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1 Experimental consistency with theoretical model

In populating our chosen theoretical models, we make important assumptions of the experimental data
concerning spin bias, statistical steadiness, and phase-space exploration. In the following, we discuss
these assumptions and provide evidence for their validity.

1.1 Absence of spin handedness bias

In the Hamiltonian (1), we assume a symmetric local quartic potential. For this to be valid, the vortices
must be free of any handedness bias that might be induced by interactions between the chiral bacteria
and the upper and lower surfaces of the chamber. Plotting a histogram of the time-averaged spins across
all experiments shows no discernible bias towards either vorticity handedness (Supplementary Fig. 1a),
so this assumption is justified.

1.2 Statistical steady state

When estimating parameters using movies taken after 4 and 8 minutes with equal weight, we are as-
suming that the suspension has reached a sufficiently statistically-steady state no later than 4 minutes
after injection. We checked this assumption by comparing the spin–spin correlation in movies taken
at 4 and 8 minutes with identically acquired movies taken 1 minute after injection. We found that the
mean correlation changed much less between 4 and 8 minutes than between 1 and 4 minutes for experi-
ments both below and above the critical transition gap size (Supplementary Fig. 1b), indicating sufficient
equilibration to perform parameter estimation at both 4 and 8 minutes independently.

1.3 Phase-space exploration

A system following an equilibrium-like description such as the model in Eq. (2) will not be frozen into
one configuration for all time. Rather, given sufficient time, it should explore all states of its configu-
ration space according to a steady-state probability distribution. Our experiments show this exploration
behaviour, with spins fluctuating and changing sign over time (Supplementary Fig. 1e,f). This is par-
ticularly noticeable when comparing between the same experiment at the two observation times of 4
and 8 minutes, during which time some (Supplementary Fig. 1c) or most (Supplementary Fig. 1d) spins
may have changed orientation. However, the system is always exploring a distribution consistent with a
particular preferred antiferromagnetic or ferromagnetic correlation, dependent on the gap size.
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Supplementary Figure 1 – Experiments are unbiased and explore a statistical steady state. a, Histogram of
time-averaged vortex spin of each cavity 〈Vi(t)〉 across all square lattice experiments, exhibiting symmetry about
zero spin. b, Spin–spin correlation χ averaged over all movies taken 1, 4 or 8 min after injection, categorised by
gap size w < wcrit or w > wcrit. The suspension is not equilibrated 1 min after injection, but results are similar
between 4 and 8 min indicating equilibration. c,d, Frames from movies taken from two experiments at 4 and
8 min, with w = 7µm (c) and w = 11µm (d), showing phase-space exploration between the observation times.
e,f, Spin–time traces of four adjacent vortices from the experiments shown in c,d (line colours correspond to star
colours in c,d).

2 Parameter inference under the full model

For a given sequence of discrete experimental observations {V(t),P(t)}t=n∆t derived from one movie
with constant time step ∆t = 1/60 s and rescaled by U (Methods), we wish to estimate the most likely
parameter values assuming the SDE model (2) holds. We do this by first discretizing Eq. (2) and then
applying linear regression. First, the rescaling by U used to eliminate variable oxygenation effects
(Methods) implies that we must also rescale the time step to δt = ∆t/τ , where τ = `/U is a time
scaling with length scale ` = 1µm selected as the characteristic width of a bacterium. All parameters
are subsequently dimensionless under these scalings; those for an unscaled experiment (denoted by
tildes) with desired or observed RMS velocity U can then be recovered as J̃v = Jv/τ , J̃p = Jp/τ ,
ãv = av/τ , b̃v = bv/(U

2
τ), ãp = ap/τ , T̃v = U

2
Tv/τ and T̃p = U

2
Tp/τ . Now, using this time step,
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Eq. (2) discretizes in the Euler–Maruyama scheme1 as

V(t+ δt) = V(t)− (∂H/∂V)tδt+
√

2TvδtNv, (S1)

P(t+ δt) = P(t)− (∂H/∂P)tδt+
√

2TpδtNp, (S2)

where Nv and Np are vectors of independent N (0, 1) random variables. Component-wise, Eqs. (S1)
and (S2) read

Vi(t+ δt) = (1− avδt)Vi(t)− bvδtVi(t)3

+ Jvδt
∑

j :Vj∼Vi

Vj(t) + Jpδt
∑

j :Pj∼Vi

Pj(t) +
√

2TvδtNv,i, (S3)

Pi(t+ δt) = (1− apδt)Pi(t) + Jpδt
∑

j :Vj∼Pi

Vj(t) +
√

2TpδtNp,i. (S4)

By Eq. (S4), using data from all observation times and vortices to perform a linear regression of Pi(t+δt)
on the two variables Pi(t), ∑

j :Vj∼Pi

Vj(t)


yields estimates {1− âpδt, Ĵpδt} of the variables’ respective coefficients and thence estimates âp and Ĵp
of ap and Jp. Next, after substituting the estimate Jp = Ĵp into Eq. (S3) to reduce the dimensionality, a
linear regression of Vi(t+ δt)− Ĵpδt

∑
j :Pj∼Vi Pj(t) on the three variablesVi(t), Vi(t)3,

∑
j :Vj∼Vi

Vj(t)


yields estimates {1− âvδt,−b̂vδt, Ĵvδt} of their respective coefficients and thence estimates âv, b̂v and
Ĵv of av, bv and Jv. Finally, the variances 2T̂vδt and 2T̂pδt of the residuals to the regressions in Eqs. (S3)
and (S4) respectively yield estimates T̂v and T̂p of Tv and Tp.

Boundary terms are treated by assuming a truly finite system with free boundary conditions, effec-
tively fixing all pillar and vortex spins at zero outside of the observed domain. Since we do not image a
full 6× 6 offset lattice of pillars, but instead the internal 5× 5 lattice, periodic boundary conditions are
not possible; indeed, for a small system, free boundaries are often preferable over periodic boundaries
in general.

3 Simulations

To reconstruct the vortex–vortex correlation function χ(w) as a continuous function of gap width w, we
reconstructed the parameters as functions of w from the experimental data and numerically integrated
the model (2) over a range of w. The simulations can then be used to explore the system on longer time
scales than possible experimentally. We discuss this process further in the following section.

3.1 Parameter reconstruction

Running the parameter estimation procedure for every suitable experimental movie (those not contain-
ing any ‘locked’ immobile cavities, occasionally seen at small w) results in a set of parameter estimates
Ei at gaps wi. Estimates for movies from the same experiment were averaged, and then placed into non-
overlapping w-bins of size 2.5µm and averaged in both w and parameter value within each bin (Supple-
mentary Fig. 2, points). Using non-linear least-squares regression estimation, the parameters were then
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Supplementary Figure 2 – Parameters in the full model can be inferred using regression methods. Points are
averages within non-overlapping 2.5µm bins of parameters inferred for each experiment using linear regression
on a discretization of Eq. (2), and lines are parametric best fits of selected functional forms to the points (Sec. 2).

fitted with chosen functional forms: Jv, Jp, ap with a logistic function α1 +α2/(1+10α3(α4−w)); av, bv
with a rational function α1/(w+α2); and Tv, Tp with a rational function (α1 +α2w)/(w2 +α3w+α4)
(Supplementary Fig. 2, lines). These forms were chosen as appearing to give the best representation
of the data points’ behaviour (such as not introducing maxima where none are observed for Jv, Jp, ap,
and not presuming too detailed a functional form for the noisiest parameters av and bv) with the fewest
possible fit parameters.

3.2 Simulation method

We numerically integrated Eq. (2) using the discretization in Eqs. (S1) and (S2), wherein we set N = 6
and δt = 1/600 (equivalent to 1/60 s when U = 10µm). We initialized V and P to zero, and after an
equilibration period of 50/δt frames we recorded every frame. Trial and error showed an observation
period of 8000/δt frames in an ensemble of 25 identical repetitions to be sufficient to obtain a stable
estimate of the average vortex–vortex correlation χ. This was evaluated at each of 101 regularly-spaced
values of w in the range minwi ≤ w ≤ maxwi (Fig. 1j).

In all simulations we use free boundary conditions (that is, setting components of P and V to zero
outside of the simulation domain) consistent with the conditions used in parameter inference. Because
of the small size of the system being simulated, periodic boundary conditions are inappropriate as they
have too great a dynamical influence and do not reproduce the expected spin–spin correlation behaviour.
Simulations on moderately larger lattices with free boundary conditions retain the same form of cor-
relation curve as for the 6 × 6 grid, but as the number of grid points increases, the antiferromagnetic
phase eventually disappears. This reflects the sensitivity of the system to fluctuations as vortex and pil-
lar interactions compete near to a critical point; were experiments to be performed on larger lattices and
parameters inferred from that data, this regime would reappear in simulations.

3.3 Spin fluctuations

As in the experiments, after equilibrating during the burn-in period, each simulation explores configura-
tion space within the statistical steady state. The simulations then allow us to examine system behaviour
over time scales longer than those of the experimental movies, whose durations were constrained by
equipment data capacity. In particular, the simulations exhibit domain fluctuations and spin flipping
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Supplementary Figure 3 – Simulations of the full model reproduce the spin-flip dynamics over long times.
Frames of a simulation using parameter values at w = 4µm from the reconstructions in Supplementary Fig. 2.
Top row: staggered vortex spins, corresponding to multiplying each spin site alternately by ±1 to show coherent
antiferromagnetic domains as single colours. Bottom row: unstaggered vortex spins. Domain fluctuations and
large-scale spin flips can be seen over the simulation at times extending to an equivalent of double or triple the
lengths of typical observations.

as observed in the experiments (Supplementary Fig. 1c–f), while better demonstrating the system fully
exploring configuration space. Supplementary Fig. 3 depicts a simulation using reconstructed parameter
values at w = 4µm, firmly inside the antiferromagnetic regime, run for a length equivalent to approxi-
mately 25 s of an experiment with RMS kinetic energy Ū = 12µms−1 (the average seen in experiments;
see Methods), exhibiting dynamic configuration exploration within an equilibrium distribution favouring
antiferromagnetic correlation.

4 Reduction to vortex-only model

A true Langevin equation for V can be obtained by integrating Eq. (2b) for P as a function of V and
back-substituting2,3. Since Eq. (2b) is linear in P, we have

Pi(t) = Pi(0)e−apt + Jp
∑

j:Vj∼Pi

∫ t

0
Vj(s)e

ap(s−t) ds+
√

2Tp

∫ t

0
eap(s−t) dW (s),

where the third term is an integral with respect to the standard Brownian motion W (t). When apt� 1,
the first term decays and the second can be approximated by pulling out Vj(s) at s = t (provided V
varies sufficiently slowly over short time intervals), giving

Pi(t) ≈
Jp
ap

∑
j:Vj∼Pi

Vj(t) +
√

2Tp

∫ t

0
eap(s−t) dW (s). (S5)

This is valid here since ap ∼ 1 (Supplementary Fig. 2) and each 10 s experimental movie reaches
non-dimensional times t = (10 s)/τ ∼ 100. Thus Pi reduces to time-autocorrelated noise ν(t) =√

2Tp
∫ t

0 e
ap(s−t) dW (s) about a mean proportional to the average spin of adjacent vortices [Pi]V =

1
4

∑
j:Vj∼Pi

Vj ; that is, Pi ≈ (4Jp/ap)[Pi]V + ν. The noise has autocorrelation

C(t, t′) = E
[
ν(t)ν(t′)

]
=
Tp
ap

[
e−ap|t−t

′| − e−ap(t+t′)
]
≈ Tp
ap
e−ap|t−t

′|

for apt, apt′ � 1. In this limit, C decays rapidly away from t = t′, and ν(t) is approximately normally
distributed at every t with variance Tp/ap.
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Now, in Eq. (2a), interaction with P arises through the term Jp
∑

j:Pj∼Vi Pj in ∂H/∂Vi. By Eq. (S5),
this approximates to

Jp
∑

j:Pj∼Vi

Pj ≈
J2
p

ap

4Vi + 2
∑

j:Vj∼Vi

Vj + (n.n.n.)

+ Jp

4∑
j=1

ν(j), (S6)

where ν(j) are i.i.d. noise processes as above, and ‘n.n.n.’ denotes next-nearest-neighbour interactions
which we neglect. When substituted into Eq. (2a), each noise term contributes Jpν(j)dt, which rep-
resents a contribution of the form Jp

∫ t
0 ν

(j)(s) ds in the formal integral representation of Eq. (2a).
Inserting the definition of ν into this integral and exchanging the order of integration implies

Jp

∫ t

0
ν(j)(s) ds =

Jp
√

2Tp

ap

∫ t

0
[1− eap(s−t)] dW (s).

In our experiments, we found |Jp/ap| ≈ 1/10 and Tp . Tv over all gap widths (Supplementary Fig.
2), so these are weak contributions to the noise in V. Indeed, the integral has variance t − 3/(2ap) +
O(e−apt) as t → ∞, so for large ap its effect can be approximated by the pure Brownian motion∫ t

0 dW (r) (whose variance is t). Thus the contributions Jpν(j)dt reduce to small Brownian noise terms
(Jp
√

2Tp/ap)dW , which combine with the existing noise into one single term
√

2TdW of slightly
increased temperature T = Tv + 4TpJ

2
p/a

2
p. Substituting Eq. (S6) into Eq. (2a) yields new approximate

V dynamics obeying dV = −(∂Ĥ/∂V)dt+
√

2TdW with effective Hamiltonian

Ĥ(V) = −J
∑
Vi∼Vj

ViVj +
∑
Vi

(
1
2aV

2
i + 1

4bV
4
i

)
,

where the effective coupling constants are J = Jv + 2J2
p/ap, a = av − 4J2

p/ap and b = bv.
Though this reduction will only be achieved exactly in the thermodynamic limit when boundary ef-

fects are eliminated, this still serves as a good approximation for a finite system. To verify this reduction
with our experimental data, we compared Pi with [Pi]V . Consistent with Eq. (S5), we found Pi to be
linearly correlated with [Pi]V in every square-lattice experiment (Supplementary Fig. 4a–c), confirming
our use of a quadratic potential for P. Writing −α for the correlation coefficient, we found α ≈ 0.5
with weak dependence on the gap width; this compares well with the analytic result α = −4Jp/ap from
Eq. (S5) when calculated using experimentally inferred parameters (Supplementary Fig. 4d).
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Supplementary Figure 5 – Parameters in the reduced model can be inferred by fitting effective single-spin
potentials. Reduced model parameters βJ , βa and βb are estimated by fitting the antisymmetric and symmetric
parts of the effective potential Veff(Vi | [Vi]V ) (Sec. 5.1). Data shown from three example movies of square lattices
with gap widths 7µm (a,d), 10µm (b,e) and 18µm (c,f). a–c, The antisymmetric part of the effective potential
reveals the vortex–vortex coupling βJ , spanning the range J < 0 (a), J ≈ 0 (b) and J > 0 (c). Estimated Veff

anti

(points), coloured by mean adjacent spin [Vi]V . d–f, The symmetric part of the effective potential reveals the
non-interacting single-spin potential, which flattens with increasing gap width. Estimated Veff

sym (points) coloured
by mean adjacent spin [Vi]V , with fitted single-spin potentials (lines).

5 Parameter inference under the reduced model

5.1 Distribution fitting

We assume that V obeys a Boltzmann distribution p(V) ∝ e−βĤ(V). The probability density p(Vi | [Vi]V )
of one spin Vi conditional on the mean of its adjacent spins [Vi]V = 1

4

∑
j :Vj∼Vi Vj satisfies

log p(Vi | [Vi]V )− log p(0 | [Vi]V ) = −Veff(Vi | [Vi]V ), (S7)

where we have defined the effective single-vortex potential

Veff(Vi | [Vi]V ) = −4βJVi[Vi]V + 1
2βaV

2
i + 1

4βbV
4
i .

We estimate p(Vi | [Vi]V ) for each movie by forming a two-dimensional histogram in Vi and [Vi]V and
then normalizing at every fixed Vi. In forming the histogram, we exploit the invariance of Veff under the
transformation Vi → −Vi and [Vi]V → −[Vi]V to double the number of data points.

Taking the antisymmetric part Veff
anti = 1

2

[
Veff(Vi | [Vi]V )− Veff(−Vi | [Vi]V )

]
eliminates the non-

interacting terms, so Eq. (S7) implies

1
2 [− log p(Vi | [Vi]V ) + log p(−Vi | [Vi]V )] = −4βJVi[Vi]V .

This allows estimation of the interaction constant βJ from the density p(Vi|[Vi]V ) (Fig. 2a and Supple-
mentary Fig. 5a–c). The symmetric part Veff

sym = 1
2

[
Veff(Vi | [Vi]V ) + Veff(−Vi | [Vi]V )

]
eliminates the

interaction term in a similar fashion, so Eq. (S7) now implies

1

2
[− log p(Vi | [Vi]V )− log p(−Vi | [Vi]V )] + log p(0 | [Vi]V ) =

1

2
βaV 2

i +
1

4
βbV 4

i .
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Typically there are fewer observations near Vi = 0, so p(0 | [Vi]V ) can be difficult to infer directly. In-
stead, we adjust log p(0 | [Vi]V ) for each [Vi]V bin to minimize the difference between Veff

sym(V | [Vi]V )

and Veff
sym(V | 0). We then fit the remaining single vortex potential with parameters βa and βb (Supple-

mentary Fig. 5d–f), from which we compute the spins ±Vmin (Vmin > 0) minimizing the local effective
single-spin energy Veff

sym, namely

Vmin =

{√
|a|/b if a < 0,

0 if a > 0,

and the effective spin-flip energy barrier

Veff
sym(0)− Veff

sym(±Vmin) =

{
βa2/(4b) if a < 0,

0 if a > 0,

which together characterize the single-spin symmetric quartic potential (Fig. 2b,c).
To ensure boundary conditions do not have a strong effect on the inferred parameters by compar-

ison with those used in the SDE discretization method (see below), boundary terms are treated in this
method using neighbour averaging whereby the mean adjacent spin [Vi]V is computed as an average
over only two spins (in a corner) or three spins (at an edge). This corresponds to assuming that, in each
computation of [Vi]V , spin sites absent from the lattice are the mean of the sites present in the sum.

5.2 SDE discretization

Estimations made by the above method were verified by estimations obtained through the same SDE dis-
cretization method used in the full model. Though the absence of pillars now means periodic boundary
conditions could be used, we retain the free boundary conditions to maintain consistency with the full
model and for comparison with the averaging conditions used above. The components of the reduced
model SDE dV = −(∂Ĥ/∂V)dt+

√
2TdW have Euler–Maruyama discretization

Vi(t+ δt) = (1− aδt)Vi(t)− bδtVi(t)3 + Jδt
∑

j :Vj∼Vi

Vj(t) +
√

2TδtNi,

where Ni are independent N (0, 1) random variables. Performing linear regression of Vi(t+ δt) on the
three variables Vi(t), Vi(t)3,

∑
j :Vj∼Vi

Vj(t)


then gives estimates {1 − âδt,−b̂δt, Ĵδt} of the respective coefficients, from which estimates â, b̂ and
Ĵ of the variables a, b and J can be deduced. The estimate T̂ of the fluctuation strength T is estimated
via the variance 2T̂ δt of the residuals to the regression, which gives an estimate β̂ = 1/T̂ of the inverse
‘temperature’ β in the Boltzmann distribution. The non-dimensional combinations β̂Ĵ , β̂â and β̂b̂ can
then be directly compared with the estimates obtained using the distribution-fitting method.

Though SDE discretization independently gives both temperature and coupling constants, it is likely
to possess greater intrinsic bias than distribution fitting. Discretization was the only method open for
the full model, as the SDE steady state cannot be solved analytically. However, since the reduced model
allows for distribution fitting, coupling constant values obtained using that method are preferable, with
SDE discretization functioning as an independent verification.

6 One-dimensional geometries

As well as the square and triangular lattices discussed in the main text (Figs. 1 and 3), we also per-
formed experiments on lines of connected vortices (Supplementary Fig. 6). As the finite-circumference
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Supplementary Figure 6 – One-dimensional
lattices adopt antiferromagnetic states. a, At
the smallest gap widths, vortices interact weakly
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bars indicate standard errors (Methods).

pillars are no longer present in a line of vortices, it is not clear whether the same edge-current-mediated
ferromagnetism should be expected. Indeed, we did not observe significant ferromagnetic behaviour at
any gap sizes (Supplementary Fig. 6d), suggesting that it is difficult to maintain the single long, uniform
edge current that would be necessary for a positively-correlated state. Furthermore, experiments per-
formed on isolated pairs of vortices support these results, in which 76% of the vortex pairs adopted an
antiferromagnetic state (out of 34 pairs) with gap sizes between 20µm and 38µm.

7 Model generalizations

There are more general forms of the model in Eq. (2) which preserve at least some form of local equi-
librium. These add flexibility through further couplings or fields at the expense of increased complexity.
Though we did not find a need for any further generality, they cannot necessarily be disregarded a priori,
which we discuss further here.

7.1 Cross-coupled models with frictional dissipation

One generalization of Eq. (2) is to add dissipative cross-couplings. Write X = (V,P) for the concate-
nation of the vectors V and P. In this formalism, Eq. (2) reads

dXi = − ∂H
∂Xi

dt+
√

2TidWi, (S8)

where Ti is Tv or Tp as appropriate and the Wi are uncorrelated Wiener processes as before. (Repeated
indices do not imply summation.) However, in general, we need not have diagonal coupling to deriva-
tives of H . We could instead write4

dXi = −
∑
j

Mij
∂H

∂Xj
dt+

∑
j

mij

√
2TjdWj ,

where the Mij are the components of a more general coupling matrix, and m is the square-root matrix
such that m2 = M. Onsager reciprocity would then demand Mij = Mji if the vortex spins and pillar
flows were relaxing to a true thermodynamic equilibrium with Tv = Tp.

The simplest form of this generalization would be to posit a constant coupling between a vortex
Vi and the gradients ∂H/∂Pj of its neighbouring pillars Pj , plus the corresponding reverse coupling.
However, a single bacterial vortex experiences most frictional dissipation against the confining upper
and lower walls of the cavity, rather than against the much smaller and more porous contact area of
the edge currents. Similarly, a single pillar edge current experiences most friction against the solid
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Supplementary Figure 7 – Vortices and pillars show low variability in their
individual fluctuation strengths. Relative standard deviations ρv and ρp of per-
site temperatures for vortices (red circles) and pillars (blue diamonds), as defined
in the text, are small across gap sizes, only rising at the smallest gaps before the
antiferromagnetic–ferromagnetic transition.

pillar walls rather than the porous vortex boundary. This implies that vortex–pillar frictional couplings
through a non-diagonal matrix Mij are small, and for this reason we have neglected them here. Indeed,
including such couplings would add further parameters to fit in an already strongly fluctuating system,
necessitating much more data to statistically distinguish these parameters from zero.

7.2 Spatially variable temperature

Another generalization would be to regard each vortex (and pillar) as possessing its own intrinsic temper-
ature, introducing spatial dependence to the fluctuations. In this scenario, Eq. (S8) would still hold but
with the vector of temperatures Ti now no longer constrained to be Tv or Tp. Since the random fluctua-
tions are likely the result of microscopic cell–cell interactions, similar to Brownian motion, temperature
variation would be driven by inhomogeneous initial conditions of the suspension, whereby differences
in cell or oxygen concentration across the grid of chambers could induce some vortices to fluctuate with
greater strength than others. These temperature inhomogeneities may then equilibrate on a time scale
beyond that of the experiments due to poor inter-cavity mixing of cells, particularly at the smallest gap
sizes. However, provided the fluctuations are zero-mean, inhomogeneous vortex and pillar temperatures
should not have a strong effect on the parameters inferred by the linear regression method described in
Section 2.

To gauge the extent of any such inhomogeneities, we computed the per-site fluctuation strength Ti as
the variance of the residuals to the regression fit for each individual vortex or pillar i. We then computed
the relative spatial standard deviations ρv and ρp for vortices and pillars as ρ{v,p} =

√
Var{v,p} Ti/T{v,p},

where Tv and Tp are the overall vortex temperatures as in Section 2. This gives a measure of spatial
variability suitable for comparison between experiments. For most gap sizes, ρv and ρp averaged be-
tween 0.1 and 0.2, with ρv only rising above 0.2 at the smallest gap sizes before the antiferromagnetic–
ferromagnetic transition (Supplementary Fig. 7). This suggests that the bulk of any variability is indeed
driven by inhomogeneous initial conditions which do not dissipate quickly at small gap sizes. Though
these values do indicate non-trivial spatial variability, they are not great enough to warrant detailed in-
clusion into our model as they would likely not have a great impact on the transition dynamics observed
in simulations.
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