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Theory 

A brief description of the chemometric methods used in this study is below. 

Principal Component Analysis plus Linear Discriminant Analysis (PCA-LDA) 

PCA-LDA is a method that exploits the benefit of linear discriminant analysis (or 

canonical variants analysis, LDA), after using principal component analysis.1,2   

On the one hand, the central idea of PCA is to reduce the dimensionality of a dataset 

consisting of large number of interrelated variables, using a small number of PCA 

factors [i.e., principal components (PCs)] to retain as much as possible of the variation 

present in the original data set (˃ 95%).3 On the other hand, LDA is a data separation 

technique, which explicitly attempts to model the differences between the classes of the 

data set that were assigned a priori. New variables [linear discriminants (LD)] are found 

such that the ratio of the between-cluster variance to the within-cluster variance is 

maximized, and thus the clusters are visualized at maximum separation. Therefore, 

LDA, like regression methods such as partial least squares, is a “supervised” method, 

that requires some previous knowledge of the samples constituents (i.e., classes). 

PCA can be applied before LDA (thus “PCA-LDA”) to reduce computational 

complexity, increase the recognition accuracy in different categories, and avoid LDA 

overfitting.4 

ANOVA-simultaneous component analysis (ASCA) 

The ASCA method can be understood as a direct generalization of the analysis of 

variance (ANOVA) for univariate data to the multivariate case.5,6 Moreover, this 

method incorporates the information of the structure of datasets (i.e., underlying factors 

such as time, dose or combinations thereof), enabling a better understanding of their 

biological information. 
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Thus, in ASCA, an ANOVA is initially performed on the raw data matrix, which 

is decomposed into the sum of different data matrices characterizing the variance caused 

by each one of the considered factors, plus a residual matrix containing the unexplained 

variance. The ANOVA equation valid for the three data sets of the present study, 

acquired following an experimental design of two factors (i.e., chemical -c- and dose -d-

) is shown in Equation S1: 

                                          X= µ + αc + βd + αβ(cd) + E                                             (S1) 

where X is a matrix containing the raw data acquired with the ATR-FTIR instrument, µ 

represents an overall offset, αc represents the effect of the factor “chemical”, βd 

represents the effect of the factor “dose”, αβ(cd) represents the interaction of “chemical” 

and “dose” and E is the residual matrix representing the natural variation among 

replicates. Thus, the performance of ANOVA allows the division of the variation of the 

distinct factors in orthogonal and independent parts, which is also one of the goals of 

the ASCA model. 

Following ANOVA, a simultaneous component analysis (SCA) is applied 

individually to each of the ANOVA factor matrices. SCA is a generalization of PCA for 

the situation where the same variables have been measured in multiple conditions. 

Thus, ASCA model combines the power of ANOVA to separate variance 

sources with the advantages of SCA to the modeling of the individual separate effect 

matrices. The mathematical basis of the resulting ASCA model for the dataset of the 

present study (i.e., two-factor dataset) is shown in Equation S2: 

                                      X= µ + TcPc
T + TdPd

T + T(cd)P(cd)
T + E                                  (S2) 

where component scores of each sub-model are given by the matrices indicated by Tc, 

Td, T(cd), and the component loadings are given by matrices Pc, Pd, P(cd). E is a matrix in 

which the residuals of all sub-models of the ASCA model are collected (E= Ec + Ed + 
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E(cd)). Thus, this equation means that the matrix X is separated into contributions from 

the overall mean (µ), one SCA model (TcPc
T) describing the overall effect of the factor 

“chemical”, one SCA model (TdPd
T) describing the overall effect of the factor “dose” 

and another SCA model (T(cd)P(cd)
T) describing the interaction of “dose” with 

“chemical”. Hence, the ASCA model (Equation S2) is a direct multivariate 

generalization of the ANOVA model (Equation S1). 

In order to examine the statistical significance of the effects of the investigated 

factors and their interaction, ASCA performs a permutation test in which the null 

hypothesis (H0) assumes that there is no effect of the considered factor. However, such 

permutation test can only be performed under the assumption that raw data are well-

balanced (i.e., same number of observations for each factor level). 
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Figure S1. Visual effect of different pre-processing steps on a set of ATR-FTIR spectra, 

including feature selection, rubberband baseline correction, Amide I normalization, 

trained-mean centering and class definition. 
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Figure S2. PCA-LDA loadings of PFBS, PFOA, PFOS and PFNA-treatments for the 

three experiments. Grey-shaded regions indicate spectral regions corresponding to 

particular biomolecular entities affected in all PFAS-treatments and thicker lines 

indicate PFAS-doses causing higher effects. 
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Figure S3. Structure of the data sets arranged for experiments 1, 2 and 3 to perform 

subsequent ASCA analyses. In the left part of the figures, each rectangle represents an 

ATR-FTIR spectrum, and the total of them is further arranged into a matrix, as 

indicated in the righthand side of the figures. In all cases, the following indices are used: 

w=1,…, W for the wavenumbers; d=1,…, D for the doses tested (d1=0 M, d2=10-9 M, 

d3=, 10-8 M, d4=10-7 M, d5=10-6 M and d6=10-5 M); c=1,…, C for the chemicals tested 

(c1= PFBS, c2=PFOS, c3=PFOA and c4=PFNA); and, i=1,…, I for the number of 

replicates of each category. 
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Table S1. Principal segregating wavenumbers and associated biomolecular entities7 

derived from cluster vectors plots of PCA-LDA. The indicated wavenumbers (ranked 

from higher to lower priority) are shown for the distinct experiments and chemicals 

(i.e., PFBS, PFOS, PFOA and PFNA) at the dose presenting highest effects. Grey-

shaded raws indicate spectral bands associated to particular entities affected by all 

chemicals: DNA/RNA (light grey, exp. 1), secondary protein structures (medium grey, 

exp. 2) and fatty acids (dark grey, exp. 3). 

Exp.   Chemical 
treatment  

Dose of 
highest 
effects 

Wavenumber 
(cm-1) 

Biological fingerprint 

1 PFBS  10-9 M 1080 Stretching PO2
- symmetric vibrations 

   994 C-O ribose, C-C 
   1201 PO2

- asymmetric (phosphate I) 
   1403 Symmetric CH3 bending modes of the 

methyl groups of proteins 
   1549 Amide II 
   1698/9 C2=O guanine/ N-H thymine 
   1489 In-plane CH bending vibration 
 PFOS  10-9 M 1581 Ring C-C stretching of phenyl 
   1567 Ring base 
   1137 Oligosaccharide C-OH stretching band 
   996 C-O ribose, C-C 
   1698/9 C2=O guanine/ N-H thymine 
   1095 Stretching PO2

- symmetric vibrations 
   1717 C=O thymine; C=O stretching vibration 

of DNA and RNA; C=O stretching 
vibration of purine base 

   1373 Stretching C-N cytosine, guanine 
   1736 C=O stretching (lipids) 
 PFOA  10-9 M  1494 In-plane CH bending vibration 
   1543 Amide II 
   1020 DNA 
   1524 Stretching C=N, C=C 
   1555 Ring base 
   1444 δ(CH2), lipids, fatty acids 
   1250 Amide III 
 PFNA  10-9 M 1204 Vibrational modes of collagen proteins-

Amide III 
   1558 Ring base 
   1624 Unassigned band 
   1728 C=O band 
   1089 Stretching PO2

- symmetric in RNA 
   1705 C=O thymine 
   1408 Unassigned band 
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   1258 PO2
- asymmetric (phosphate I) 

2 PFBS  10-9 M 1517 Amide II 
   1510 In-plane CH bending vibration from the 

phenyl rings 
   1616 Ring C-C stretching of phenyl 
   1643 Amide I band (arises from C=O 

stretching vibrations) 
   1559 Ring base 
   1540 Protein Amide II absorption- 

predominately β-sheet of Amide II 
   1750 ν(C=C) lipids, fatty acids 
 PFOS 10-5 M 1543 Amide II 
   1524 Stretching C=N, C=C 
   1559 Ring base 
   1652 Amide I 
   1396 Symmetric CH3 bending of the methyl 

groups of proteins 
   1620 Peak of nucleic acids due to the base 

carbonyl stretching and ring breathing 
mode 

 PFOA 10-9 M 1647 Amide I in normal tissues 
   1192 Unassigned band 
   1535 Stretching C=N, C=C 
   1620 Peak of nucleic acids due to the base 

carbonyl stretching and ring breathing 
mode 

 PFNA 10-5 M 1562 Unassigned band 
   1146 Phosphate and oligosaccharides 
   1026 Carbohydrates peak for solutions; 

vibrational frequency of CH2OH groups 
of carbohydrates (including glucose, 
fructose, glycogen, etc.); glycogen 

   1254 Amide III 
   1400 Symmetric stretching vibration of COO- 

group of fatty acids and amino acids 
   1713 C=O thymine 
3 PFBS 10-5 M 1698/9 C2=O guanine/ N-H thymine 
   1620 Peak of nucleic acids due to the base 

carbonyl stretching and ring breathing 
mode 

   1068 Stretching C-O ribose 
   1639 Amide I 
   1567 Ring base 
   994 C-O ribose, C-C 
   1119 Symmetric stretching P-O-C; C-O 

stretching mode 
   1234 Composed of Amide III and phosphate 

vibration of nucleic acids 
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   1400 Symmetric stretching vibration of COO- 

group of fatty acids and amino acids 
 PFOS 10-5 M 1119 Symmetric stretching P-O-C; C-O 

stretching mode 
   1504 In-plane CH bending from the phenyl 

rings 
   1517 Amide II 
   1396 Symmetric CH3 bending of the methyl 

groups of proteins 
   1659 Amide I 
   1559 Ring base 
   1539 Protein Amide II absorption- 

predominately β–sheet of Amide II 
   1724 C=O stretching band mode of the fatty 

acid ester 
 PFOA 10-8 M 1400 Symmetric stretching vibration of COO- 

group of fatty acids and amino acids  
   1647 Amide I in normal tissues- for cancer is 

in lower frequencies 
   1512 In-plane CH bending vibration from the 

phenyl rings 
   1113 Symmetric stretching P-O-C 
 PFNA 10-5 M 1512 In-plane CH bending vibration from the 

phenyl rings 
   1701 C=O guanine 
   1651 Amide I 
   1562 Unassigned band 
   1393 Unassigned band 
   1528 C=N guanine 
   1748 ν(C=C) lipids, fatty acids 
   1732 Absorption band of fatty acid ester; 

Fatty acid ester band 
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