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ABSTRACT DNA-based identification depends on the
probability that two different individuals have the same phe-
notype, which is given by kinship theory. Together with the
large and consistent body of evidence on human population
structure, kinship theory provides a sound basis for forensic
use of DNA markers.

Recent years have seen a debate on the validity of DNA-
based identification in forensic science. Opponents cite gen-
eral principles that would apply with equal force were the
suspect a Drosophila or other organism whose population
structure is little known, neglecting the large body of evi-
dence in humans (1, 2). Proponents defend current proce-
dures to calculate matching probabilities, without noting that
these procedures are a special case of a more general theory
that places useful limits on their results (3, 4). Because there
is now general agreement on the technical reliability ofDNA
testing in competent hands, the principal constraint on the
forensic use of matching probabilities is in the evaluation of
evidence from population genetics (5). This constraint is all
the more remarkable because both theory and data are the
fruit of a generation of research on population structure,
which ended only when the major problems of general
significance appeared solved (6). Here I shall recall the
theory, make extensions required for forensic populations,
and recapitulate the evidence on which legal use of matching
probabilities should be based.

Deffnitions

The basic calculation deals with phenotype i from systemj in
population k (i = 1, . . . ,I;j = 1 . . ., J; k = 1, ..., K).
The phenotype may or may not have a 1:1 correspondence to
genotype, the system may or may not be a single locus, and
the population may or may not be an aggregation of subpop-
ulations with different phenotype frequencies. A population
is assumed to be formed by indefinitely many gametes and,
therefore, to be infinite. We are concerned with two diploid
individuals, which I shall call the "suspect" and the "cul-
prit" although in a significant proportion of cases the suspect
is a victim and the culprit is DNA from the victim or another
person. I shall not explicitly consider paternity trials in which
the suspect is a defendant and two other individuals, a child
and his mother, complete the evidence, but the same con-
siderations of population structure apply.

If the suspect and the culprit do not match, no issue of
population structure arises. However, if they do match, we
must assess the weight of evidence favoring their identity,
which depends on two probabilities. PJ? is the probability of
drawing phenotype i from system j when population k is
sampled at random. CJ? is the conditional probability that the
culprit has the same phenotype at system j as the suspect,

given that the suspect has phenotype i, the culprit is a
different individual, and both are drawn from population k
under a specified sampling rule. Current applications are
entirely in terms of Pik, but it is CQ that defines the weight
of evidence. They are interrelated as

CiJ, = Mjklpjk
where MJik is the probability of drawing two individuals with
phenotype i at system j from population k under a specified
sampling rule.
From these basic parameters the average matching prob-

ability Mik may be derived, which is the probability of the
same phenotype (not otherwise specified) where two indi-
viduals are drawn from system j in population k under a
specified sampling rule,

Mik - E pj.kCi.k - E Mk.
1

The power of thejth system to exclude identity in population
k is 1 - Mik, the exclusion probability.

Models for pi,*

To specify pi there are two nonparametric models (empirical
and Laplace) and four parametric models (Hardy-Weinberg,
endogamy, null allele, and binning). The empirical model takes

pj~k = nk, jk [1]

where nM is the number ofindividuals ofphenotype i at system
j in a random sample from population k, and nik = Xi n7,k is the
number ofindividuals typed for systemj in that sample. While
appealingly simple, this model overestimates frequencies with
nJk > 0 and underestimates frequencies with nJk = 0. A
polymorphism withR alleles generates R(R + 1)/2 genotypes,
and so some phenotypes are likely not to be observed if nik is
small andR is large. We hesitate to assume that Pik is zero and,
therefore, may adopt the law of succession of Laplace, which
supposes a uniform prior probability for Pik. If the ith pheno-
type is thought to exist in population k,

pk = 1/(nik + 1)
i n.~k/(nJk + 1)

if njk = 0
if n~i >0. [2]

This method has with justice been critically discussed (e.g.,
ref. 7), but it gives a consistent estimator that is conservative
in the sense of overestimating the frequency of rare pheno-
types at the expense of common phenotypes, retaining the
fundamental property that X, i,' = 1.
Both the empirical and Laplace models can be applied to

systems that are not factor-union (8) or that involve two or
more loci, and to populations that are stratified. Parametric
models, when their assumptions are valid, are more infor-
mative. All interpret the system j as a single locus (which I
shall take to be autosomal) and the phenotype i as either a
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heterozygote G-, G-1 or a homozygote GJ, GJ, with observed
numbers n{k and nik, respectively. A 1:1 correspondence
between genotype and phenotype is assumed unless other-
wise stated.
The Hardy-Weinberg model of panmixia assumes that

Pik (- )
if i= GJG-, r # s

if i = G~rG- [3]

The maximum likelihood estimate of qik is
qk = (2nfrk + Z nflk)/2nik.

sir

If this value is zero for mik alleles thought to be present in
population k, the Laplace estimate may be used:

mozygote. Let a bin be defined as an interval within which
bands are not distinguished and let Ejk be the proportion of
heterozygotes that are consequently misclassified. Then un-
der panmixia the expected frequency of recognized heterozy-
gotes is

[8]2r qrk (1-qrk) (1-Hk)

Therefore E6k enters into phenotype probabilities in much the
same way as an inbreeding coefficient, although there are
slight variations among alleles, the estimated gene frequen-
cies of which will be distorted so as to make discrimination
from endogamy impractical.
The effects of endogamy, binning, and null alleles are

independent, generating an apparent inbreeding coefficient

[4]

However, missing alleles are less ofa problem for parametric
models than are missing phenotypes for nonparametric mod-
els, except for small samples from hypervariable loci, a

combination that should be avoided as far as possible.
If population k is made up of subpopulations that tend to

marry endogamously, Wright's generalization of panmixia is
parsimonious and appropriate (9). The endogamy model is

pjk _ 2tfrIqs (1 a,) if i = GJr GJs,r # s
Piqik [qrk + aik (1-qrk)] if i = GrGr5

where aJk is the inbreeding coefficient for system j in popu-

lation k. The effect of endogamy is to create a positive value
of aik in the 0, 1 interval. The practice in forensics of taking
the frequency of GjrGJr as 2q rk corresponds to the logically
impossible value aik = (2 - qrk)/(1 - q1rk), which gives

negative frequencies if applied to heterozygotes or Xj P >

1 otherwise (10).
In some systems there may be a recessive null (or silent)

allele Gio with a fragment so small that it migrates off the gel
or so large that its movement from the origin is not detected.
Then the phenotype frequencies under panmixia are

(2qqk if i = GJrGJ, r 0 s #0

pik= 5qJk (qirk + 2qiok) ifi=GjG ,r#0 [6]

(qOk)2 if i = Gio Gio

Ifthe null allele is uncommon, the homozygote GCrGjo may not
be observed or may be misinterpreted as a denatured and,
therefore, unclassifiable sample. In that event the presence of
a null allele will go undetected and qJrk for r > 0 will be
incorrectly estimated by maximum likelihood as

q = qir q(1 0~~

Then the apparent frequency of heterozygotes involving G-r
is

2qJrk (1 qrk qok) = 2qirk* (1 qJk*) (1- AJk), [7]

which implies that Aik = qjOk (2 - qjk) is indistinguishable from
an inbreeding coefficient ak in a population sample, although
the segregation of Gbo may be apparent in families. Moreover,
if the existence of a null allele is suspected, and its frequency
is estimated simultaneously, there is virtually no information
about aik even in an enormous sample (11-13).
At a hypervariable locus, or more generally when two

bands migrate to nearly the same position, a heterozygote
between two similar alleles may be misclassified as a ho-

Fik = 1 - (1 - ak) (1 - 6) (1 - Aik) ask + eJk + Aik, [9]

in which all components are positive, and 0 c Fik c 1. It
is Fik rather than ajk that can be bioassayed from the
phenotype distribution Pik in Eq. 5 on the assumption of a 1:1
correspondence between phenotype and genotype (11). The
maximum likelihood score for Fik under the null hypothesis is

U= E( qi) r nrs

with information

w= (R-l1)njk

A system with 10 alleles and a sample size of 10,000 estimates
Fik with a SE of 0.003. The requirement for very large
samples favors sharing of records on DNA typing over

regions and countries, which would provide more efficient
estimation of genetic diversity (14).

Models for Mik

There are three models for the matching probability (inde-
pendent, cognate, and affinal). In the independent model the
culprit is randomly drawn from population k. Therefore Mik
= (p1Ak)2 and so = Pik. This is the only model-appropriate
assuming the culprit to belong to a different population from
the suspect, which tends to minimize the matching probabil-
ity. Therefore the assumption of the same population is less
controversial.

In the cognate model the culprit is a regular relative of the
suspect with probability cp of having p genes identical by
descent (15). (Relatives are regular if their parents are not
inbred.) Then

M*k C2 + C1
q + Co (qik)2

IC2 + Cl(q<r' + qsk)/2 + 2co qikqik

if i = GJGJ
[10]

if i = GJGJ for r s

In the affinal model the culprit is related to the suspect as

closely as a spouse would be. This removes the restriction to
regular relatives (16). The probabilities up to linear terms
in aik are

Mik jr k)4
+ 6 (qjk)3 (1 -qjk) ak

M 4 (.Jk)2 (qjk)2 4qJkqJk (qk+ qJk -6 qrkqisk) i

if i = GJr~j
if i = GrGJG, r s'

(2nir + E nirk + 1)/(2nik + mjk)
qr (2nik + > nk)/(2nik + mik)

sir

if nrs = 0

if nrs > 0
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Therefore

r(qk)2 + Sqjk(l- qik)ajk

i=[qiqk1
qq Saik]

[qs' k
]

if i = GjrGjr
if i= GrG-s, r # s' [11]

ignoring terms in (ajk)Z. The coefficient 6 reflects the (4) ways
in which the four alleles of suspect and culprit may be related.
The coefficient 5 indicates that one of these paths has been
removed by conditioning on two alleles of the suspect.
Binning and null alleles do not contribute to kinship between
suspect and culprit, and so the apparent inbreeding coeffi-
cient that replaces aik in Eq. 11 is

FAk = ajk + (ok + Ajk)/5. [12]

Combination of Systems

There are three models to combine matching probabilities
over systems (empirical, independent, and pairwise depen-
dent). The empirical model notes that nk random individuals
in population k have been tested for all J systems, none of
whom has the same phenotypes as the suspect. Then a
confidence interval of strength P is given by

Ck < (-In P)lnk. [131

For example, with nk = 1000 and P = 0.01, we would be
confident that the matching probability is <0.005, but we
could not say how much less, whereas parametric models
would indicate a much smaller limit. Therefore, the empirical
frequency of a combined match is a necessary but not
sufficient part of the evidence.
The independent model takes

ck - H . [14]

This simple approach has been attacked on the grounds that
independence has not been proven (1, 2). Because highly
polymorphic systems are preferred, most values of Cik will be
small and their product infinitesimal. In such a sparse con-
tingency table a general test of independence is impractical,
even in an enormous sample. However, we are concerned
only with the probability of a complete match, and for this
there is a feasible approach. Let x and y represent the
matching probabilities Cik and Cf,k for systems j and j',
respectively. Table 1 shows how to test for pairwise inde-
pendence by maximum likelihood scores u and their infor-
mation w in a model that gives

Ck=Hn Cjikez, [15]

where

z=(J- 1) >.u/>w,

and the summation is taken over all (2) pairs of loci. Available
evidence favors z near zero and, therefore, little effect of this
refinement on matching probabilities (17).

If -y is the proportion of suspects who are guilty, the
conditional probability that the suspect is the culprit, given a
match with probability Ck, is

V

Y + (1 y)Ck'
[16]

Table 1. Probability of a match by chance on two systems

j' match j' no match
j match

Expected xyeq/X x(1 - YVI
Observed a b

j no match
Expected (1 - x)y/ (1 - x) (1 - yV
Observed c d

I = 1 - xy + xye6, n = a + b + c + d; Ho, 9 = 0; ML score, u
= (ad - bc)/n; information, w = (a + b)(c + d)(a + c)(b + d)/n3;
X2 = u2/w.

where the frequency of conviction might be taken as a rough
estimate of 'y. This Bayesian calculation may be presented as
an alternative way of looking at Ck, but it should not be
emphasized because it requires an assumption about 'y that
may well depend on time, location, social class, population,
age, ancillary evidence, circumstances of the offence, and
other factors.

In the above equations the average matching probability
Mik may be substituted for CQ if it is desired to calculate
expected matching probabilities, averaged over all pheno-
types.

Definition of Populations

Reliable gene frequencies require large samples, especially
for hypervariable loci. Therefore, only major populations are
of interest, their stratification being represented by inbreed-
ing coefficients aik. A major population is called a race in the
vernacular and an ethnic group by the fastidious. Race may
be defined in three ways (genealogical, phenotypic, and
testimonial). The genealogical definition specifies the popu-
lations of all close ancestors. It is precise but impractical. The
phenotypic definition, often influenced by name, costume, or
social status, is unreliable, except for categories like Cauca-
sian, Oriental, or Black. Even these can be misinterpreted if
there is racial admixture or brief-observation. In the United
Kingdom Caucasoids from the Indian subcontinent may be
confounded with Orientals as "Asians." The Hispanic pop-
ulation of the United States is a favorite target for critics of
DNA testing, because it subsumes a Caribbean element on
the East coast with more African than American Indian
ancestry and a southwestern subpopulation in which this
admixture is reversed. Samples classified by region of resi-
dence are especially suitable to test models of genetic struc-
ture for forensic populations.
Much racial classification is by testimony of the suspect,

which is usually more detailed and sometimes more fanciful
than phenotypic classification. Mixed or ambiguous race
requires samples from two or more populations. Letfk be the
prior probability of the kth race. There is a synthetic popu-
lation in which the frequency of GJ is Xkfk qirk with equilib-
rium inbreeding X fk Fik. If a matching probability is calcu-
lated for each putative race and the synthetic race, the largest
ofthese values might be used. Interracial crosses, which may
have negative values of ajk, have been treated in some detail
(18).

Estimates of ak

The three most important models of population structure
relate to islands, isolation by distance, and hierarchical
structure. The island model (9) states that kinship Pk within
population k is a balance between evolutionary size Nk and
effective migration rate Mk,

'Pk = 1/(4Nkmk + 1). [17]
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The isolation by distance model (19) states that kinship qp(d)
at distance d in an array of local populations within a region
is approximately

qp(d) = (1 - L)ae-bd + L. [181

The hierarchical model (9) states that

FIT = FST (1- FIS) + FIS, [19]

where I denotes a local population belonging to a subpop-
ulation (region) S within a major population T. In terms ofEq.
18,

FIT = ae-bd

FST = -L/(1 - L). [20]

These models assume that a k = ak as for drift without
selection. This is certainly not true among races but appears
to hold within a major population. On the condition that the
major population is panmictic, ak = 0. On the condition that
the major population is divided into endogamous regions,
within which there is panmixia, and that the suspect and
culprit are randomly and independently drawn from the major
population, ak should be equated to FST, and the independent
model should be used for Miik. On the condition that the major
population is divided into endogamous regions within which
there is panmixia, and the suspect and culprit are randomly
and independently drawn from the same region, ak should be
equated to FST, and the affinal model should be used for Mik.
The expert witness who bases his calculations solely on the

first condition obtains the smallest matching probabilities and
the most painful crossexamination. The counsel for the
defense who prefers the third condition must explain why
both individuals are credibly drawn from the same subpop-
ulation unless the suspect is the culprit. In exceptional cases
it may be asserted that the suspect comes from the same local
population and, therefore, FIT should be substituted for FST.
The effect of these assumptions is to increase the matching
probability and, therefore, to decrease the weight of evi-
dence. This can be compensated by more DNA testing, and
so the evidence required by the court will be a balance
between cost and credibility.

It remains to summarize the available evidence on ak.
Unfortunately many studies of population structure are di-
rected solely to inferring phylogeny and use a metric of the
type F1T/a that gives no information about a" (20, 21). Even
with this waste, the population structure of humans is better
known than for any other organism. In most of the world
isolation by distance is reinforced by preferential consan-
guineous marriage, difficult and hazardous travel, bigotry,
and xenophobia. We are concerned with the more homoge-
neous populations in which forensic science is practiced.
Information comes from genealogies, migration, isonymy,
rare genes, and polymorphisms (Table 2).
The genealogical method uses the frequencies of close

consanguineous marriages to estimate inbreeding at equilib-
rium. Typically first cousin marriages account for half of the
total inbreeding (22). Frequencies of consanguineous mar-
riages have declined dramatically in developed countries, and
to that extent the estimates in Table 2 are too large. However,
events in the past, including small population size and
selection, are not allowed for in the genealogical method,
which underestimates ak for polymorphisms. Migration gives
FST as Xh Ah' fh fh' (phh', where fh,h' is the proportion of the
regional population born in locality h, and Whh' is kinship
between localities h and h'. Isonymy estimates FisTas I q 2/49
where qr is the regional frequency of the rth surname.
Bioassay of kinship best reflects drift and selection in the past

Table 2. Kinship FST in contemporary populations
Source Region FST Reference

Genealogy Belgium 0.0019 22
United States 0.0001 22
Norway 0.0022 22
Japan 0.0043 22
England 0.0004 22
Switzerland 0.0010 22
Mexico 0.0008 22

Migration Ireland 0.0004 23
Aland Islands 0.0009 24

Isonymy Ireland 0.0003 25
Brazil 0.0012 26
Switzerland 0.0004 27
Caucasians 0.0003 28
Japan 0.0005 28

Rare genes Cystic fibrosis 0.0043 29
Minor race 0.0005 17
Major race 0.0009 17

Polymorphisms Aland Islands 0.0020 30
Northern England 0.0022 31
Ireland 0.0006 25
Ferrara Province 0.0029 32
Belgium 0.0002 33
Japan 0.0001 26
Sweden 0.0006 26
Switzerland 0.0006 27
Brazil 0.0010 26
Finland 0.0022 34
Sardinia 0.0013 35
United Kingdom 0.0014 36
Iceland 0.0012 23
France 0.0006 37
Europe 0.0010 38
Jews 0.0040 38

but is inflated by mistyping and sampling errors. The large
body of evidence in Table 2 indicates that FST < 0.01 for
nearly all forensic situations and, therefore, dominated in
many systems by effects of null alleles and binning even in
populations with more local differentiation than the United
States. FIT is much more variable and in the most extreme
isolates (seldom encountered in court) approaches the value
of 0.15 observed for major races (39).

Discussion

The theory of this paper covers a wide range of genetic
structures but does not specify the models or parameters to
be used for a particular case. This treatment gives ample
scope for prosecution and defense to present different argu-
ments on the same evidence, on the condition that samples of
major forensic populations are the basis of inference. How-
ever, this condition may be attacked by the defense in three
ways. (i) The Cohen defense (1) is that forensic samples are
not randomly drawn from a precisely specified universe, but
neither are suspects or culprits, and precise definition does
not assure relevance. The forensic sample for each race is
sufficient, without requiring that the sample be representa-
tive of a general population at liberty. Therefore, this argu-
ment has not been entertained for blood groups, dermato-
glyphics, ballistics, or other evidence.

(ii) The Lander defense insists that "regardless of the
defendant's ethnic background, each allele frequency used
(should) be the maximum observed in various ethnic sam-
ples" (2). The latter are not specified, except that they be "a
dozen or so well-separated ethnic population samples," not
necessarily including the population of the suspect. At a
single locus the culprit might be assumed to be a Lapp for
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allele Grand a Hottentot for G, The resulting calculations are
not even probabilities because Xqn. > 1. However exten-
sively our species might be sampled, an ethnic sample could
always be found with an apparently higher gene frequency,
either through drift, mistyping, or sampling error. The
Lander defense is certainly conservative (ofculprits), but few
courts could follow his logic.

(iii) The Lewontin-Hartl defense is similar in intent, but
very different in logic (40). It insists that k must be chosen to
match the suspect's subpopulation, not assumed to be en-
dogamous, however narrowly defined and however poorly
supported his claim to that subpopulation may be, and in the
absence of any evidence that the culprit belongs to that
subpopulation. Were this principle accepted by the court, the
defense could try to define the subpopulation so that no
reliable sample is available. "When does population gather-
ing stop, and how is it used?" (3). If the suspect pleads the
Fifth Amendment, there is no information on testimonial race
(41). Because the suspect cannot be assigned to a subpop-
ulation, the Lewontin-Hartl defense is that no matching
probability can be calculated. Case law will determine
whether such argument, unsupported by genetic evidence, is
permissible.
To protect the suspect, the Lander and Lewontin-Hartl

defenses argue that the calculation of matching probability
should be absurdly conservative. The methods of this paper
allow a court to be conservative without being absurd.
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