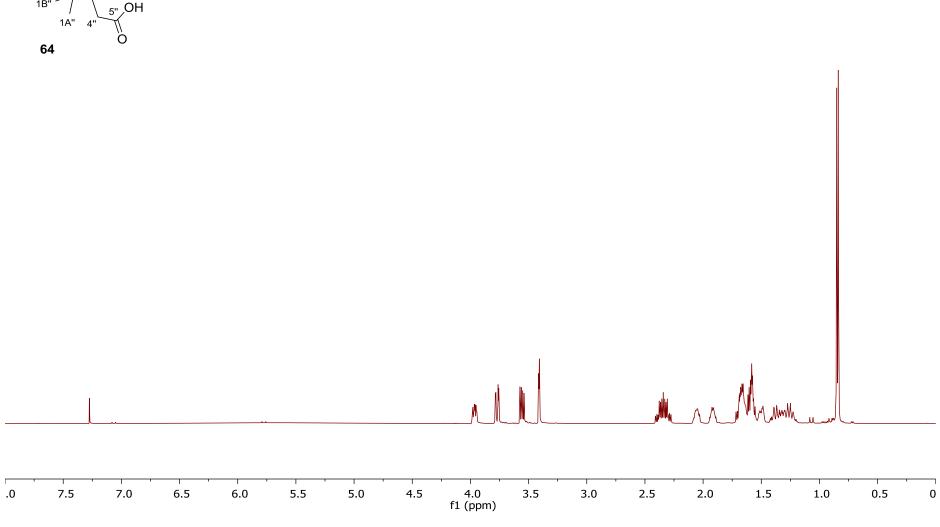
3.0

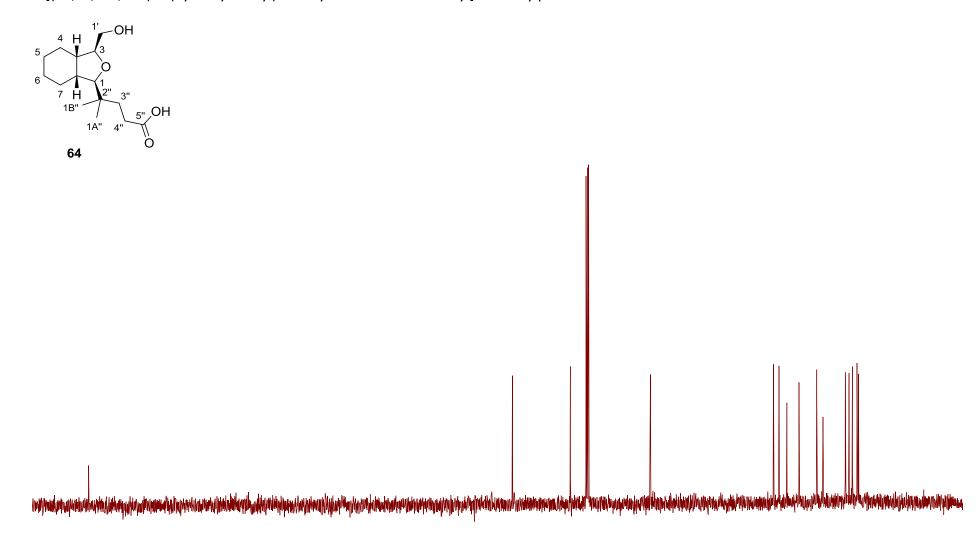
2.5

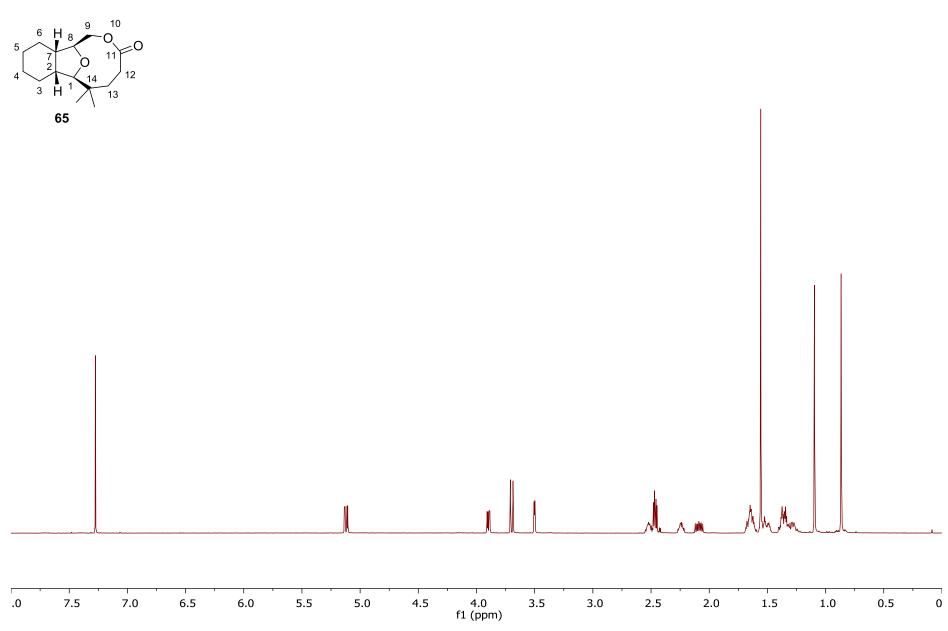

2.0

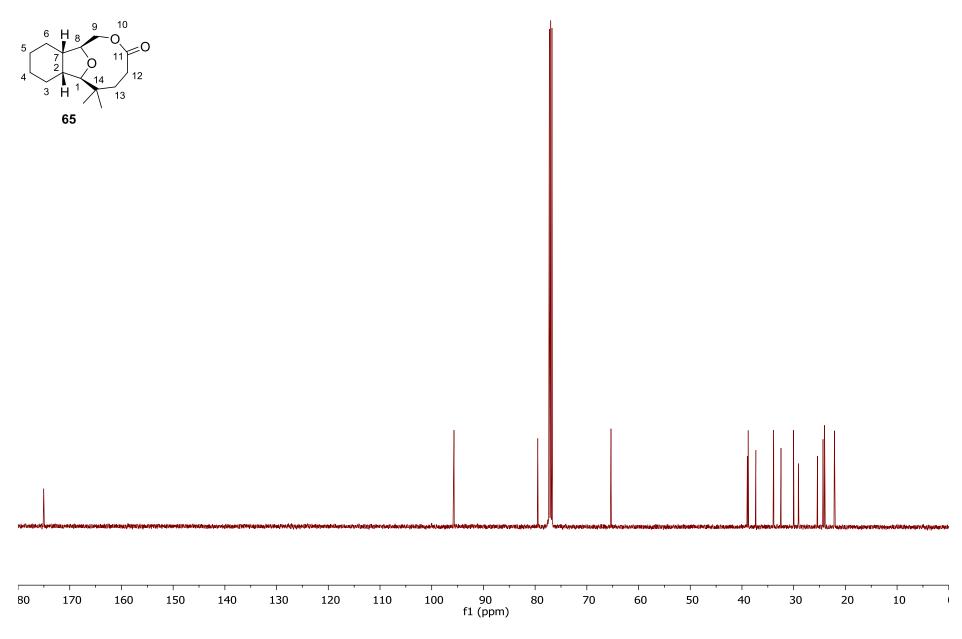

1.5

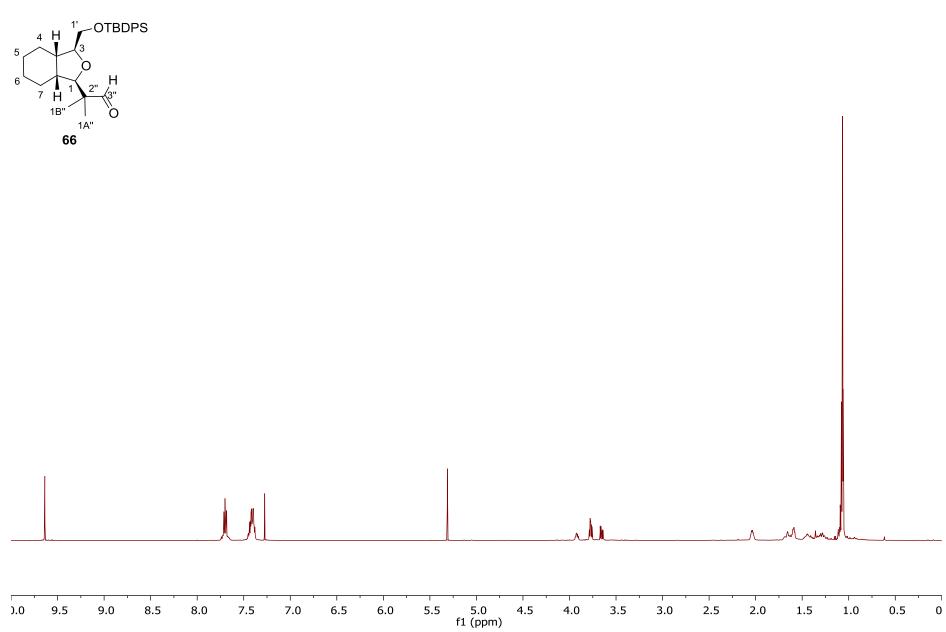

1.0

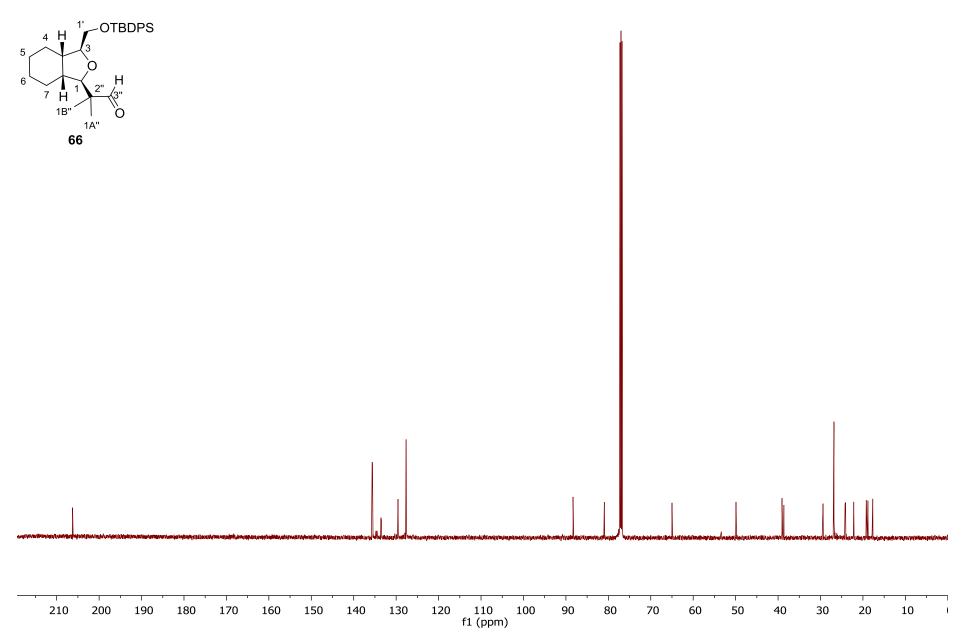

0.5

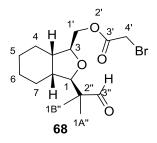

Ethyl 4-[(1R,3S)-3-(hydroxymethyl)octahydro-2-benzofuran-1-yl]-4-methylpentanoate 63

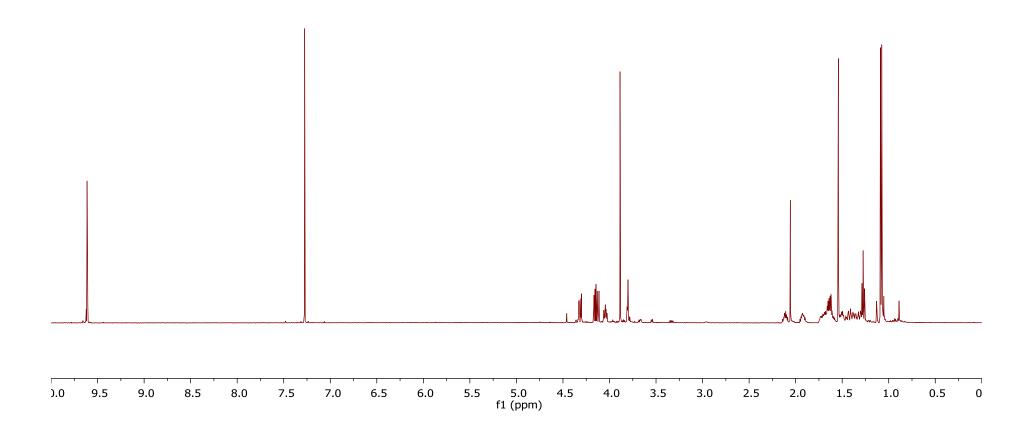


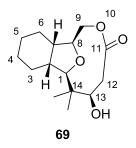


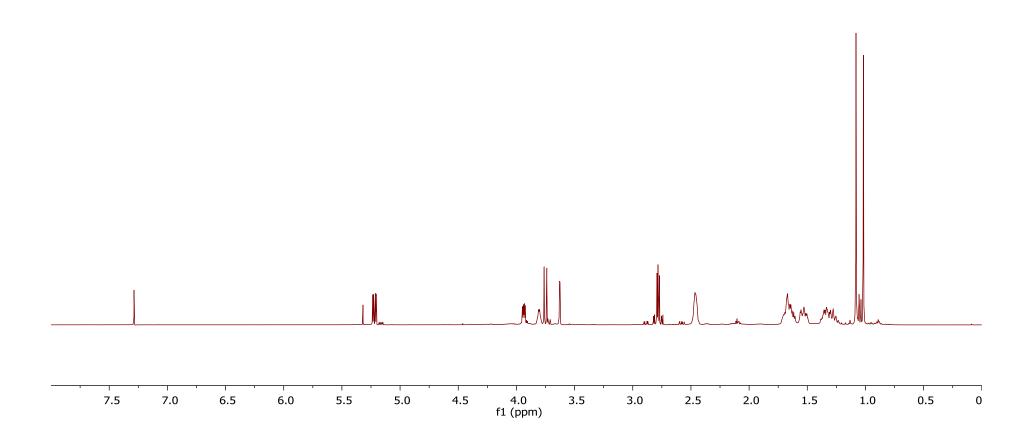

100 90 f1 (ppm)

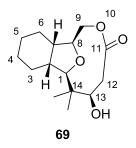

 $(1R, 2R, 7S, 8S) - 14, 14 - dimethyl - 10, 15 - dioxatricyclo [6.6. 1.0^{\{2,7\}}] pentadecan - 11 - one~\textbf{65}$

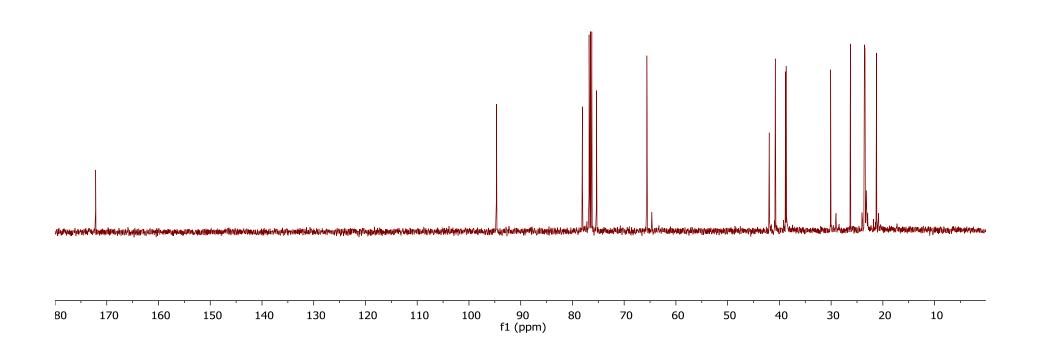

 $(1\text{R},2\text{R},7\text{S},8\text{S})-14,14-\text{dimethyl}-10,15-\text{dioxatricyclo}[6.6.1.0^{\{2,7\}}] pentade can-11-\text{one } \textbf{65}$

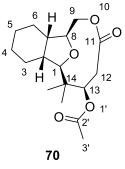


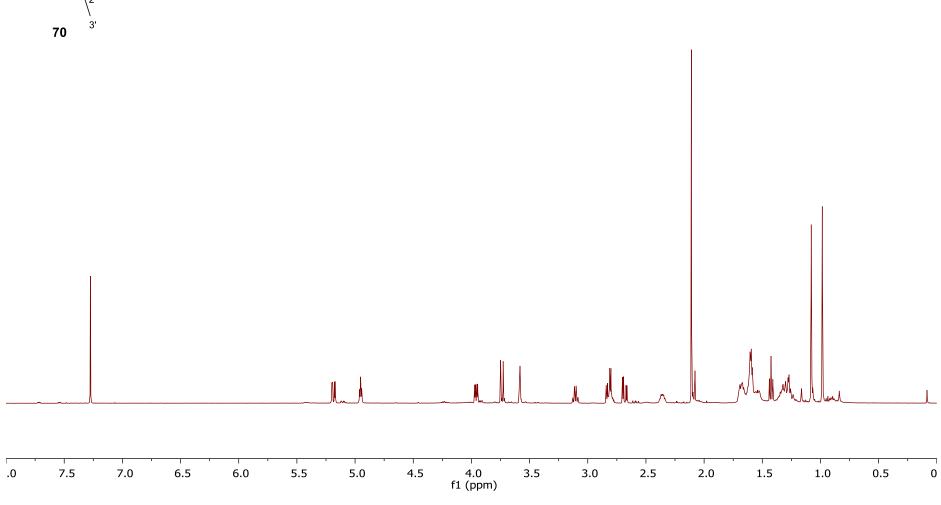


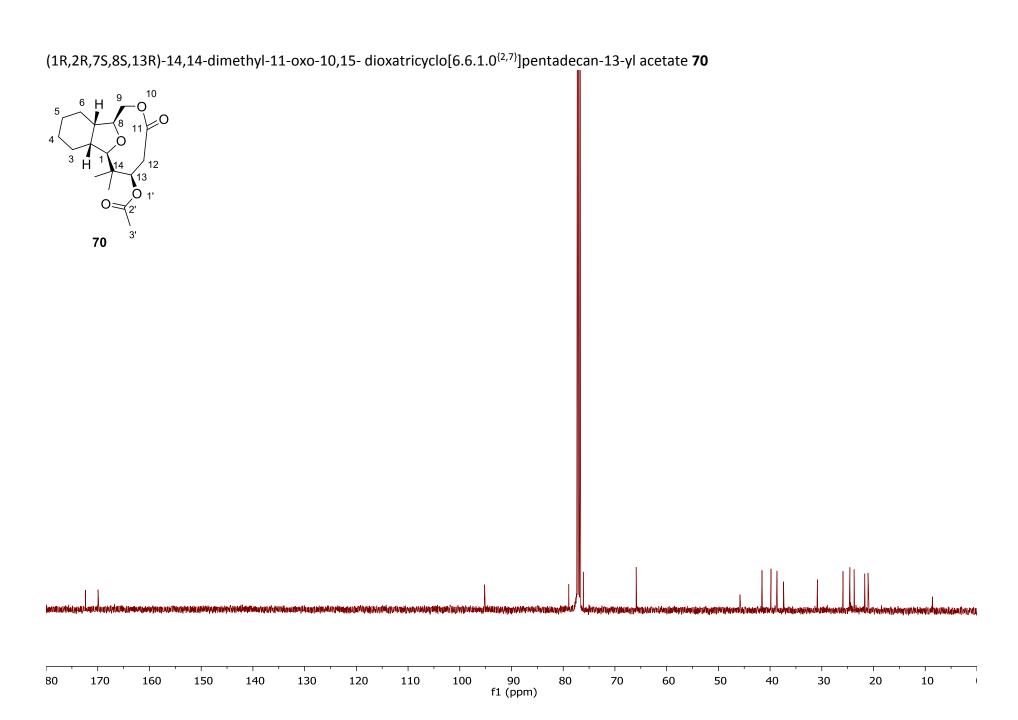

[(1S,3R,3aR,7aS)-3-(2-methyl-1-oxopropan-2-yl)octahydro-2-benzofuran-1-yl]methyl 2-bromoacetate 68

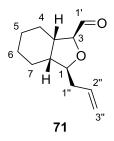


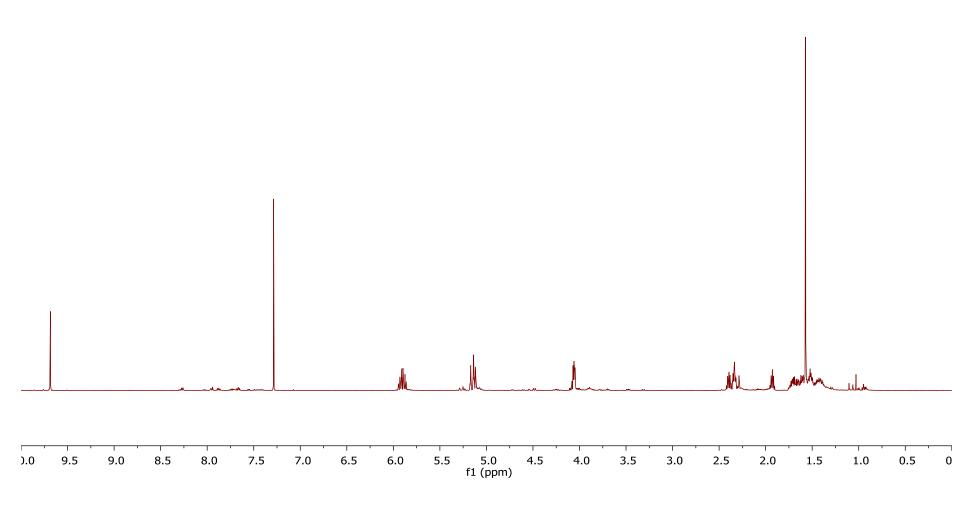

 $(1R, 2R, 7S, 8S, 13R) - 13 - hydroxy - 14, 14 - dimethyl - 10, 15 - dioxatricyclo \\ [6.6.1.0^{\{2,7\}}] pentadecan - 11 - one \\ \textbf{69} - 10, 15 - dioxatricyclo \\ \textbf{60} - 10, 15 - dioxatricyclo \\ \textbf{61} - 10, 15 - dioxatricyclo \\ \textbf{62} - 10, 15 - dioxatricyclo \\ \textbf{63} - 10, 15 - dioxatricyclo \\ \textbf{64} - 10, 15 - dioxatricyclo \\ \textbf{65} - 10, 15 - dioxatricyclo \\ \textbf{65} - 10, 15 - dioxatricyclo \\ \textbf{67} - 10, 15 - dioxatricyclo \\ \textbf{68} - 10, 15 - dioxatricyclo \\ \textbf{68} - 10, 15 - dioxatricyclo \\ \textbf{68} - 10, 15 - dioxatricyclo \\ \textbf{69} - 10, 15 - dioxatricyclo \\ \textbf{69} - 10, 15 - dioxatricyclo \\ \textbf{69} - 10, 15 - dioxatricyclo \\ \textbf{60} - 10, 15 - dioxatricyclo \\ \textbf{60$

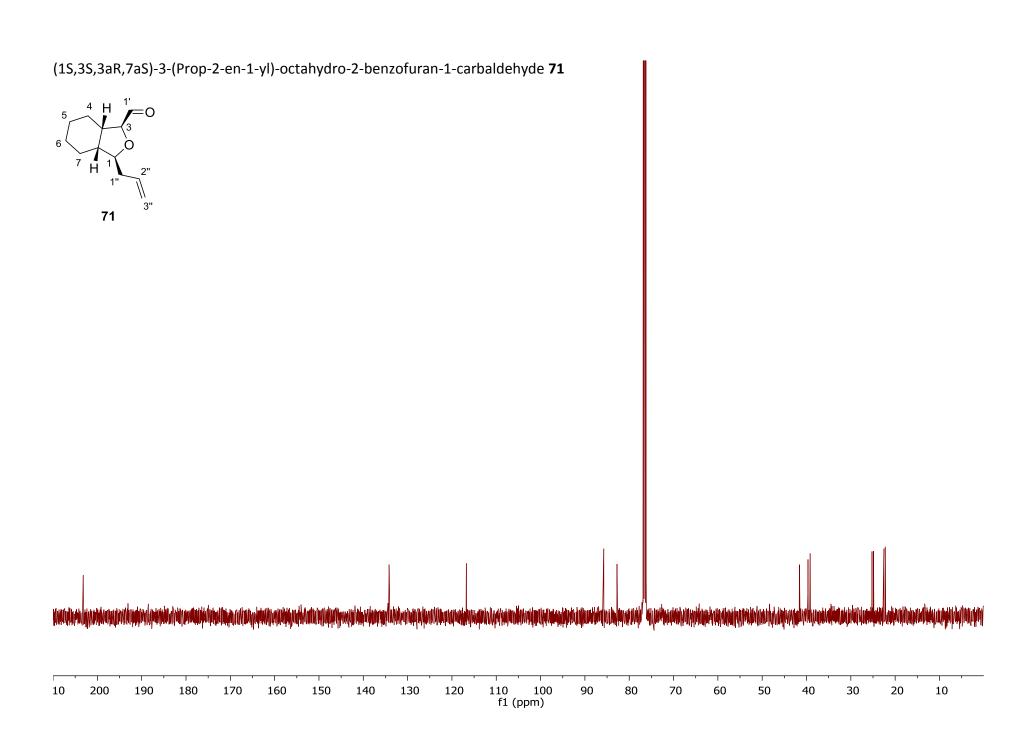



 $(1R, 2R, 7S, 8S, 13R) - 13 - hydroxy - 14, 14 - dimethyl - 10, 15 - dioxatricyclo[6.6.1.0^{\{2,7\}}] pentadecan - 11 - one~\textbf{69}$

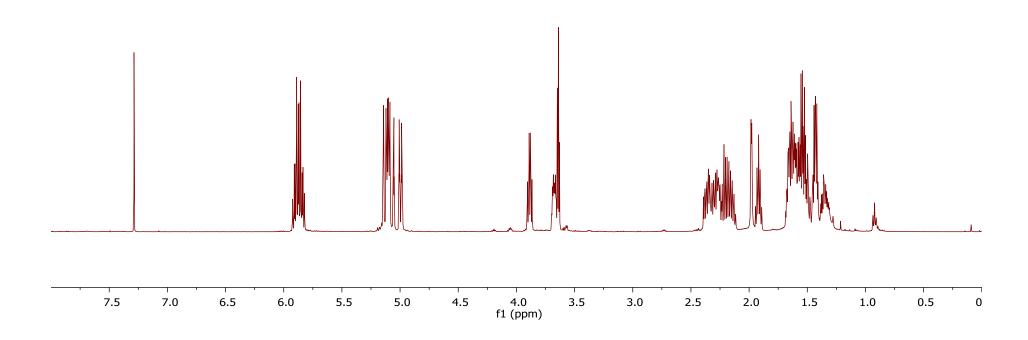


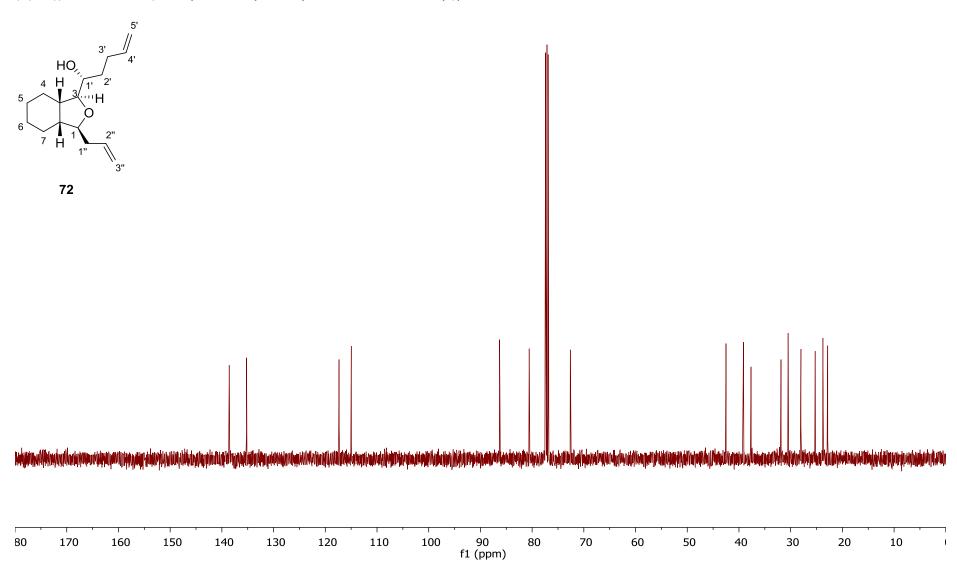

 $(1R, 2R, 7S, 8S, 13R) - 14, 14 - dimethyl - 11 - oxo - 10, 15 - dioxatricyclo[6.6.1.0^{\{2,7\}}] pentadecan - 13 - yl acetate~\textbf{70}$

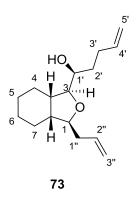


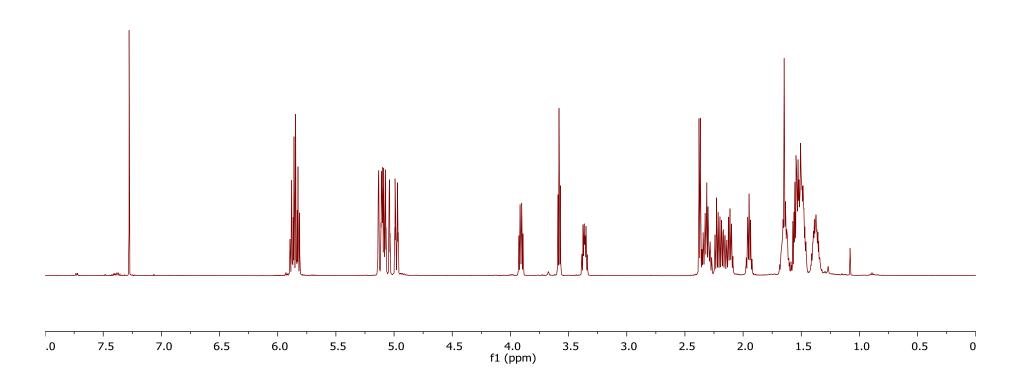



(1S,3S,3aR,7aS)-3-(Prop-2-en-1-yl)-octahydro-2-benzofuran-1-carbaldehyde 71

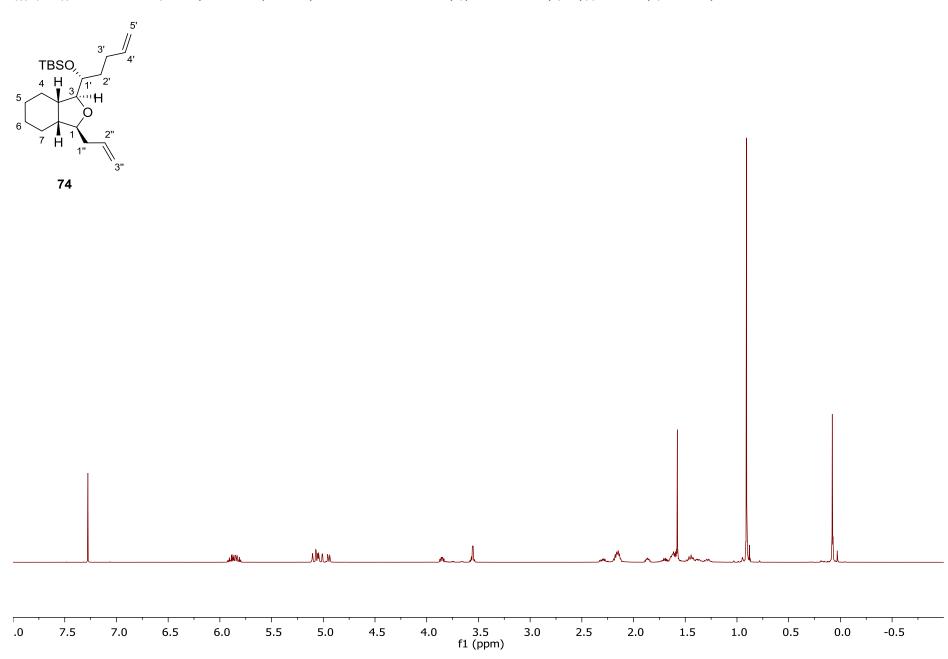


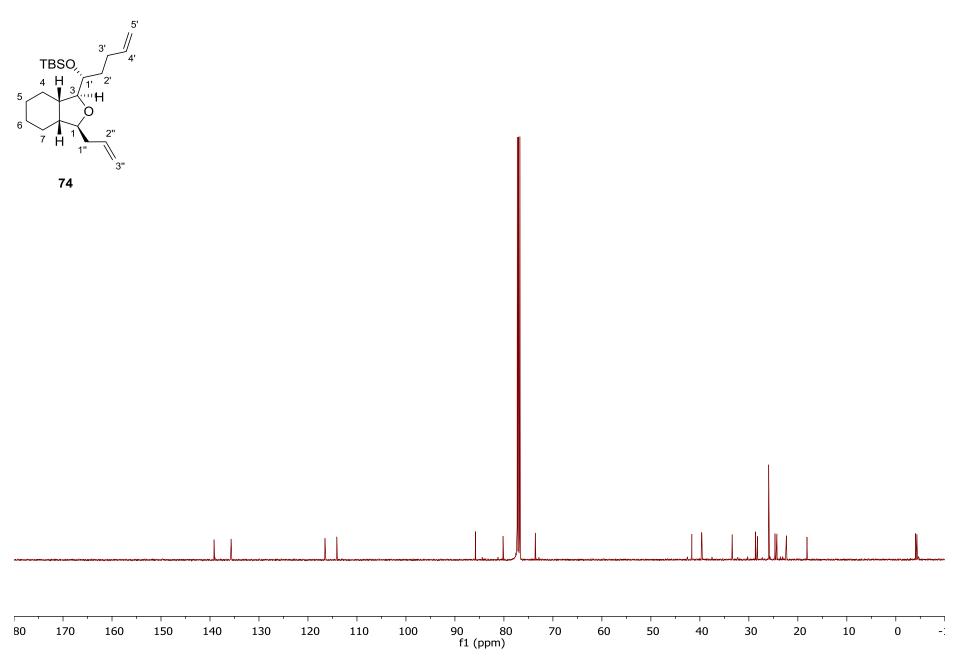


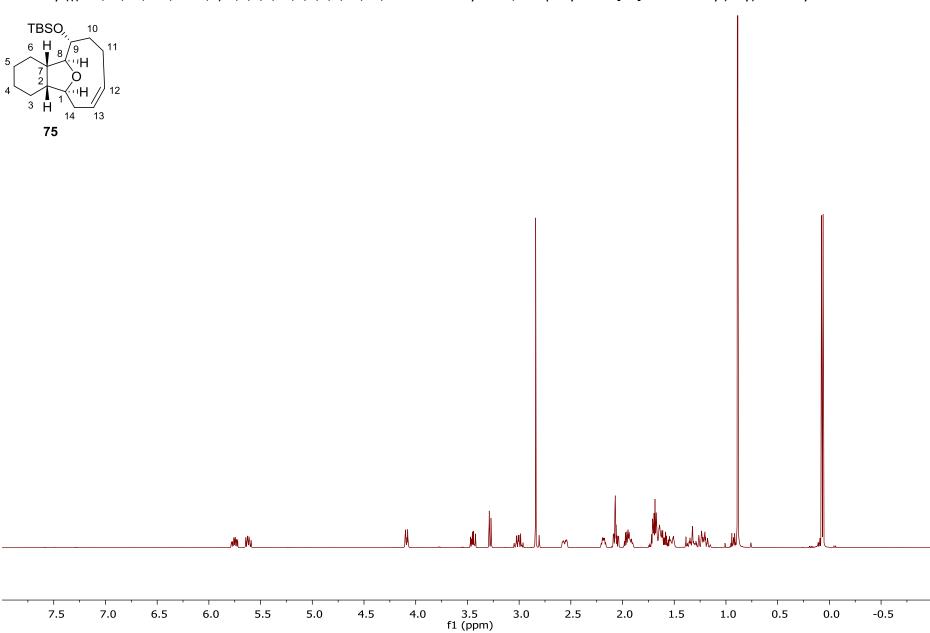


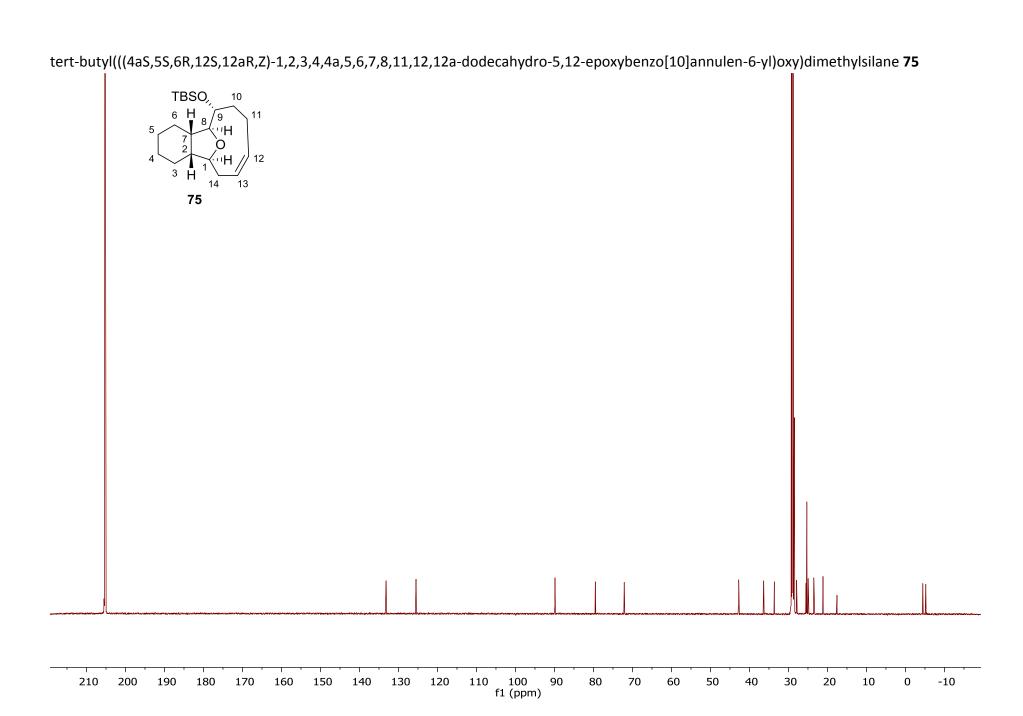

(R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-ol **72**

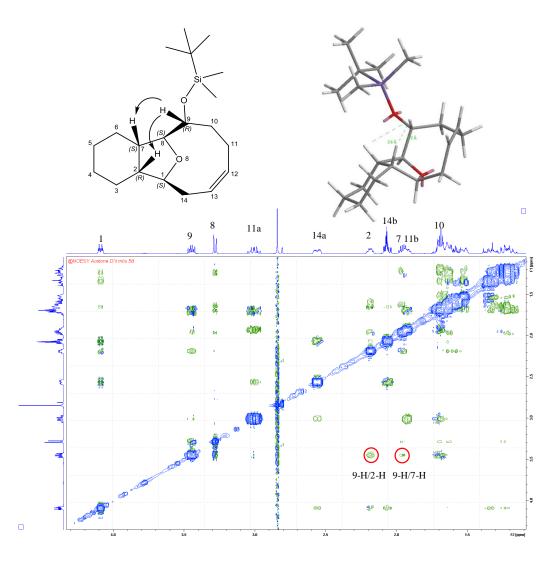




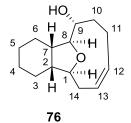


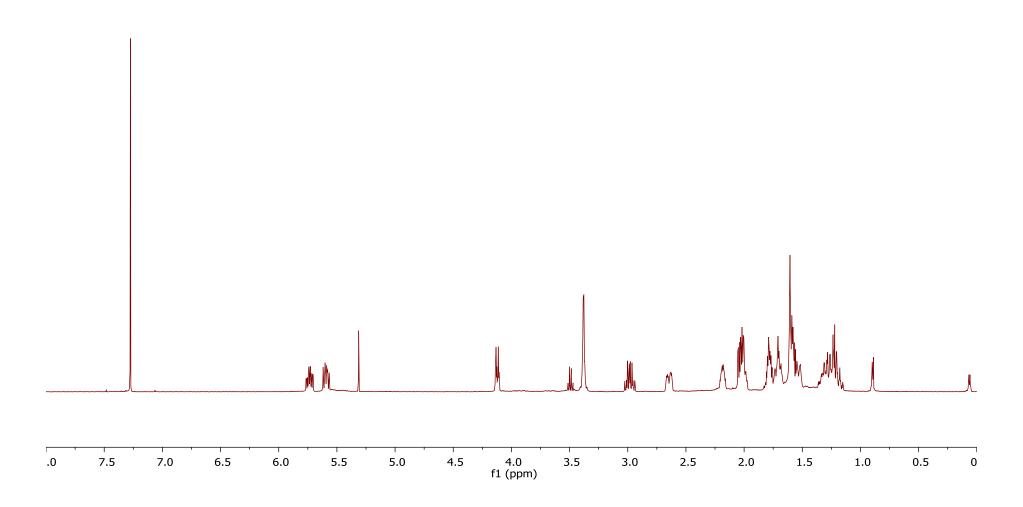


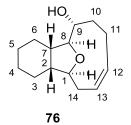

(((R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-yl)oxy)(tert-butyl)dimethylsilane 74

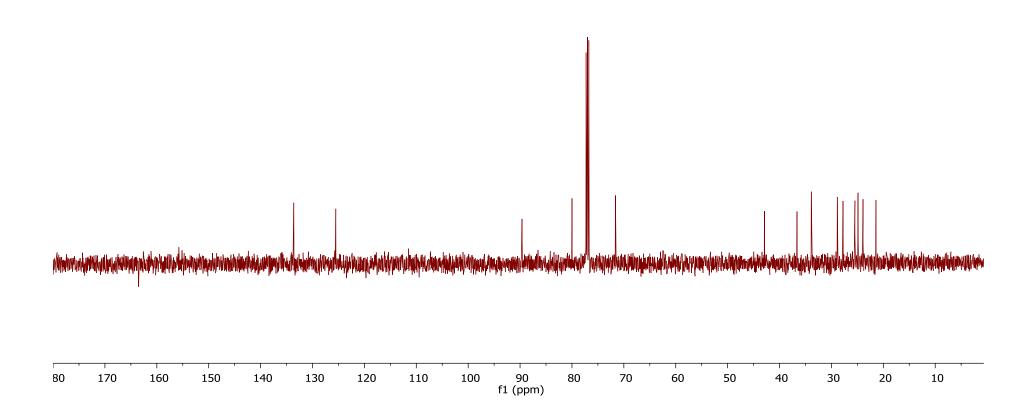


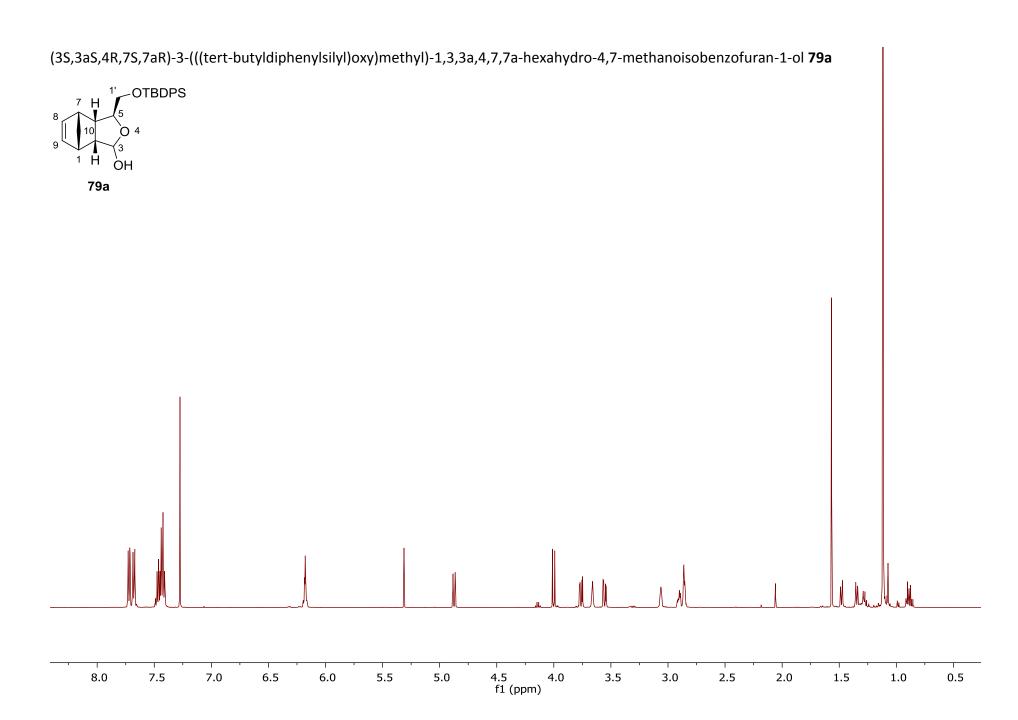
(((R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-yl)oxy) (tert-butyl) dimethylsilane~74 (((R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-yl)oxy) (tert-butyl) dimethylsilane~74 (((R)-1-((1S,3S,3aR,7aS)-3-allyl-1-methyloctahydroisobenzofuran-1-yl)pent-4-en-1-yl)oxy) (tert-butyl) dimethylsilane~74 (((R)-1-((R)-1-((R)-1-(R)-R)-R)-R)-R) (((R)-1-(R)-R)-R)-R) (((R)-1-(R)-R)-R) ((R)-R)-R) ((R)-R) ((R)-R) ((R)-R)-R) ((R)-R) ((R)-R) ((R)-R)-R) ((R)-R) ((R)-R)-R) ((R)-R) ((R)-

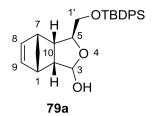


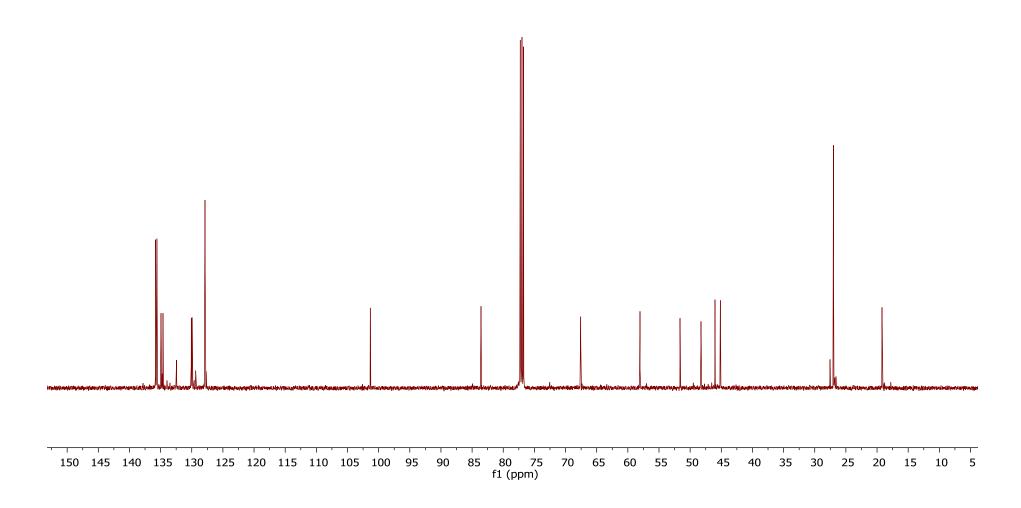


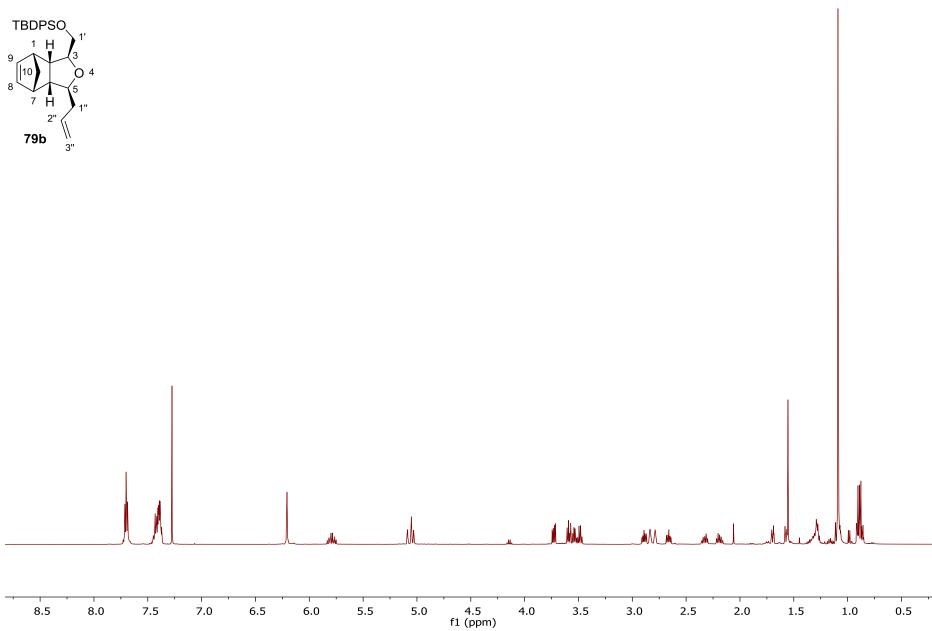


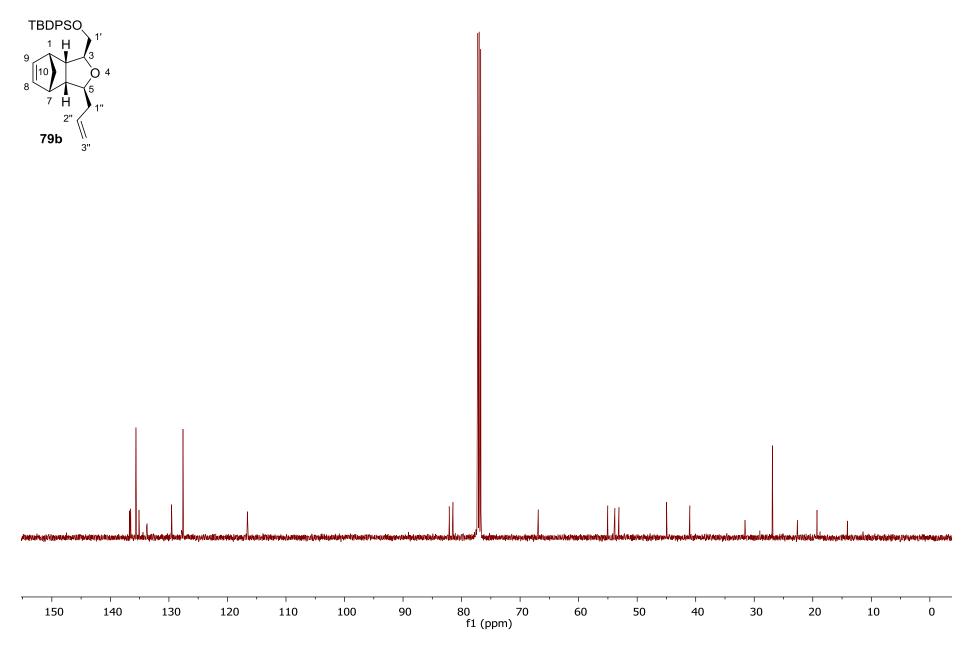


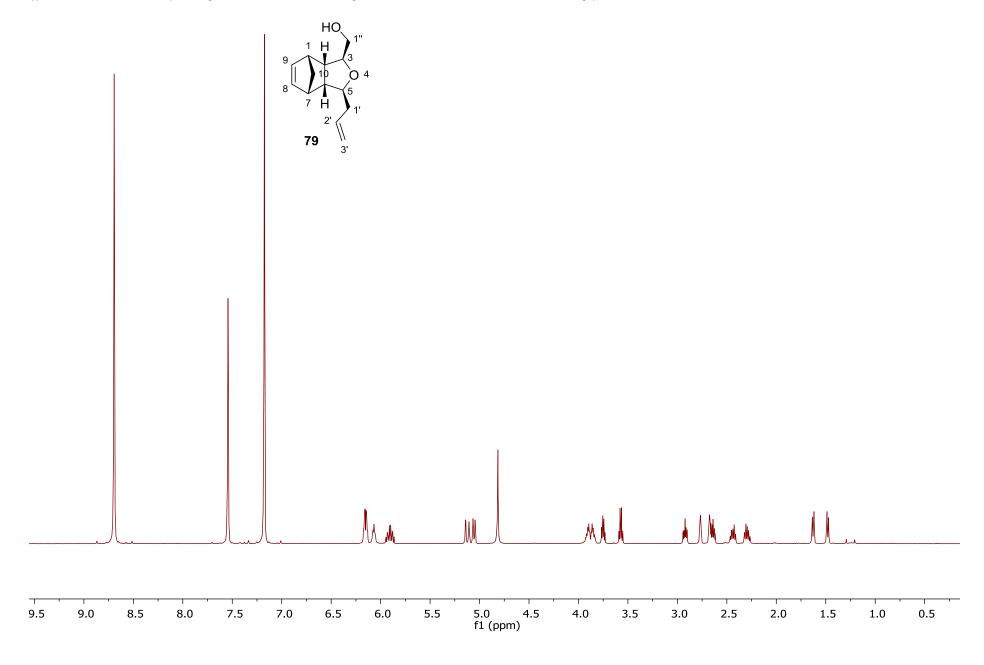

The ¹H-¹H NOESY spectrum for **75**

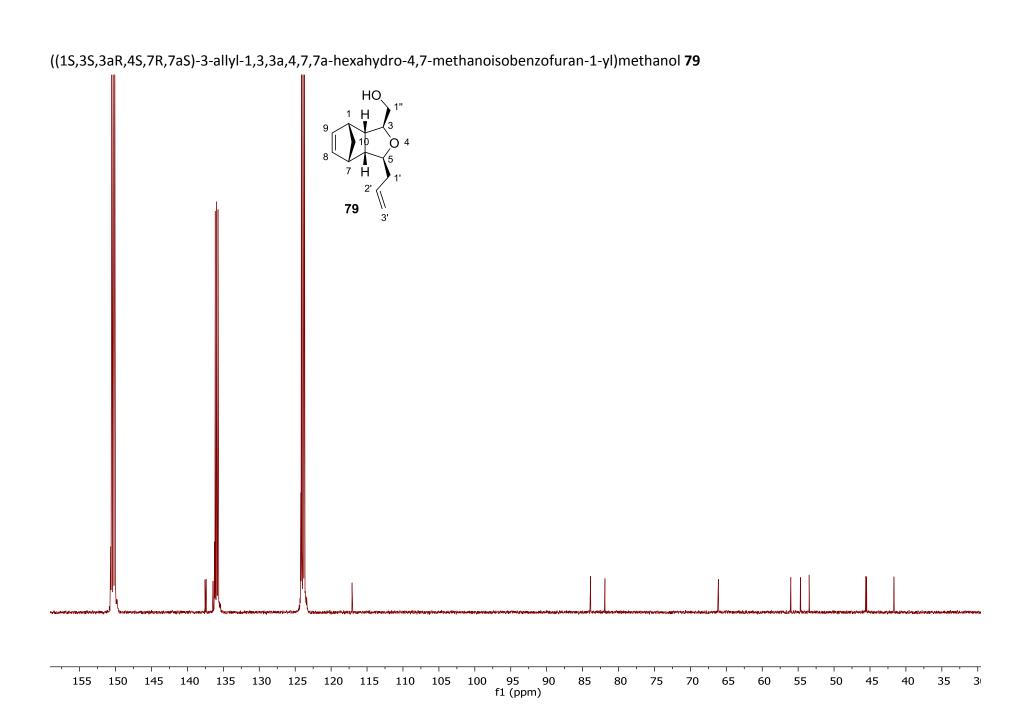


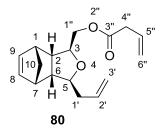


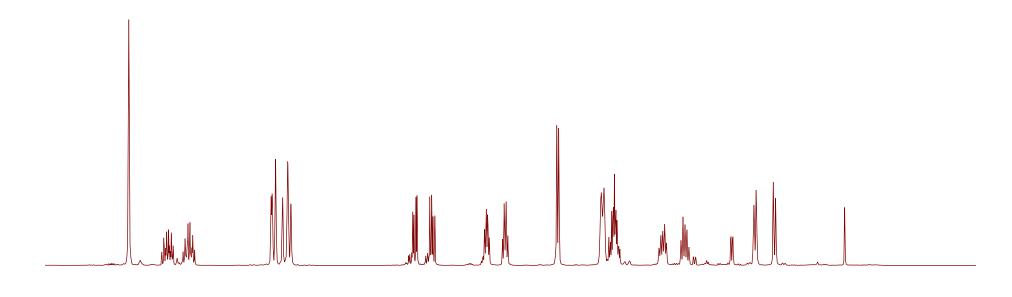


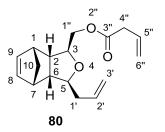

(3S,3aS,4R,7S,7aR)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-ol 79a

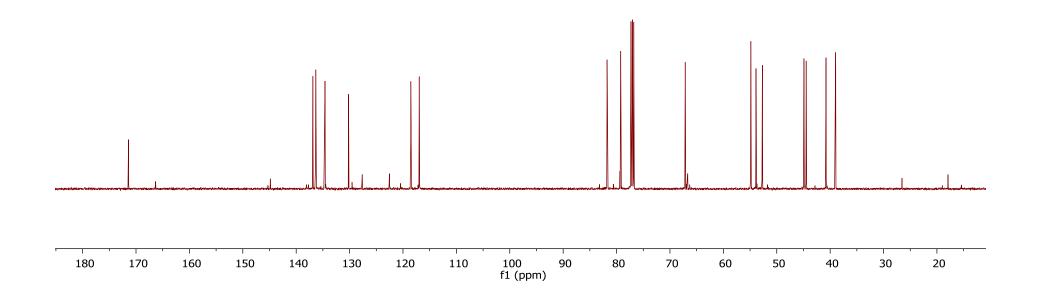


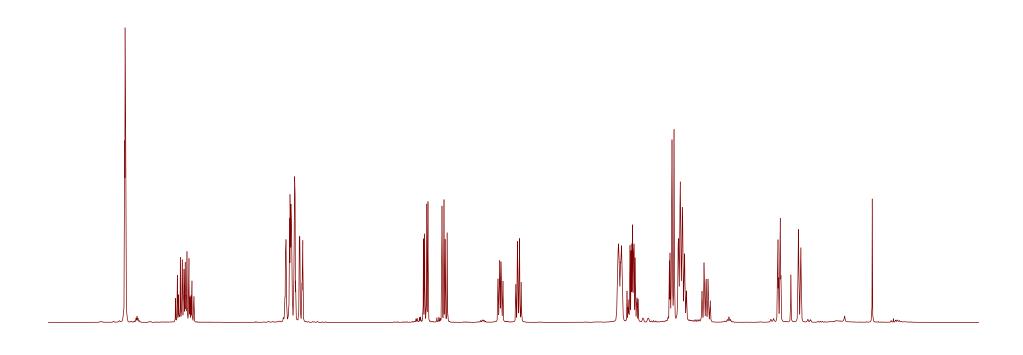




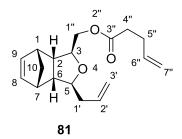

((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methanol **79**

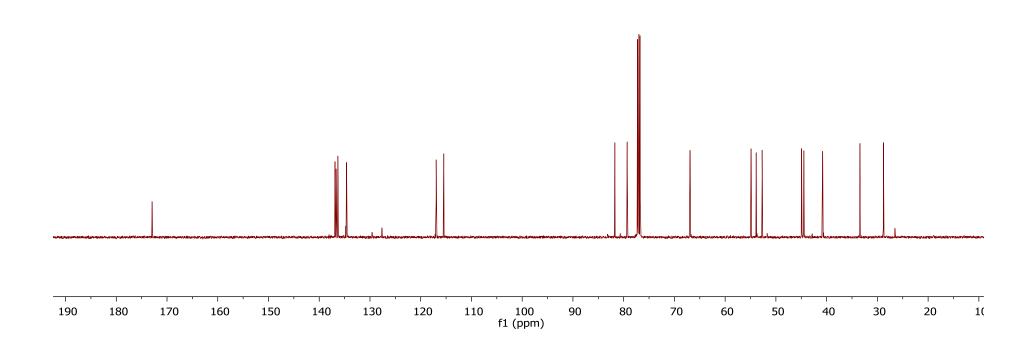


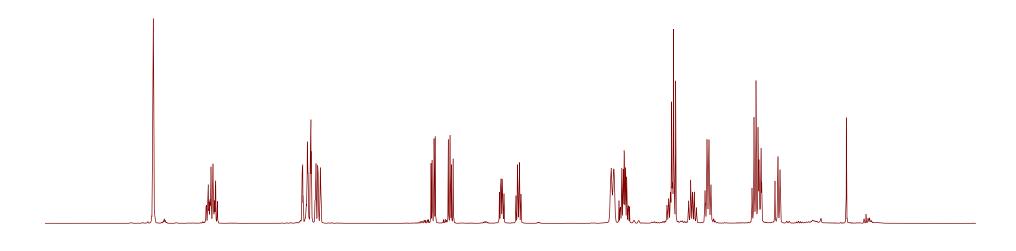

((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methyl but-3-enoate 80



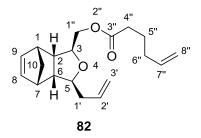
((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methyl but-3-enoate **80**

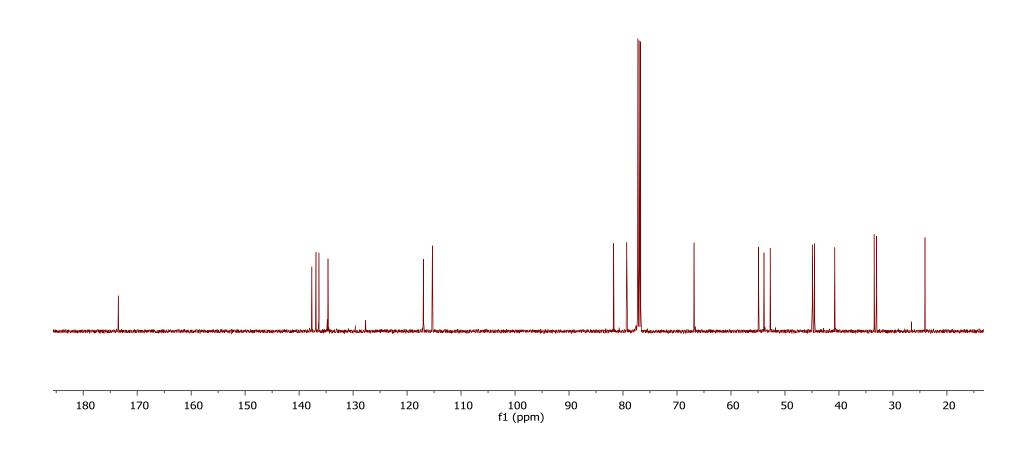



((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methyl pent-4-enoate 81

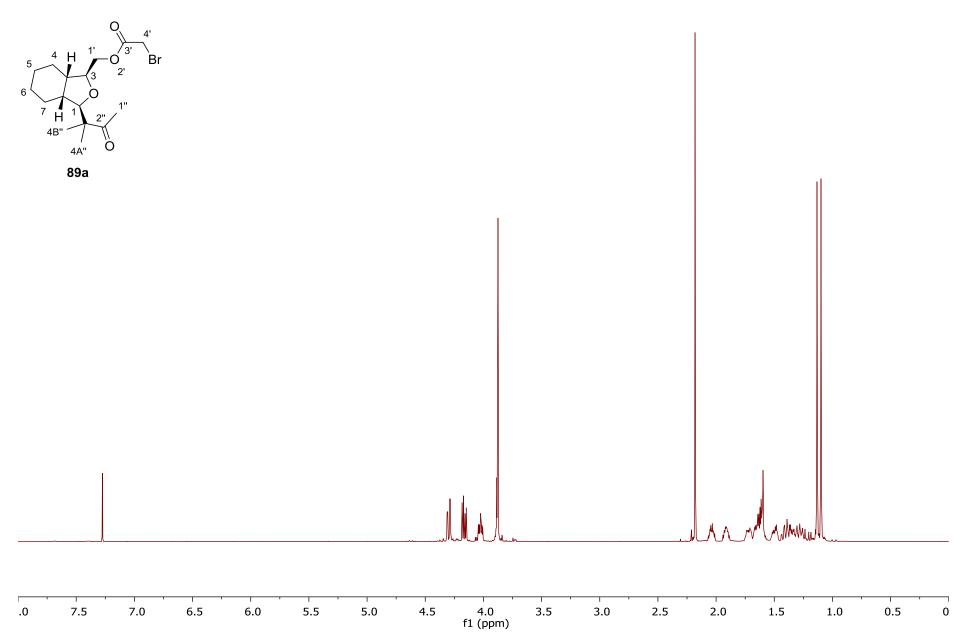

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 fl (ppm)

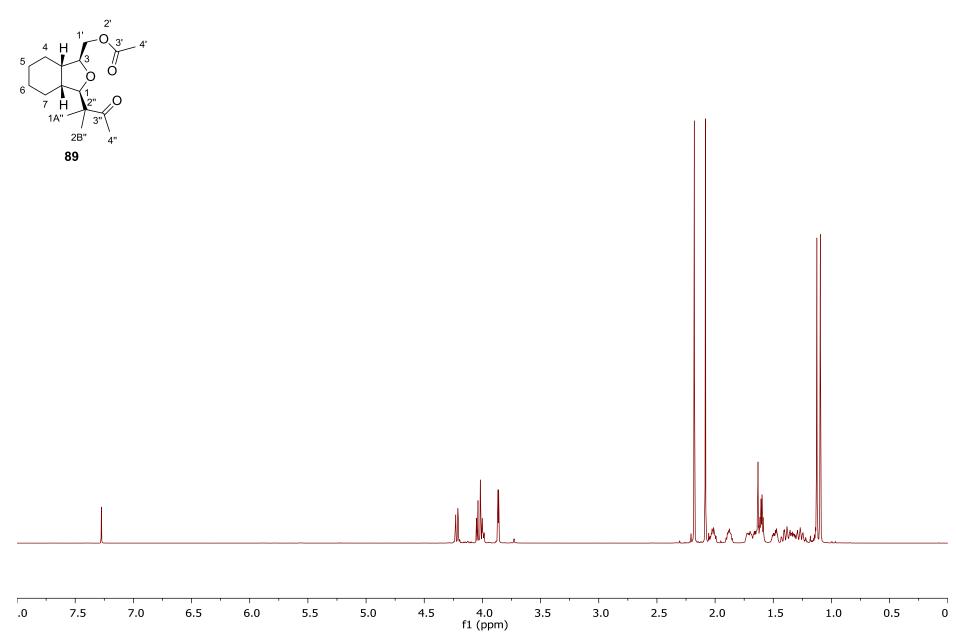
((15,35,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl) methyl pent-4-enoate 81

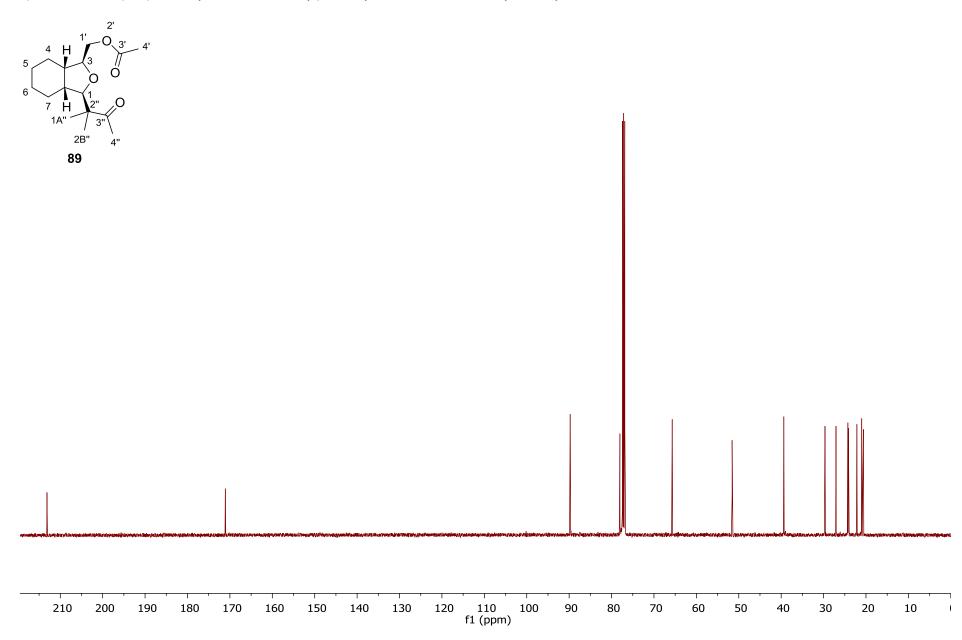




((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methyl hex-5-enoate 82




((1S,3S,3aR,4S,7R,7aS)-3-allyl-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran-1-yl)methyl hex-5-enoate **82**



[(1S,3R,3aR,7aS)-3-(2-methyl-3-oxobutan-2-yl)-octahydro-2-benzofuran-1-yl]methyl 2-bromoacetate **89a**

