Supporting Information

Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis

Jiajie Feng, Zachary A. Kasun and Michael J. Krische

University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA

Table of Contents:

Rules for Calculating Step Counts	S2
Graphical Summary of Previous Syntheses of Psyberin (Irciniastatin A)	S3
Graphical Summary of Previous Syntheses of Neopeltolide	S19
Graphical Summary of Previous Syntheses of Mandelalide	S38
Graphical Summary of Previous Syntheses of Oridamycins	S50
Graphical Summary of Previous Syntheses of Xiamycin A	S54
Graphical Summary of Previous Syntheses of Triene-Containing C17-Benzene Ansamycins	S56
Graphical Summary of Previous Syntheses of Roxaticin	S64
Graphical Summary of Previous Syntheses of Bryostatins	S70
Graphical Summary of Previous Syntheses of Swinholide Fragments	S84
Graphical Summary of Previous Syntheses of Erythromycins	S87
Graphical Summary of Previous Syntheses of Cyanolide A and Clavosolide A	S110
Graphical Summary of Previous Syntheses of Zincophorin	S128
Graphical Summary of Previous Syntheses of Cryptocaryol A	S137

Rules for Calculating Step Counts

"Given the fact that every reaction may be optimized... the total number of chemical transformations is the only variable in the determination of strategic efficiency." Qiu, F. Can J. Chem. 2008, 86, 903. In our analysis, a step is defined as an operation that does not involve any intervening purification/separation, including removal of solvent, commencing with compounds that are over \$50/gram. The longest linear sequence (LLS) refers to the longest route from a starting material to the natural product. Total steps (TS) account for steps outside the longest linear sequence. Stoichiometric reagents, such as chiral auxiliaries, that are not commercially available for less than \$50 USD/g that require synthesis contribute to step count. Substoichiometric reagents, such as catalysts and ligands that require synthesis do not contribute to step count. In formal syntheses, step counts are calculated up to the fragment that intercepts the total synthesis and therefrom to the natural product.

Graphical Summary of Previous Syntheses of Psyberin (Irciniastatin A)

A. De Brabander et al. J. Am. Chem. Soc. 2005, 127, 11254; J. Am. Chem. Soc. 2012, 134, 17083.

Fragment 1

Key: a) (–)-(lpc)₂BOMe, CH₂=C(Me)CH₂Li; b) NaH, Mel; c) PPTS; d) TBSCl, Imidazole; e) PMBCl; f) DMP; g) NaClO₂, NaH₂PO₄, 2-Me-2-butene h) COCl₂.

Key: a) $[Ir(cod)CI]_2$, (R)-Cl,MeO-BIPHEP, Cs₂CO₃, 4-Cl-3-NO₂-BzOH, allyl acetate; b) TBSOTf, 2,6-lutidine; c) O₃, then PPh₃; d) Ac₂O, NEt₃, DMAP; e) Et₂Zn, Ti(O*i*-Pr)₄, *N*,*N'*-(1*R*,2*R*-cyclohexane-1,2-diyl)bis(trifluoromethanesulfonamide), Et₂Zn; f) TMSCN, then Znl₂, then HCl; g) DMP.

A. De Brabander et al. J. Am. Chem. Soc. 2005, 127, 11254; J. Am. Chem. Soc. 2012, 134, 17083. (Cont'd)

Fragment 3

Key: a) DMF POCl₃; b) NaH₂PO₄, NaClO₂, 2-Me-2-butene; c) SOCl₂, Et₂NH; d) *s*-BuLi, CuBr-SMe₂, H₂C=CHCH₂Br; e) BBr₃; f) Me₃O-BF₄, Na₂CO₃; g) PMBCl, TBAI, K₂CO₃; h) OsO₄ (cat.), NMO, NalO₄; i) **2**, PhBCl₂, *i*-Pr₂NEt; j) HB(cat), NaOH; k) TBAF; l) EtOH/ H₂O, [PtH(PMe₂OH)(PMe₂O)H]; m) H₂, Pd/C; n) Ac₂O, pyridine; o) Me₃O-BF₄, PVP.

Fragment Union and End Game

Key: a) *i*-Pr₂NEt, **1**, then NaBH₄; b) LiOH.

B. Huang et al. Org. Lett. 2007, 9, 2597.

Key: a) Cul; b) Me₃O-BF₄, proton sponge; c) BH₃, then H₂O₂, NaOH; d) BnBr, NaH; e) TBAF; f) (COCl)₂, DMSO, NEt₃; g) TMSCN, AlCl₃; h) TBDPSCI, NEt₃, DMAP; i) MeCONH₂, PdCl₂, H₂O.

Fragment 2

Key: a) BH₃-THF, **A**; b) TBSOTf, 2,6-lutidine; c) TMSCH₂Li; d) TMSOTf, NEt₃.

Fragment 3

Key: a) Tf₂O, pyridine; b) Pd(PPh₃)₄, allylSnBu₃, LiCl; c) BBr₃; d) TIPSOTf, 2,6-lutidine; e) OsO₄, NMO, then NalO₄; f) (*Z*)-2-butene, *n*-BuLi, KOt-Bu, (–)-(Ipc)₂BOMe, BF₃•OEt₂; g) Amberlyst 15; OsO₄, NMO, then NalO₄.

B. Huang et al. Org. Lett. 2007, 9, 2597. (Cont'd)

Fragment Union and End Game

Key: a) BF_3 - OEt_2 ; b) HB(cat); c) Ac_2O ; d) H_2 , Pd/C; e) DMP; f) $CrCl_2$, HCl_3 ; g) **1**, Cul, $MeNH(CH_2)_2NHMe$, Cs_2CO_3 ; h) NaOMe; i) Ac_2O , pyridine, DMAP; j) $PhI(OAc)_2$, MeOH, HFIP; k) Ac_2O , pyridine, DMAP; l) H_2 , Pd/C; m) 4- NO_2 -PhSeCN, PBu_3 ; n) H_2O_2 ; o) TBAF.

C. Crimmins et al. Org. Lett. 2009, 11, 3990.

Fragment 1

Key: a) TiCl₄, (–)-sparteine; b) LiBH₄; c) TIPSCI, imidazole; d) NaH, MeI; e) Ti(O*i*-Pr)₄, *n*-BuMgCI; f) SEMCI, *i*-PrNEt₂; g) TBAF; h) SO₃-pyr, DMSO, *i*-Pr₂NEt; i) NaClO₂, NaH₂PO₄, 2-Me-2-butene; j) SOCl₂, pyridine.

Fragment 2

Key: a) NaH, Mel; b) OsO₄, NMO, then NaIO₄; c) enolate, BH₃, Ts-*N*-valine; d) TBSOTf, 2,6-lutidine; e) HCl, then TFA; f) NaH, BnBr, TBAI; g) DIBAL-H, then Ac₂O, pyridine, DMAP.

C. Crimmins et al. Org. Lett. 2009, 11, 3990. (Cont'd)

Fragment 3

Key: a) neat, then Et₃N-HF; b) TIPSOTf, 2,6-lutidine; c) DIBAL-H; d) auxiliary, TiCl₄, (–)-sparteine, *N*-Me-pyrolidine; e) (MeO)NHMe-HCI, imidazole; f) TBSOTf, 2,6-lutidine; g) MeMgBr; h) TBSOTf, *i*-Pr₂NEt.

Fragment Union and End Game

Key: a) BF₃•Et₂O; b) BH₃•THF, (*R*)4-Me-CBS; c) TBAF; d) TBSOTf, 2,6-lutidine; e) H₂, Pd(OH)₂/C; f) (COCl)₂, DMSO, Et₃N; g) NaClO₂, 2-Me-2-butene; h) NaN₃, Et₃N, EtO₂CCl, then PhMe, reflux; then CuCl, TMS(CH₂)₂OH; i) **1**, *i*-PrMgCl; j) TASF.

D. Floreancig et. al. J. Am. Chem. Soc. 2011, 133, 16668.

Fragment 1

Key: a) [Ir(cod)Cl]₂, *i*-PrOH, Cs₂CO₃, (*R*)-Cl,MeO-BIPHEP, *m*-NO₂BzOH; b) TESCl, Imidazole; c) LDA, TMSCl.

Key: a) neat, then Et₃N-HF; b) TBSOTf, 2,6-lutidine; c) DIBAL-H; d) (*Z*)-Ipc₂NCH₂CH=CHMe; e) TBSOTf, 2,6-lutidine; f) O₃, then PPh₃; g) **1**, BF₃-OEt₂; h) NaBH₄, Et₂BOMe; i) O₃, then PPh₃, j) Ac₂O, Et₃N, DMAP, then TMSCI; k) TMSCN, TMSOTf.

D. Floreancig et. al. J. Am. Chem. Soc. **2011**, 133, 16668. (Cont'd)

Key: a) Cp₂Zr(H)Cl, then **2**, then Zn(OTf)₂, (MeO)₃CH; b) TBAF.

E. Hong et al. Org. Lett. 2011, 13, 5816.

Fragment 1

OTBS -Me Me (12 steps in LLS)

Key: a) NaH, SEMCI; b) CH₂=C(Me)MgBr, CuI; c) NaH, MeI; d) DDQ; e) SO₃-pyridine, DMSO, *i*-Pr₂NEt; f) 2-Me-2-butene, *t*-BuOH, NaClO₂, NaH₂PO₄; g) PivCl, base.

E. Hong et al. Org. Lett. 2011, 13, 5816. (Cont'd)

Key: a) PhBCl₂, *i*-Pr₂NEt, then **2**; b) Et₂BOMe, NaBH₄; c) CSA; d) TBSOTf, 2,6-lutidine; e) H₂, Pd/C; f) DMP; g) 2-Me-2-butene, *t*-BuOH, NaClO₂; h) Et₃N, EtO₂CCl, then NaN₃, then PhMe, 110 °C; then TMSCH₂CH₂OH.

Fragment Union and End Game

Key: a) LiHMDS, the **3**; b) TASF.

F. Smith et al. Org. Lett. 2008, 10, 5625; J. Org. Chem. 2013, 78, 4278.

Fragment 1

Key: a) HCl; b) PivCl, pyridine; c) SEMCl, *i*-Pr₂NEt; d) DIBAL-H; e) SO₃-pyridine, DMSO, *i*-Pr₂NEt; f) NaClO₂, NaH₂PO₄, 2-Me-2-butene, *t*-BuOH; g) PivCl, base.

Fragment 2

Key: a) NaH, TBSCI; b) SO₃-pyridine, DMSO, *i*-Pr₂NEt, DMSO; c) **A**, **B**, *n*-butyonitrile, *i*-PrOH; d) TBSOTf, 2,6-lutidine; e) DIBAL-H; f) (–)-DIPT, Ti(O*i*-Pr)₄, TBHP, 4Å MS; g) TEMPO, NaClO₂, NaOCI, pH 7 buffer; h) TMSCHN₂; i) HF-pyr; j) SO₃-pyridine, DMSO, NEt₃, DMSO; k) 2-butanone, (–)-DIPCI, NEt₃; I) CSA; m) Me₃O-BF₄, proton sponge.

F. Smith et al. Org. Lett. 2008, 10, 5625; J. Org. Chem. 2013, 78, 4278. (Cont'd)

Key: a) neat, then Et₃N-HF; b) SEMCI, NaH; c) DIBAL-H.

Key: a) Cl₂BPh, *i*-Pr₂NEt; b) Et₂BOMe, NaBH₄; c) LiOH, H₂O; d) *i*-Pr₂NEt, *i*-BuO₂CCl, then NaN₃, then PhMe, 80 °C; then TMSCH₂CH₂OH; e) TBSOTf, 2,6-lutidine.

Fragment Union and End Game

Key: a) LiHMDS, then 1; b) TASF; c) MgBr₂, MeNO₂.

G. Iwabuchi et al. Org. Lett. 2010, 12, 1040; J. Org. Chem. 2015, 80, 12333.

Key: a) Eu(OTf)₃ (cat.), 2,6-(*t*-Bu)₂-4-Me-pyridine (cat.); b) PivCl, pyridine; c) SEMCl, *i*-Pr₂NEt; d) DIBAL-H; e) 1-Me-AZADO, PhI(OAc)₂; f) PivCl, base.

Key: a) DHP, PPTS; b) HCCCH₂OPMB, *n*-BuLi, BF₃-OEt₂; c) PPTS; d) TEMPO, PhI(OAc)₂; e) allylSn(Bu)₂, MgBr₂-OEt₂; f) TESCI, imidazole; DDQ; h) Red-Al; i) (–)-DET, Ti(O*i*-Pr)₄, TBHP, 4 Å MS; j) BOMCI, *i*-Pr₂NEt; k) CSA; l) NaH, Me₂SO₄; m) TBSOTf, 2,6-lutidine; n) OsO₄, NMO,

G. lwabuchi et al. Org. Lett. 2010, 12, 1040; J. Org. Chem. 2015, 80, 12333. (Cont'd)

Fragment Union and End Game

Key: a) PhBCl₂, *i*-Pr₂NEt; b) NaBH₄, Et₃B; c) CSA; d) TBSOTf, 2,6-lutidine; e) H₂, Pd/C; f) EtO₂CCl, NMM, then NaN₃; g) TMS(CH₂)₂OH; h) **1**, LiMHDS, 4Å MS; i) TASF.

H. Williams et al. Org. Lett. 2007, 9, 1093.

Fragment 1 and Reagents

Key: a) (CF₃CO)₂O, H₂SO₄; b) Zn(CN)₂, HCI; c) MOMCI, *i*-Pr₂NEt; d) NaH₂PO₄, NaClO₂, 2-Me-2-butene; e) DIAD, PPh₃.

Fragment 2

Key: a) MeCOCH₂PO(OMe)₂, TsN₃, K₂CO₃; b) *n*-BuLi, **2**; c) Noyori Catalyst, *i*-PrOH; d) PPh₃, DIAD, 2-NO₂-PhSO₂NhNH₂; e) DDQ; f) DMP; g) HCCMgBr; h) DMP; i) (S)-CBS, BH₃-SMe₂; j) DMDO, then MeOH; k) Me₄NBH(OAc)₃; l) NaH, TsCl; m) DIBAL-H; n) MOMCl, *i*-Pr₂NEt; o) BH₃-THF, 2-Me-2-butene; p) *n*-Bu₂BOTf, Et₃N, **3**; q) Me₃Al, MeONHMe; r) TESCl, Imidazole, then DIBAL-H. H. Williams et al. Org. Lett. 2007, 9, 1093. (Cont'd)

Key: a) BrB(cat); b) Ac₂O, pyridine; c) HF-pyridine; d) DMP; e) NaH₂PO₄, NaClO₂, 2-Me-2-butene; f) (COCl)₂, then NH₃.

Formal Synthesis to Natural Product

According to De Brabander: *J. Am. Chem. Soc.* **2005**, *1*27, 11254. *****3 steps LLS, *****11 Total Steps

Psymberin (Irciniastatin A) Formal Synthesis 29 LLS 47 TS

Graphical Summary of Previous Syntheses of Neopeltolide

A. She et al. Org. Lett. 2011, 13, 5916.

Key: (a) Allyl acetate, [Ir(cod)Cl]₂, (*R*)-Cl,MeO-BIPHEP, Cs₂CO₃, 4-Cl-3-NO₂-BzOH; (b) PdCl₂, CuCl₂, CO; (c) BnO(NH=C)CCl₃, MsOH; (d) Grubbs' II; (e) LiOH.

Fragment 2

Key: (a) Raney-Ni, H₂; (b) MethallyIMgBr; (c) SmI₂, EtCHO; (d) Me₃OBF₄, proton sponge; (e) K₂CO₃, MeOH.

Fragment Union and End Game

Key: (a) MNBA, DMAP; (b) Hoveyda-Grubbs' II; (c) Pd/C, H₂; (d) **3**, PPh₃, DIAD.

B. Panek et al. Angew. Chem. Int. Ed. 2007, 46, 9211.

Key: (a) BH₃•SMe₂; (b) TBDPSCI, imidazole; (c) DIBAL-H; (d) HS(CH₂)₄SH, I₂; (e) *t*BuLi, **S1**, HMPA; (f) CaCO₃, MeI; (g) Zr(O*t*Bu)₄, *i*PrCHO; (h) Me₃OBF₄, proton sponge, 4A MS; (i) 49% HF(aq.); (j) (COCI)₂, DMSO, Et₃N.

Fragment Union and End Game

Key: (a) TfOH; (b) NaCN; (c) DIBAL-H, Et₂O; (d) DIBAL-H, DCM; (e) NaClO₂, 2-methyl-2-butene, NaH₂PO₄•H₂O; (f) TCBC, DMAP, Et₃N; (g) Hg(O₂CCF₃)₂, then NaBH₄; (h) (CF₃CH₂O)₂P(O)CH₂CO₂H, EDCl•HCl, HOBT•H₂O; (i) 18-Crown-6, KHMDS, then **2**.

Key: (a) Ti(O*i*Pr)₄, (*R*)-BINOL, 4A MS; (b) TBSOTf, 2,6-lutidine; (c) PPTS; (d) PDC.

Fragment 2

Key: (a) MeNH(OMe)•HCl, *i*PrMgBr; (b) PMBO(NH=C)CCl₃, PPTS; (c) DIBAL-H; (d) *t*BuLi, **S1**; (e) MeOTf, DTBMP; (f) DDQ, pH 7 buffer; (g) 4-NO₂-BzOH, PPh₃, DEAD; (g) K₂CO₃, MeOH.

Fragment Union and End Game

Key: (a) TCBC, DMAP; (b) HF•py; (c) TEMPO, PhI(OAc)₂; (d) Sc(OTf)₃, CaSO₄; (e) DMSO, H₂O; (f) NaBH₄; (g) **3**, PPh₃, DIAD.

D. Lee et al. Angew. Chem. Int. Ed. 2008, 47, 3242.

Key: (a) CSA; (b) NaH, BnBr, TBAI; (c) O₃, then PPh₃; (d) CH₂=C(Me)CH₂TMS, TiCl₄; (e) 2-Ph₂P-BzOH, DCC, DMAP; (f) Rh(CO)₂(acac), P(OPh)₃, H₂/CO; (g) HC(OMe)₃, H₂SO₄; (i) NaH, Mel; (j) H₂, Pd/C.

Key: (a) DCC, DMAP; (b) DDQ, pH 7 buffer; (c) TESOTf, TMSOAc; (d) K₂CO₃, MeOH; (e) **3**, PPh₃, DIAD.

16 LLS 36 TS

E. Paterson et al. Chem. Commun. 2008, 4708.

Fragment 1

Fragment 2

Key: (a) H₂, Lindlar cat.; (b) DMP, NaHCO₃; (c) NaClO₂, NaH₂PO₄, 2-methyl-2-butene.

* The Yamaguchi lactonization is considered as a two-step sequence because experimental protocol involves evaporation/exchage of solvent and more than one functional group transformation. See "Rules for Calculating Step Counts" section for more details.

F. Maier et al. Org. Lett. 2008, 10, 1239.

Me

Me

(10 Steps in LLS)

2

Key: (a) (S)-BINAP-Ru(II), H₂; (b) TBDPSCI, imidazole; (c) DIBAL-H; (d) **S1**; (e) Me₃OBF₄, proton sponge; (f) OsO₄, NMO; (g) NaIO₄; (h) **S2**; (i) MeMgBr, CuBr•SMe₂, (*S*,*R*)-Josiphos; (j) Et₃SiH, Pd/C.

Fragment Union and End Game

Me

G. Taylor et al. Org. Lett. 2008, 10, 5047.

Completion of Synthesis

H. Kozmin et al. Nat. Chem. Biol. 2008, 4, 418. (racemic)

Key: (a) TFA, then NH₃•H₂O; (b) BnO(C=NH)CCl₃, TfOH; (c) PdCl₂, CuCl, O₂.

Fragment Union and End Game

Key: (a) Cy₂BCl, Et₃N; (b) Ph₃PMeBr, KHMDS, then HCl; (c) Et₂BOMe, NaBH₄; (d) TMSOK; (e) TCBC, Et₃N, DMAP; (f) H₂, Pd/C; (g) 4-NO₂-BzOH, PPh₃, DEAD; (h) K₂CO₃, MeOH; (i) Me₃OBF₄, proton sponge; (j) H₂, Pd(OH)₂; (k) **2**, PPh₃, DIAD.

I. Roulland et al. Org. Lett. 2009, 11, 4700.

Key: (a) Ru(II) cat., (*R*)-SYNPHOS, H₂; (b) MeNH(OMe)•HCI, AIMe₃; (c) MethallyIMgBr; (d) PhCHO, SmI₂; (e) Acryloyl chloride, DIPEA; (f) Grubbs' II; (g) H₂, Pd/C, then PPTS; (h) Me₃OBF₄, proton sponge; (i) DIBAL-H.

Key: (a) KSCN, HCl; (b) **S1**, Pd(PPh₃)₄, CuTC, Cul, Et₃N, MW; (c) H₂, Lindlar cat.; (d) BCl₃; (e) DMP, py; (f) (CF₃CH₂O)₂P(O)CH₂CO₂Me, KHMDS, 18-crown-6; (g) LiOH.

J. Hong et al. Angew. Chem. Int. Ed. 2009, 48, 7577.

Key: (a) nBuLi; (b) nBuLi, then (R)-epichlorohydrin; (c) EtMgBr, Cul; (d) Mel, CaCO₃; (e) PhCHO, Sml₂; (f) Me₃OBF₄, proton sponge; (g) AD mix- β ; (h) NaH, N-4-toluenesulfonylimidazole.

Fragment Union and End Game

Key: (a) *t*BuLi, HMPA; (b) MnO₂; (c) Dimethyltriazolium iodide, MnO₂, DBU, 4A MS; (d) LiOH; (e) MNBA, DMAP; (f) MeI, CaCO₃; (g) NaBH₄; (h) **3**, PPh₃, DIAD.

K. Floreancig et al. Angew. Chem. Int. Ed. 2009, 48, 4567.

Fragment Union and End Game

Key: (a) $(PPh_3)PdCl_2$, Cul, iPr_2NH ; (b) Pt(DVDS), then H_2O_2 , KF, TBAF, KHCO₃; (c) EtCHO, Sml₂; (d) Me₃OBF₄, proton sponge; (e) LiOH; (f) TCBC, Et₃N, DMAP; (g) [Ru(*p*-cymene)Cl₂]₂, (2-furyl)₃P, 1-decyne, HOAc, Na₂CO₃; (h) DDQ, 2,6-Cl₂py, LiClO₄; (i) H_2 , Pd/C; (j) NaBH₄; (k) **2**, PPh₃, DIAD.

L. Fuwa & Sasaki et al. Angew. Chem. Int. Ed. 2010, 49, 3041.

Fragment 1

Key: (a) TBSCI, imidazole; (b) OsO₄, NaIO₄, 2,6-lutidine; (c) (+)-lpc₂B(OMe), allyIMgBr; (d) Methyl acrylate, Grubbs' II; (e) BOMCI, DIPEA, TBAI; (f) TBAF, AcOH; (g) DBU; (h) TMSOK.

Fragment Union and End Game

* The Yamaguchi lactonization is considered as a two-step sequence because experimental protocol involves evaporation/exchage of solvent and more than one functional group transformation. See "Rules for Calculating Step Counts" section for more details.

M. Yadav et al. Tetrahedron 2010, 66, 480.

Key: (a) BnBr, NaH, TBAI; (b) H₂O₂, (PhSe)₂, *t*BuOOH, MgSO₄; (c) O₃, then DMS; (d) **S1**, TFA, then K₂CO₃; (e) TsCl, Et₃N; (f) TBDPSCl, DMAP, imidazole; (g) NaI; (h) Zn; (i) Me₃OBF₄, proton sponge; (j) H₂, Raney Ni; (k) DMP, NaHCO₃; (l) PTSA, CH(OMe)₃.

Fragment Union and End Game

N. Jennings et al. J. Org. Chem. 2010, 75, 4095.

Key: (a) (-)-lpc₂Ballyl; (b) BnBr, NaH, TBAI; (c) O₃; (d) TiCl₄, CH₂=C(Me)CH₂TMS; (e) Acryloyl chloride, DIPEA; (f) Grubbs' II; (g) H₂, Pd/C; (h) TBDPSCI, imidazole; (i) MeNH(OMe)•HCI, Me₃AI; (j) Me₃OBF₄, proton sponge; (k) DIBAL-H; (l) (+)-lpc₂Ballyl; (m) Grubbs' II, methyl acrylate; (n) PhCHO, KOtBu; (o) H₂, Pd(OH)₂; (p) MOMCI, DIPEA; (q) AllylMgBr; (r) TFA, Et₃SiH; (s) O₃; (t) NaClO₂, NaH₂PO₄, 2-methyl-2-butene; (u) TBAF; (v) TCBC, DMAP; (w) HCI; (x) (CF₃CH₂O)₂P(O)CH₂CO₂H, EDCI•HCI, HOBT•H₂O; (y) 18-Crown-6, KHMDS, then **1**.

O. Sharma et al. Org. Biomol. Chem. **2012**, 10, 3689.

Key: (a) (-)-DIPT, Ti(OiPr)₄, cumene hydroperoxide, 4A MS; (b) Red-Al; (c) NaIO₄, NaHCO₃; (d) PMPCH(OMe)₂, PPTS; (e) DIBAL-H; (f) TBDPSCI, imidazole; (g) CuCl₂•2H₂O; (h) TsCl, Bu₂SnO, Et₃N; (i) K₂CO₃, MeOH; (j) VinylMgBr, Cul; (k) MOMCl, DIPEA, DMAP; (l) TBAF; (m) TEMPO, BAIB.

Fragment 2

Key: (a) n-PrBr, Mg; (b) (COCI)₂, DMSO, Et₃N; (c) LAH, Lil; (d) TBDPSCI, imidazole; (e) CuCl₂•2H₂O; (f) BzCI, Bu₂SnO, Et₃N; (g) TsCI, DMAP, Et₃N; (h) K₂CO₃, MeOH; (i) *n*BuLi, BF₃•OEt₂; (j) MeI, NaH; (k) PPTS; (l) Red-Al; (m) (-)-DIPT, Ti(O/Pr)₄, cumene hydroperoxide, 4A MS; (n) Me₃Al; (o) PPh₃, I_2 , imidazole; (p) TBAF.

Fragment Union and End Game

Key: (a) DCC, DMAP; (b) Grubbs' II; (c) DDQ; (d) Bu₃SnH, AIBN; (e) HCl(conc.); (f) (CF₃CH₂O)₂P(O)CH₂CO₂H, EDCI•HCI, HOBT•H₂O; (g) 18-Crown-6, KHMDS, then 3.

Fragment 2

Key: (a) Hantzch ester, **C1**•CCl₃CO₂H; (b) Danishefsky's diene, Jacobsen's Cr(III) cat., then TFA; (c) NaBH₄, CeCl₃•7H₂O; (d) Ac₂O, Et₃N, DMAP; (e) LDA, TMSCI, then HCI; (f) CH₂N₂; (g) LAH; (h) TBSCI, imidazole.

Fragment Union and End Game

Key: (a) LDBB; (b) IBX; (c) TBAF, AcOH; (d) Isobutanal, $Zr(OtBu)_4$; (e) NaH, MeI; (f) K₂CO₃, MeOH; (g) PhI(OAc)₂, TEMPO; (h) NaClO₂, cyclohexene; (i) TCBC, DMAP; (j) Hg(OTFA)₂, then NaOH(aq.), NaBH₄; (k) (CF₃CH₂O)₂P(O)CH₂CO₂H, EDCI•HCI, HOBT•H₂O; (l) 18-Crown-6, KHMDS, then **3**.

Neopeltolide 23 LLS 38 TS

Q. Ghosh et al. J. Org. Chem. 2012, 77, 9840.

Key: (a) TBDPSCI, Et₃N, DMAP; (b) *m*CPBA; (c) Jacobsen's (*S*,*S*)-Co(III) cat., H₂O; (d) VinylMgBr, Cul; (e) KH, Mel; (f) *m*CPBA; (g) Jacobsen's (*R*,*R*)-Co(III) cat., H₂O; (h) EtMgBr, Cul; (i) BnO(C=NH)CCl₃, TfOH; (j) TBAF; (k) TsCI, Et₃N, DMAP; (l) NaCN, Nal; (m) DIBAL-H, then NaOH(aq.).

Fragment Union and End Game

butene; (g) TCBC, Et₃N, DMAP; (h) NaBH₄; (i) **3**, PPh₃, DIAD.

Neopeltolide 24 LLS 46 TS R. Hoveyda et al. Angew. Chem. Int. Ed. 2015, 54, 215.

Fragment 1

Key: (a) **C1**, B₂(pin)₂, DBU; (b) NaBO₃; (c) methallyMgCl; (d) SmI₂, PhCHO; (e) Me₃OBF₄, proton sponge; (f) KOH, MeOH.

Fragment 2

Key: (a) C2; (b) HCl (aq); (c) NaClO₂, NaH₂PO₄, 2-methyl-2-butene.

Fragment 3

Key: (a) **C3**; (b) **S1**, Pd(dppf)Cl₂, K₃PO₄; (c) PPh₃, CBr₄, 2,6-lutidine; (d) CuCN, allyIMgBr; (e) **C4**, 2-buten-1,4-diol; (f) DMP, NaHCO₃; (g) NaClO₂, NaH₂PO₄, 2-methyl-2-butene.
R. Hoveyda et al. Angew. Chem. Int. Ed. 2015, 54, 215. (Cont'd)

Fragment Union and End Game

Key: (a) EDC, DMAP, Et₃N; (b) **C5**, 7 torr; (c) 10% Pd/C, H₂; (d) **3**, PPh₃, DIAD.

Graphical Summary of Previous Syntheses of Mandelalide

A. Fürstner et al. Angew. Chem. Int. Ed. 2014, 53, 4217; Chem. Eur. J. 2015, 21, 10416.

Key: a) [Ir(cod)CI]₂, (S)-CI,MeO-BIPHEP, 3-NO₂-4-CI-PhCO₂H, allyl acetate, Cs₂CO₃; b) I₂, NaHCO₃; c) TBSOTf, 2,6-lutidine; d) LDA, LiCI, **A**; e) LDA, BH₃-NH₃; f) methyl acrylate, HG-II; g) DMP; h) LiHMDS, **B**; i) Me₃SiOK.

A. Fürstner et al. Angew. Chem. Int. Ed. 2014, 53, 4217; Chem. Eur. J. 2015, 21, 10416. (Cont'd)

Fragment 2

Key: a) TBDPSCI, imidazole; b) $Co_2(CO)_8$ (cat.), CO, *N*-(TMS)-morpholine; c) Me(H)C=CHMgBr; d) [Cu(MeCN)_4]BF_4 (cat.), bpy (cat.); TEMPO, *N*-Meimidazole, air; e) **C**, Sc(OTf)₃ (cat.); f) TESCI, NEt₃; DMAP; g) **D**; h) *i*-PrCHO, SmI₂; i) TBDPSCI, imidazole; j) CSA; k) *N*-(PhSe)-phthalimide, TFA, Ph₃P=S; I) Bu₃SnH, AlBN; m) Pd(OH)₂/C, H₂; n) DMP; o) **E**, NaOMe; p) DIBAL-H.

Key: a) Allyl alcohol, H₂SO₄; b) butane-2,3-dione, MeC(OMe)₃, TsOH-H₂O; c) NaH, Mel; d) TFA, then Ac₂O, DMAP, NEt₃; e) SeO₂, HOAc; f) Cl₃CCN, Cs₂CO₃.

A. Fürstner et al. Angew. Chem. Int. Ed. 2014, 53, 4217; Chem. Eur. J. 2015, 21, 10416. (Cont'd)

Key: a) DCC, DMAP; b) DBU; c) **F**, 4 and 5Å MS; d) Zn(Cu/Ag); e) TsOH-H₂O; f) **3**, TESOTf, 4Å MS; g) K₂CO₃; h) HF-pyridine.

B. Xu & Ye et al. Angew. Chem. Int. Ed. 2014, 53, 6533.

Key: a) (*Z*)-2-butene, *n*-BuLi, *t*-BuOK, (+)-(lpc)₂BOMe, BF₃-OEt₂, then H₂O₂, NaOH; b) NaH, 2,6-Cl₂BnBr, TBAI; c) 9-BBN, then H₂O₂, NaOH; d) DMP, NaHCO₃; e) LiCl, (MeO)₂P(O)CH₂CO₂Me, *i*-Pr₂NEt; f) DIBAL-H; g) I₂; h) K₂CO₃; i) Cul, vinylMgBr; j) TBSOTf, 2,6-lutidine; k) DDQ; l) DMP, NaHCO₃; m)(ICH₂PPh₃)I, NaHMDS; n) AD-MIX- β ; o) TBSCI, imidazole, DMAP; p) (MeO)₂P(O)CH₂CO₂H, 2,4,6-Cl₃BzCl, Et₃N, DMAP.

Key: a) TFAI; b) K₂CO₃; c)Pd/C, H₂; d) NaH, PMBBr, TBAI; e) TBAF; f) DMP, NaHCO₃; g) MeC(N₂)P(O)(OMe)₂, K₂CO₃; h) HB(pin), Cy₂BH; i) DDQ.

B. Xu & Ye et al. Angew. Chem. Int. Ed. 2014, 53, 6533. (Cont'd)

Fragment 3

Key: a) HC(OMe)₃, 2,2,3,3-(OMe)₄-butane, CSA; b) NaH, MeI; c) TFA; d) TBSOTf, 2,6-lutidine; e) *m*-CPBA.

Fragment Union and End Game

Key: a) Pd(PPh₃)₄, Ag₂O; b) TEMPO, PhI(OAc)₂; c) LiCl, *i*-Pr₂NEt; d) **3**, 4Å MS, 2,6-(*t*-Bu)₂-4-Me-pyridine Tf₂O; e) TASF.

C. Altmann et al. Chem. Eur. J. 2016, 22, 1292.

Fragment 1

Key: a) DIBAL-H; b) (CF₃CH₂O)₂P(O)CH₂CO₂Me, KHMDS, 18-crown-6; c) DIBAL-H; d) D-(-)-diethyl tartrate, Ti(O*i*-Pr)₄, *t*-BuOOH then imidazole, DMAP, TBSCI; e) FeCl₃•6H₂O; (f) PPh₃, I₂, imidazole; g) (Bu₃Sn)₂, UV, **A**; h) AcOH; i) PPh₃, I₂, imidazole; j) NaH; k) vinylMgBr, CuI; (I) TBAF, then TBSOTf, 2,6-lutidine; m) AD-mix- α ; n) TBSCI, imidazole.

Key: a) TIPS-acetylene, [Rh(C₂H₄)₂OAc]₂, (*S*)-DTBM-Segphos; b) (*S*)-BINOL, Ti(O*i*-Pr)₄, AllylSnBu₃; c) **3**, TFA; d) TBAF; e) Bn₃SnH, Pd(dppf)Cl₂, **I**₂; f) TMSOK, then Ac₂O, DMAP, Et₃N.

ÇO₂Me

Fragment Union and End Game

23 LLS 39 TS

D. Carter et al. J. Am. Chem. Soc. 2016, 138, 770.

Reagents

Fragment 1

Key: a) p-TsOH, PhCH(OMe)₂; b) (COCl)₂, DMSO, Et₃N; c)PPh₃, CBr₄; d) n-BuLi; e) p-TsOH; f) pyridine, PivCl, then DMAP, TESCl; g) p-TsOH, acetone; h) PCC, 3 Å MS; i) CH₂I-PPh₃I, NaHMDS, DMPU; j) Pd(PPh₃)₄, Cul, *i*-Pr₂NH; k) (DHQD)₂PHAL, K₂OsO₄, *t*-BuOH, H₂O; I) BzCl, Et₃N, m) HF-pyridine; n) AgBF₄ (cat.), then MeLi-LiBr; o) TBSOTf, 2,6-lutidine; p) Cp₂TiMe₂; q) Rh/Al₂O₃, H₂; r) DIBAL-HI s) Ms₂O, Et₃N; t) Nal; u) PPh₃.

D. Carter et al. J. Am. Chem. Soc. 2016, 138, 770. (Cont'd)

Key: a) Allyl alcohol, H₂SO₄; b) butane-2,3-dione, MeC(OMe)₃, TsOH-H₂O; c) NaH, MeI; d) TFA; e) TBSOTf, 2,6-lutidine; f) SeO₂, HOAc; g) Cl₃CCN, Cs₂CO₃.

Fragment 3

Key: a) NaHMDS, allyl iodide; b) LiBH₄; c) TIPSOTf, Et₃N, DMAP; d) *m*-CPBA; e) **A** (cat.), HOAc, H₂O; f) *n*-BuLi, TMSCI, then HCl; g) PCC; h) Bu₃Sn-allyl, (*R*)-BINOL, Ti(O*i*-Pr)₄, 4 Å MS; i) BzCI, Et₃N, DMAP; j) TBAF; k) *n*-BuLi, BF₃-OEt₂; l) AgBF₄ (cat.); m) NaOMe; n) TBAF, o) DMP, NaHCO₃; p) Ph₃P=CHCO₂Et; q) NaBH₄; r) **2**, TIPSOTf, 4Å MS; s) DIBAL-H; t) DMP, NaHCO₃, u) Grubbs II, H₂C=CHCO₂Me.

D. Carter et al. J. Am. Chem. Soc. 2016, 138, 770. (Cont'd)

Fragment Union and End Game

Key: a) NaHMDS; b) TFA; c) TBSOTf, 2,6-lutidine; d) DIBAL-H; e) MnO₂; f) NaClO₂; g) **B**, Et₃N, DMAP; h) TASF.

E. Smith et al. J. Am. Chem. Soc. 2016, 138, 3675.

Fragment 1

Key: a) *n*-BuLi, TMEDA, then TMSCI; b) H_2SO_4 ; c) MnO_2 ; d) ICH_2CI , *n*-BuLi, TBAI; e) (*R*,*R*)-Jacobsen Catalyst, H_2O (HKR); f) PCC, 4Å MS; g) CHI₃, CrCI₂; h) 1,3-dithiane, *n*-BuLi, then epoxide, HMPA then CuCN, vinyl iodide, then TBAF; i) MeI, CaCO₃; j) NaBH₄; k) K_2OSO_4 , PNO, Cu(OTf)₂, citric acid; I) TBSOTf, 2,6-lutidine; m) (Ph₃P)₃RhCl, H_2 ; n) HF, pyridine; o) DMP; p) Ph₃PCH₂I₂, NaHMDS; q) CeCI₃-7H₂O, (CO₂H)₂; r) TBSCI, imidazole.

E. Smith et al. J. Am. Chem. Soc. 2016, 138, 3675. (Cont'd)

Key: a) NaHMDS, then allyl iodide; b) LiBH₄; c) TrtCl, pyridine, DMAP; d) *m*-CPBA, Na₂HPO₄; e) (*R*,*R*)-Jacobsen Catalyst, H₂O (HKR); f) *n*-BuLi, TBSCl; g) *n*-BuLi, then epoxide, then HMPA, then (*S*)-epichlorohydrin, then vinyl-MgBr, Cul; h) MsCl, Et₃N, then TBAF; i) Mel, CaCO₃; j) NaBH₄; k) PMPBr; l) PPTS; m) methyl acrylate, Grubbs II; n) DMP, o) sulfone **A**; p) LiOH.

Fragment 3

Key: a) HC(OMe)₃, 2,2,3,3-(OMe)₄-butane, CSA; b) NaH, Mel; c) TFA; d) TBSOTf, 2,6-lutidine; e) *m*-CPBA.

E. Smith *et al. J. Am. Chem. Soc.* **2016**, *138*, 3675. (Cont'd) Fragment Union and End Game

Key: a) 2,4,6-(Cl)₃BzCl, Et₃N, DMAP; b) DDQ; c) **3**, Tf₂O, 4Å MS, 2,6-(*t*-Bu)₂-pyridine; d) Pd(OAc)₂, Cs₂CO₃, Et₃N; e) HF-pyr.

Graphical Summary of Previous Syntheses of Oridamycins

A. Li et al. Nat. Commun. 2015, 6, 6096. (racemic)

Key: (a) TMSEOH; (b) MeI, K₂CO₃; (c) Indole, NH₄HCO₃; (d) PhSO₂CI, TBAB, NaOH; (e) SeO₂, TBHP; (f) MsCI, Et₃N, LiBr.

Fragment Union and End Game

Key: (a) KH, then *n*BuLi, HMPA; (b) $Mn(OAc)_3 \cdot 3H_2O$, $Cu(OAc)_2 \cdot 2H_2O$; (c) Mg, NH_4CI ; (d) $Pd(OAc)_2$, 1,4-benzoquinone; (e) $NaBH_4$, $CeCl_3 \cdot 7H_2O$; (f) TASF.

B. Trotta Org. Lett. 2015, 17, 3358. (racemic)

Key: (a) MeI, K₂CO₃; (b) KOH, I₂; (c) Boc₂O, Et₃N, DMAP.

Fragment Union and End Game

Fragment 1

Key: (a) SeO₂; (b) NaBH₄; (c) MsCl, Et₃N, LiBr; (d) **1**, NaH, then *n*BuLi, HMPA; (e) Mn(OAc)₃•3H₂O, Cu(OAc)₂•2H₂O; (f) DMP; (g) **2**, EtMgBr; (h) TFA; (i) Air, then TFA; (j) NaBH₄; (k) NaCN.

C. Li *et al. Nat. Commun.* **2015**, *6*, 6096. (racemic) Fragment 1

Key: a) TMSEOH; b) Mel, K₂CO₃.

Completion of Synthesis

Key: a) NH₄HCO₃; b) PhSO₂Cl, TBAB, NaOH; c) SeO₂, TBHP; d) MsCl, NEt₃, LiBr; e) **1**, KH, then *n*-BuLi; f) Mn(OAc)₃-2H₂O, Cu(OAc)₂-H₂O; g) Mg, NH₄Cl; h) Pd(OAc)₂, benzoquinone; i) NH₂OMe; j) Boc₂O, DMAP; k) Pd(OAc)₂, PhI(OAc)₂; l) HClO₄; m) NaBH₄; n) TASF.

D. Trotta *Org. Lett.* **2015**, *17*, 3358. (racemic) **Fragments 1**

Fragments 2

Completion of Synthesis

Key: a) SeO₂; b) NaBH₄; c) MsCl, NEt₃, then LiBr; d) **1**, NaH, then *n*-BuLi; e) Mn(OAc)₂, Cu(OAc)₂; f) DMP; g) **2**, EtMgBr; h) TFA; i) MeONH₂-HCl, pyridine; j) Pd(OAc)₂, PhI(OAc)₂; k) HCl; l) NaBH₄; m) NaCN.

Graphical Summary of Previous Syntheses of Xiamycin A

A. Baran et al. J. Am. Chem. Soc. 2014, 136, 5571.

Fragment 1

Key: (a) BzCl, py, DMAP; (b) SeO₂, TBHP; (c) (+)-DIPT, Ti(O*i*Pr)₄, TBHP, 3A MS; (d) BnBr, NaH, TBAI; (e) NaOMe, TBAI; (f) SO₃•py, Et₃N; (g) Ph₃PMel, *n*BuLi.

Fragment Union and End Game

Key: (a) **1**, 9-BBN, then 2-bromo-9H-carbazole, Pd(dppf)Cl₂, NaOH; (b) Boc₂O, Et₃N, DMAP; (c) BF₃•OEt₂; (d) H₂, Pd(OH)₂/C; (e) TEMPO, NCS, TBAI, NaHCO₃/KHCO₃; (f) NaClO₂, NaH₂PO₄•H₂O, 2-methyl-2-butene; (g) EtOH, H₂O.

B. Li et al. Nat. Commun. 2015, 6, 6096.

Fragment 1

Key: (a) ICI, py; (b) Boc₂O, DMAP; (c) *n*BuLi, TMEDA, then Bu₃SnCl.

Key: (a) SeO₂, TBHP; (b) (+)-DET, Ti(O*i*Pr)₄, TBHP; (c) AZADO, PhI(OAc)₂; (d) TMSEOH, EDC•HCl; (e) **1**, Pd₂(dba)₃, LiCl; (f) DMSO, 150 °C; (g) Cp₂TiCl₂, Mn, DIPEA, TMSCl; (h) Pd(OAc)₂, 1,4-benzoquinone, AcOH; (i) TASF.

Graphical Summary of Previous Syntheses of Triene-Containing C17-Benzene Ansamycins

A. Smith et al. J. Am. Chem. Soc. 1995, 117, 10777; J. Am. Chem. Soc. 1996, 118, 8308; Tetrahedron Lett. 1991, 32, 1627.

Fragment 1

Key: (a) $BH_3 \cdot Me_2S$, $NaBH_4$; (b) CF_3CO_2H ; (c) Ag_2O , Mel.

Key: (a) BH₃; (b) CBr₄, PPh₃; (c) PhSO₂Na; (d) BPSCI; (e) H₂, Pd/C; (f) AlMe₃, **1**; (h) TBSCI.

Fragment 3

Key: (a) *n*-Bu₂BOTf, NEt₃; (b) TBSOTf; (c) LiOOH; (d) CDI, MeO(Me)NH•HCI; (e) DIBAL-H; (f) (-)-B-allyl(diisopinocampheyl)-borane; (g) TBAF; (h) Me₂C(OMe)₂, PTSA; (i) O₃, PPh₃; (j) LiAl[OC(Et₃)]₃H; (k)TBSCI; (l) NaHMDS, CIPO(Et)₂, *t*-BuLi; (m) *t*-BuLi, CICO₂Me; (n) Me₂CuLi; (o) DIBAL-H; (p) MsCI, LiCl; (q) Nal.

A. Smith et al. J. Am. Chem. Soc. 1995, 117, 10777; J. Am. Chem. Soc. 1996, 118, 8308; Tetrahedron Lett. 1991, 32, 1627. (Cont'd)

Key: (a) NaHMDS; (b) Na(Hg); (c) KH, CICH₂OCH₂CCI₃; (d) TBAF; (e) Pyr•SO₃; (f) NaHMDS; (g) TBSOTf; (h) Na(Hg); (i) CSA.

Me Λe HO Ó 'OMe +)-Trienomycin F 30 LLS 40 TS ö Мe

Key: (a) (FMOC-D-Ala)₂, DMAP; (b) Et₂NH; (c) BOP, NEt₃, tiglic acid; (d) TBAF. Trienomycin A End Game (Smith, J. Am. Chem. Soc. 1996, 118, 8308.)

Me Мe Ó. HC OMe (+)-Trienomycin A 30 LLS 40 TS ö Ňе

Key: (a) (FMOC-D-Ala)_2O, DMAP; (b) Et_2NH; (c) BOP, NEt_3, cyclohexanecarboxylic acid; (d) TBAF. \$S57

B. Smith et al. Org. Lett. 1999, 1, 1491.

Key: (a) DIBAL-H; (b) KMnO₄; (c) CH₃OH; (d) NO₂BF₄; (e) LiSCH₂CO₂Me; (f) SnCl₂, 1N HCl; (g) CbzCl; (h) LiHBEt₃; (i) TsCl, DMAP; (j) PhSO₂Na, Nal; (k) BBr₃, (l) TBSOTf.

Key: (a) (-)-B-allyl(diisopinocampheyl)-borane (b) Mel, *n*-BuLi; (c) O₃, PPh₃; (d) Bu₃SnH, AlBN; (e) TBSOTf; (f) I₂; (g) Pd(CH₃CN)₂Cl₂; (h) COCl₂, DMSO, NEt₃.

OTBS

HO

JOH. Me. ,OTBS Me d, e, f Иe b, c Me g, h, i റ് C Me HO' **`**OTBS TMSO' **`**OTBS HO' OTBS OTBS Mé

Key: (a) Brown crotylation (b) TMSOTf; (b) O_3 , PPh₃; (d) *t*-BuLi, **2**; (e) K₂CO₃, MeOH; (f) MnO₄; (g) (CH₃)₄NBH(OAc)₃; (h) Me₂C(OMe)₂; (i) NaOH; (j) PivCl; (k) TBAF; (l) 5-Mercapto-1-phenyltetrazole, PPh₃, DEAD; (m) H₂O₂; (NH₄)₆Mo₇O₂₄•4H₂O; (n) KHMDS, **3**; (o) DIBAL-H; (p) MsCl, LiCl; (q) Nal.

B. Smith et al. Org. Lett. 1999, 1, 1491. (Cont'd)

Key: (a) NaHMDS; (b) Na(Hg); (c) SiO₂, CHCl₃; (d) AllocCl; (e) TBAF-HOAc; (f) MOMCl; (g) TBAF; (h) Py•SO₃; (i) NaClO₂; (j) Pd(PPh₃)₄, Dimedone; (k) Mukaiyama Salt, NEt₃; (l) CSA; (m) (FMOC-D-Ala)₂O, DMAP; (n) Et₂NH; (o) BOP, NEt₃, cyclohexanecarboxylic acid; (p) 3N HCl.

C. Panek et al. J. Am. Chem. Soc. 1998, 120, 4123.

Fragment 1

Key: (a) O₃, NaBH₄; (b) Hg(OAc)₂, CH₃CO₃H; (c) Ag₂O, Mel.

Fragment 2

Key: (a) BH₃•THF; (b) CBr₄, PPh₃; (c) PhSO₂Na; (d) H₂, Pd/C; (e) Me₃Al, **1**; (f) TBSCI.

Fragment 3

Key: (a) benzyl alcohol, PTSA; (b) cat. TMSOTf; (c) LiHMDS; (d) Ac₂O, NEt₃, DMAP; (e) O₃, Me₂S; (f) TiCl₄, allyltrimethylsilane; (g) TIPSOTf; (h) O₃, Me₂S; (i) MeOH; (j) H₂, Pd/C; (k) DBU; (l) LiAH, TMEDA; (m) TBSOTf; (n) HF•Pyr; (o) Me(PhO)₃PI.

C. Panek et al. J. Am. Chem. Soc. 1998, 120, 4123. (Cont'd)

Fragement 4

Key: (a) LiHMDS; (b) Na(Hg), Na₂HPO₄; (c) HF•Pyr; (d) Pyr•SO₃, DMSO; (e) PPTS, Acetone; (f) CrCl₂, CHI₃.

Mycotrienol End Game

Mycotrienin I End Game

Key: (a) Pd(MeCN)₂Cl₂; (b) MeOH, PTSA; (c) (FMOC-D-Ala)₂O; (d) Et₂NH; (e) BOP, NEt₃, cyclohexanecarboxylic acid; (f) CAN; (g) HF.

D. Hayashi et al. Angew. Chem. Int. Ed. 2008, 47, 6657.

Fragment 1

Key: (a) Red-Al, then I_2 ; (b) TIPSCI.

Fragment 3

Fragment 2

Key: (a) P, Br_2 ; (b) TMSCH₂CH₂OH; (c) NaN₃; (d) DBU; (e) TBAF.

Fragment 4

Key: (a) NaBH₄; (b) HBr, AcOH; (c) NaSO₂Ph.

S1 H

(3 steps)

PhO,

OMe

^{OH} 4

10

Key: (a) TBSCI; (b) COCI₂, DMSO, NEt₃; (c) nitrosobenzene, L-proline; d) triethyl phosphonoacetate, NaH; e) CuSO₄; (f) Mel, NaH; g) DIBAL-H; h) MnO₂; (i) [Ph₃PCH₃]I, tBuOK; (j) py(HF); (k) SO₃•pyr; (l) NaClO₂.

Fragment 5

Key: (a) neat **S1**, then NaBH₄; (b) p-MeOPhCH(OMe)₂, PPTS; (c) DIBAL-H; (d) SO₃•pyr; (e) **1**, tBuLi, Me₂Zn; (f) TIPSOTf; (g) O₂, Rose Bengal, Me₂S, DABCO; (h) NaBH₄, CeCl₃•7H₂O; (i) TrCl, Et₃N; (j) 1H-benzotriazole-1-carbaldehyde; (k) [Pd₂(dba)₃]•CHCl₃, *n*Bu₃P, HCO₂NH₄; (l) DDQ; (m) **2**, COCl₂, DMAP, Et₃N; (n) HF•Pyr; (o) l₂, Ph₃P, imidazole.

D. Hayashi et al. Angew. Chem. Int. Ed. 2008, 47, 6657. (Cont'd)

Fragement Union

Key: (a) LiHMDS; (b) $(Boc)_2O$, DMAP; (c) 1,3-propanedithiol; (d) 1-cyclohexenecarboxylic acid, EDCI, DMAP; (e) pyrrolidine; (f) NaBH₄; (g) AllocCI, Et₃N; (h) TsOH•H₂O, MeOH; (i) MnO₂; (j) [Ph₃PCH₃]I, tBuOK; (k) HF; (I) TESOTf, iPr₂EtN; (m) NaBH₄, S₈; (n) **3**, BOP-CI, iPr₂EtN; (o) K₂CO₃, MeOH; (p) MnO₂; (q) NaBH₄; (r) 4-triethylsiloxy-3-penten-2-one; (s) Grubbs I catalyst; (t) Amberlyst 15

Graphical Summary of Previous Syntheses of Roxaticin

A. Rychnovsky et al. J. Am. Chem. Soc. 1994, 116, 1753.

Fragment 1

Key: (a) AICI₃, CICH₂C(O)CI, 60 °C, Cu(OAc)₂; (b) H₃O⁺, [((S)-BINAP)RuCl₂]₂Et₃N, H₂ 1200 psi, 120 °C, MeOH, recrystallize; (c) KOH, Et₂O; (d) Li₂NiBr₄, 25 °C, THF; (e) 2,2-DMP, CSA, Acetone.

Fragment 2

Key: (a) NaH, *n*-BuLi, chloromethyl benzyl ether; (b) H_3O^+ , [((S)-BINAP)RuCl₂]₂Et₃N, H_2 1620 psi, 45 °C, MeOH; (c) LHMDS, MeI; (d) LiAlH₄; (e) CSA, 2,2-DMP; (f) H_2 , Pd(OH)₂/C; (g) Swern; (h) Ipc₂BCH₂CH=CH₂, NaOH, H_2O_2 ; (i) BSA, CH₃CN; (j) OsO₄, NMO, NaIO₄; (k) TMSCN; (l) 2,2-DMP, CSA; (m) **1**, LiNEt₂, THF.

Fragment 3

Key: (a) KOH, EtOH. (b) Bu₃SnH, AIBN.

A. Rychnovsky et al. J. Am. Chem. Soc. 1994, 116, 1753. (Cont'd)

Longest Linear Sequence

Key: (a) Zn, methyl 2-bromopropionate, THF; (b) H_3O^+ ; (c) (R-BINAP)RuCl₂, H_2 , MeOH; (d) LAH,(80%), recrystallization (35%); (e) TBSOTf; (f) Dowex H⁺, MeOH; (g) Swern; (h) $Ph_3P=CHCO_2CH_3$, CH_3CN , reflux; (i) DIBAL-H; (j) TPAP, NMO; (k) $Ipc_2BCH_2CH=CH_2$, NaOH, H_2O_2 ; (l) TESOTf, 2,6-lutidine; (m) OSO₄, NMO, HOAc, THF, H_2O ; (n) NaIO₄; (o) K_2CO_3 , (CH₃)₂C(OH)CN; (p) 2,2-DMP, CSA; (q) **2**, LiNEt₂; (r) LiDBB, THF, MeOH; (s) TESOTf, *I*-Pr₂NEt; (t) OSO₄, *t*-BuOH, CDCl₃, pyridine; (u) 1,3-benzodithiolyl tetrafluoroborate, pyridine; (v) TBAF, THF; (w) (EtO)₂P(O)CH₂CO₂H, BOP, DMAP; (x) MeOH, NH₃; (y) Dess-Martin; (z) **3**, *n*-BuLi, MgBr₂, THF, -78 °C; (a') MsCl, Et₃N; (b') **3**, *n*-BuLi, MgBr₂, THF, -78 °C; (c') MsCl, Et₃N; (d') LiCl, DBU; (e') Dowex H⁺, MeOH.

B. Mori et al. Tetrahedron 1995, 51, 5299; Tetrahedron 1995, 51, 5315.

Fragment 2

HO.

Key: (a) TESCI, Et₃N; (b) *n*-BuLi, 1,3-dithiane; (c) TBAF; (d) Ph₂C(OMe)₂

c, d

Key: (a) TESCI, Et₃N; (b) *n*-BuLi, 1,3-dithiane; (c) TBAF; (d) Ph₂C(OMe)₂.

Fragment 3

Key: (a) diphenyl carbonate, K₂CO₃; (b) *n*-BuLi, CH₃CH₂C(O)Cl; (c) Bu₂BOTf, Et₃N, Me₂CHCHO; (d) DHP, PPTS; (e) LiAlH₄; (f) MeOH, H⁺; (g) TsCl, pyridine; (h) PhSNa; (i) PMBCl, KH; (j) *m*-CPBA.

Fragment 4

Key: (a) LiCl, HOAc, MeCN.

Fragment 5

Key: (a) TBDMPSCI, imidazole; (b) MnO₂; (c) allyl triphenylphosphonium bromide, *n*-BuLi, **4**, *t*-BuOK; (d) TBAF; (e) hv, **I**₂; (f) PBr₃; (g) (OEt)₃P.

B. Mori et al. Tetrahedron 1995, 51, 5299; Tetrahedron 1995, 51, 5315. (Cont'd)

Longest Linear Sequence

Key: (a) LDA, Mel; (b) DHP, PPTS; (c) LiAlH₄; (d) MeOH, H⁺; (e) PhCH(OMe)₂, TsOH; (f) DIBAL; (g) TsCl, pyridin; (h) *t*-BuOK, Et₂O-MeOH; (i) **1**, *n*-BuLi, THF; (j) Hg(ClO₄)₂; (k) NaBH₄, Et₂BOMe; (l) Me₂C(OMe)₂; (m) H₂, Pd(OH)₂; (n) TBSCl, imidazole; (o) Li, NH₃; (p) TsCl; (q) *t*-BuOK, Et₂O-MeOH; (r) **2**, *n*-BuLi, THF; (s) Mel, CaCO₃; (t) Me₄NBH(OAc)₃; (u) Me₂C(OMe)₂, PPTS; (v) Li, NH₃; (w) PivCl; (x) MsCl; (y) *t*-BuOK, Et₂O-MeOH; (z) **2**, *n*-BuLi; (a') Mel, CaCO₃; (b') Me₄NBH(OAc)₃; (c') Me₂C(OMe)₂, PPTS; (d') Li, NH₃; (e') PivCl, pyridine; (f') DHP, PPTS; (g') LiAlH₄; (h') SO₃pyr; (i') **3**, n-BuLi; (j') Ac₂O, pyridine; (k') Na-Hg; (l') TBAF; (m') Dess-Martin; (n') DDQ; (o') **5**, LiN(TMS)₂; (p') LiOH, THF, H₂O; (q') 2,4,6-trichlorobenzoyl chloride, Et₃N; (r') DMAP, toluene; (s') Dowex 50Wx8, MeOH.

C. Evans et al. J. Am. Chem. Soc. 2003, 125, 10899.

Fragment 1

Key: (a) Et₃N, TMSCI, hexanes; (b) LDA, TMSCI, THF; (c) [Cu((S,S)-Ph-pybox)](SbF₆)₂ (2 mol%), benzyloxyacetaldehyde, 99%ee; (d) Et₂BOMe, NaBH₄, MeOH, THF, -78 °C; (e) TBSCI, imidazole, CH₂Cl₂; (f) 2000 psi H₂, 10% Pd/C, EtOAc; (g) Dess-Martin, CH₂Cl₂.

Fragment 2

Key: (a) TiCl₄, NEt₃, BnOCH₂Cl, 0 °C, CH₂Cl₂; (b) LiBH₄, 0 °C, THF; (c) SO₃ pyr, DMSO, -10 °C, CH₂Cl₂; (d) allyltributyltin, SnCl₄, -78 °C, CH₂Cl₂; (e) TESCl, imidazole, CH₂Cl₂; (f) O₃, Ph₃P, N-MeO-N-Me(triphenylphosphoranylidene)-acetamide, TsOH, CH₂Cl₂; (g) cat. KHMDS, PhCHO, 0 °C, THF; (h) Zn(OTf)₂, EtSH, NaHCO₃, CH₂Cl₂; (i) cyclopentylidene dimethyl ketal, PPTS, CH₂Cl₂; (j) MeLi, -78 °C, THF.

Fragment 3

Key: (a) Hg(OAc)₂, AcOH; (b) LiAlH₄, THF, 0 °C to rt, then O₂; (c) triethylphosphonoacetate, NaH, -78 °C to rt, THF; (d) NaBH₄, EtOH; (e) SOBr₂, 2,6-di*tert*-butylpyridine, -20 °C, THF; (f) (EtO)₃P, toluene, 110 °C.

C. Evans et al. J. Am. Chem. Soc. 2003, 125, 10899. (Cont'd)

Longest Linear Sequence

Key: (a) Bu_2BOTf , NEt_3 , *i*-PrCHO, CH_2Cl_2 , -78 °C, CH_2Cl_2 ; (b) $LiBH_4$, MeOH, THF, -78 °C; (c) cat. TsOH, *p*-MeOPhCH(OMe)_2, CH_2Cl_2 ; (d) DIBAI-H, CH_2Cl_2 , -78 °C; (e) MsCl, NEt_3 , CH_2Cl_2 ; (f) PhSLi, THF, -78 °C to 23 °C; (g) *m*-CPBA, CH_2Cl_2 Zn(OTf)_2; (h) *n*-BuLi, BF_3OEt_2 , **1**, -78 °C, THF; (i) Na/Hg, Na₂HPO₄, -40 °C to 23 °C, MeOH; (j) HFpyr, THF; (k) cyclopentylidene dimethyl ketal, PPTS, CH_2Cl_2 ; (l) $LiAIH_4$, THF; (m) Dess-Martin, CH_2Cl_2 ; (n) BF_3OEt_2 , -90 °C, toluene; (o) TBSOTf, 2,6-lutidine, -78 °C, CH_2Cl_2 ; (p) DIBAI-H, -78 °C, toluene; (q) BuBOTf, NEt_3 , -78 °C to 100 °C, **2**, Et_2O ; (r) $Me_4NBH(OAc)_3$, -25 °C, CH_3CN , AcOH; (s) cyclopentylidene dimethyl ketal, PPTS, CH_2Cl_2 ; (t) LiDBB, -78 °C, THF; (u) Dess-Martin, CH_2Cl_2 ; (v) DDQ, H_2O , CH_2Cl_2 ; (w) **3**, LiHMDS, -78 °C, THF; (x) LiOH, THF, H_2O , MeOH; (y) 2,4,6-trichlorobenzoyl chloride, NEt_3 , DMAP, 23 °C, toluene; (z) PPTS, MeOH.

Graphical Summary of Previous Syntheses of Bryostatins

A. Keck et al. J. Am. Chem. Soc. 2011, 133, 744.

Fragments 1,2

Key : (a) LDA, allylbromide; (b) NBS, benzoyl peroxide; (c) 2,6-di-¹Bu-4-Me-pyridine, AgOTf, TBSOH; (d) NaOH, EtOH, H₂O. (a') BOMCI; (b') DIBAL; (c') allyI-SnBu₃,MgBrOEt₂; (d') PMBBr, KH; (e') O₃, NaHCO₃;(f') allyI-SnBu₃,MgBr₂OEt₂

(5 steps)

Fragment 4

Key : (a) TBSCI, Imid. (b) ethyl 2,2-dimethylacrylate, LDA, -78 °C; (c) t-BuOK; (d) DIBAL; (e) n-BuLi, -78 °C; MsCl, -78 °C; Bu₃SnLi, -78 °C to rt.

Fragment 5

Key : (a) (5)-(-)-1,1-bi-2-napthol, Ti(Oi-Pr)₄, 4 A MS, -20 °C; (b) PMBOC(NH)CCl₃, CSA; (c) TBAF; (d) SO₃-py, DIPEA, DMSO, -5 °C; (e) TiCl₂(Oi-Pr)₂; (f) TBDPSCI, imid.; (g) OsO₄, NMO, t-BuOH/THF/H₂O; (h) Pb(OAc)₄

A. Keck et al. J. Am. Chem. Soc. 2011, 133, 744. (Cont'd)

Fragment 6

Key : (a) Me₂AICl, -78 °C; (b) Ac₂O, DMAP, Et₃N; (c) DDQ; (d) O₃, -78 °C; DMS; (e) CSA; (f) SO₃;py, DIPEA, DMSO, -5 °C; (g) trimethyl(2-tributylstannylmethyl)allylsilane, reflux; (h) SO₃,py, DIPEA, DMSO, -15 °C; (i) NaBH₄, CeCl₃:7H₂O, MeOH, -42 °C.

End Game

Key : (a) TMSOTf, Et₂O, -78 °C; (b) HF py; (c) LiOH, H₂O₂, THF/H₂O; (d) TESCI, DMAP; (e) DDQ; (f) 2,4,6,-Cl₃PhCOCI, TEA then DMAP; (g) AD mix-α; (h) NaIO₄; (i) [(*R*)-BINOL]P(O)CH₂CO₂Me, NaHMDS, -78 °C to 0 °C; (j) K₂CO₃.MeOH; (k) (C₈H₁₁O)₂O, py, DMAP; (l) LiBF₄.

B. Evans et al. Angew. Chem. Int. Ed. 1998, 37, 2354; J. Am. Chem. Soc. 1999, 121, 7540.

Fragments1,2

Key: (a) TSCI, py; (b) PhSH, NaH, 80 °C; (c) m-CPBA; (d) (COCI)₂, DMSO, TEA, -78 °C - 0 °C; (e) BrMg(CH₂)₃CHCH₂; (f) (COCI)₂, DMSO, TEA, -78 °C - 50 °C; (g) K₂OsO₄(OH₂)₂, quinuclidine, K₃Fe(CN)₆, K₂CO₃; (h) NaIO₄, NaHCO₃; (i) **2**, (-)-DIPCI, TEA, -78 °C - and additional tension of the standard st

Key : (a) I, II, 90 °C; (b) Me₄NHB(OAc)₃, AcOH/MeCN, -35 °C; (c) F₃CCO₂H; (d) TESCI, imid.; (e) PMBOCH₂Li, - 78 °C- -50 °C; (f) BF₃OEt₂, Et₃SiH, -20 °C; (g) TBSCI, imid., DMAP; (h) H₂, Pd/C, AcOH, EtOAc; (i) (COCI)₂, DMSO, TEA, -78 °C- -50 °C.

Fragment 4

Key: (a) I, Bu₂BOTf, i-Pr₂NEt, then aldehyde, -78 °C - 0 °C; (b) Zn, 2:1 THF/AcOH; (c) LiBH₄, MeOH, 0 °C; (d) PMPCH(OME)₂, PPTS, (e) DIBAI-H, 0 °C; (f) (COCI)₂, DMSO, NEt₃, -78 °C; (g) TiCl₂(Oi-Pr)₂, -78 °C, then II, 78 °C; (h) Me₄NHB(OAc)₃, AcOH/MeCN, -35 °C; (i) PPTS, PhH, 80 °C; (j) TBSOTf, 2,6-lutidine, -10 °C; (k) Me₃AI, HCI.H₂NPh; (I) O₃, -78 °C, then Me₂S; (m) Ac₂O, py; (n) PhSTMS, Znl₂, n-Bu₄NI; (o) m-CPBA, NaHCO₃, EtOAc..
B. Evans et al. Angew. Chem. Int. Ed. 1998, 37, 2354; J. Am. Chem. Soc. 1999, 121, 7540. (Cont'd)

End Game

Key : (a) n-BuLi, THF, -78 °C then **3**, -78 °C - -50 °C; (b) Mg, HgCl₂, EtOH; (c) TBAF, -15 °C; (d) Tf₂O, 2,6-lutidine, -10 °C; (e) **4**, n-BuLi, -78 °C, then HMPA, then **triflate**, -78 °C; (f) TESCI, imid.; (g) Boc₂O, DMAP; (h) BnOLi, -30 °C; (i) 0; (i) m-CPBA, MeOH, -20 °C, (ii) ClCH₂CO₂H, MeOH, 0 °C, (iii) Dess-Martin periodinane, py; (j) HF.pyr; (k) TESCI, DMAP, 10 °C; (l) 1,4-cyclohexadiene, 10% Pd/C, EtOAc; (m) 2,4,6 -trichlorobenzoyl chloride, DIPEA, then DMAP; (n) PPTS, 2:1 MeOH/(MeO)₃CH, -30 °C; (o) Dess-Martin periodinane, py; (p) [(R)-BINOL]POCH₂CO₂Me, NaHMDS, -78 °C, then ketone, -15 °C; (q) KHMDS, -78 °C, then OHCCO₂Me, -78 °C; (r) Et₃NSO₂NCO₂Me; (s) **I**, BH₃:SMe, then MeOH, then MAc₂O, py, DMAP; (t) (i)PPTS, 3:1 THF/H₂O, (ii) Na₂CO₃, MeOH, (iii) pTSOH; (u) (*E*,*E*)-2,4-octadienoic acid, DIC, DMAP; (v) DDQ.

C. Yamamura et al. Angew. Chem. Int. Ed. 2000, 39, 2290.

Fragments 1,2 i,j 88% [OTBS OTBS Key: (a) BnCl, NaH; (b) (COCl)₂, DMSO, Et₃N; (c) (EtO)₂P(O)CH₂CO₂Et, NaH; (d) LiAlH₄; ,OTBS (e) (-) DET, Ti(OiPr)₄, TBHP; (f) RedAI-H; (g) TBSCI, imidazole; (h) H₂, Pd-black, EtOH; (i) (COCI)₂, DMSO, Et₃N; (j) Propane-1,3-dithiol, MgBr₂ OEt₂ 1 (10 Steps) h,i,j,k,**l** 76% 0 HO MeO СНО 89% 61% 78% 84% 70-80% CHO 72% 92% ÓTBS MeO OMe MeO[®]OMe MeC OTBS OTBS MeO MeO OTBS ^{u,v,w} MeO MeC OTBS OTBS s MeO MeO MeO MeO 78% 78% "OH 86%, 4:1 dr 66% 91% сно OBn `OBn OBn OBn ő OTMSE ÖH ÖTMSE TBSŌ ÓTMSE TBSŌ ÓAII Me Me MoC OTBS Me a' MeC Key: (a) Me₂C(OMe)₂, SnCl₂; (b) NalO₄, aq. NaHCO₃; (c) I, ZnCl₂; (d) allyIMgBr, Cul, TMSCl, DMPU; (e) Me₂C(OMe)₂, PPTS; (f) O₃, OTMS 78% Me₂S; (g) K₂CO₃; (h) NaBH₄; (i) NaH, BnBr; (j) IR-120H⁺,MeOH; (k) NaIO₄, NaHCO₃; (l) NaBH₄; (m) TsCl, py; (n) NaI, Acetone; (o) 1, Ċно MeO_// tBuLi, HMPA, -78 °C; (p) PPTS, MeOH; (q) DMSO, SO₃'pyr; (r) LDA, III, Lil; (s) TMS(CH₂)₂OH; (t) Me₄NHB(OAc)₃, -20 °C; (u) HgCl₂, MeMe 2 HgO; (v) PPTS, MeOH; (w) TBSOTf, 2,6-lutidine; (x) H₂, Pd(OH)₂/C; (y) LiOH; (z) AllylBr, NaHCO₃; (a') TPAP, NMO. TBSŌ ÓAII 1 II Me (27 Steps)

Fragments 3,4

Key: (a) TSCI, py; (b) KOH, 60 °C; (c) H₂, 10% Pd/C; (d) HCI, MeOH/H₂O; (e) TSCI, Py; (f) LAH; (g) propane-1,3-dithiol, conc. HCI, CHCl₃; (h) Me₂C(OMe)₂, CSA; (i) DIPEA, then BOMCI; (j) 10% aq Acetone, NaHCO₃, MeL

Key: (a) MsCl, py; (b) DHP, p-TsOH; (c) PhSNa, 18-Cr-6, 90 °C; (d) AcOH, THF/H₂O; (e) SO₃,py, DMSO, Et₃N; (f) (EtO)₂P(O)CH₂CO₂Et, NaH; (g) DHQPHN, K₂OsO₂(OH)₄, K₃Fe(CN)₆, K₂C₃, Me₅SO₂NH₂, 0 °C; (h) Me₂C(OMe)₂, p-TsOH; (i) DIBAL-H, -78 °C; (j) Ph₃P, CBr₄, 0 °C; (k) n-BuLi, (CH₂O)₇; (l) Red-Al then 1₂; (m) F₃CCO₂H; (n) TBDPSCI, imid.; (o) PMPCH(OMe)₂, PPTS; (p) DIBAL-H, 0 °C; (q) MeLi, -30 °C, then t-BuLi, -90 °C, then **3**; (r) TBSOTf, 2,6-lutidine; (s) m-CPBA, Na₂HPO₄; (t) DDQ; (u) Dess-Martin periodiane; (v) H₂, Pd(OH)₂-C, EtOH, then Me₂C(OMe)₂, PPTS; (w) TBSOTf, TMSOMe, Me₂C(OMe)₂, 4A MS; (x) TBAF; (y) TESOTf, 2,6-lutidine.

C. Yamamura et al. Angew. Chem. Int. Ed. 2000, 39, 2290. (Cont'd)

End Game

Key: (a) **4**, PhLi, then **2**, then BzCI, DMAP, -78 to 0 °C; (b) 5% Na/Hg, -35 °C; (c) TBAF, AcOH, 0 °C; (d) TPAP, NMO; (e) TBAF, AcOH, 0 °C; (f) (E,E)-2,4-octadienoic acid, 2,4,6-trichlorobenzoyl chloride, Et₃N, DMAP; (g) CSA, MeOH; (h) TESCI, Et₃N, DMF, -30 °C; (i) [Ph(PPh₃)₄], morpholine; (j) 2,4,6-trichlorobenzoyl chloride, Et₃N, then DMAP; (k) 46% aq. HF, H₂O; (l) [(*R*)-BINOL]P(O)CH₂CO₂Me, NaH, 0 °C; (m) TFA, H₂O, CH₂Cl₂; (n) TESCI, DMAP, 0 °C; (o) Ac₂O, py; (p) 46% aq. HF, MeCN.

D. Masamure et al. J. Am. Chem. Soc. 1990, 112, 7407.

Fragments 1, 2

Key : (a) NaNO₂, H₂SO₄, H₂O; (b) MeOH, AcCl; (c) (MeO)₂CMe₂, p-TsOH; (d) DIBAL-H; (e) Ph₃P=CH₂; (f) Sia₂BH, H₂O₂; (g) PCC; (h) Allenyl-ZnBr; (i) NaH, PMBCl; (j) t-BuLi, CICO₂Me; (k) n-Bu₃SnCu.LiBr.Me₂S; (l) DIBAL-H; (m) TBDPSCl, imid.; (n) I₂; (o) n-BuLi, then **2**; (p) TEOTf, 2,6-Lutidine; (q) DDQ; (r) DMSO, Ac₂O, TEA; (s) MoO₅,HMPA. H₂O₂; (t) DDQ, SiO₂; (u) TMSOTf, TMSOMe. (a') PhNCO, TEA; (b') BF₃,OEt₂, 10 aq, H₂SO₄; (c') K₂CO₃, MeOH; (d') (MeO)₂CMe₂, PPTS; (e') NaH, m,p-dimethoxylbenzyl chloride; (f) Raney Ni, H₂; (g') MsCl, TEA, PhSNa; (h') HCl, MeOH; (l') NaIO₄, pH7.

Fragments 3, 4

Key : (a) NaH, DMF, BnCl; (b) CrO₃, Py; (c) (EtO)₂(P=O)CH₂CO₂Et, NaH; (d) DIBAL-H; (e) (-)-DET, Ti(OⁱPr)₄, ¹BOOH; (f) Swern oxid.; (g) Ph₃P=CHCHO; (h) NaBH₄, MeOH ; (i) (+)-DET, Ti(OⁱPr)₄, ¹BOOH; (j) RedAl-H; (e) (-)-DET, Ti(OⁱPr)₄, ¹BOOH; (f) Swern oxid.; (g) Ph₃P=CHCHO; (h) NaBH₄, MeOH ; (i) (+)-DET, Ti(OⁱPr)₄, ¹BOOH; (j) RedAl-H; (e) (-)-DET, Ti(OⁱPr)₄, ¹BOOH; (j) RedAl-H; (e) (-)-DET, Ti(OⁱPr)₄, ¹BOOH; (f) Swern oxid.; (g) Ph₃P=CHCHO; (h) NaBH₄, MeOH ; (i) (+)-DET, Ti(OⁱPr)₄, ¹BOOH; (j) RedAl-H; (e) (-)-DET, Ti(OⁱPr)₄, ¹BOOH; (f) DIPEA, then **4**; (r) (MeO)₃CH, MeOH, PPTS; (s) Hg(OAc)₂, MeOH, then KCI; (t) Ac₂O, Py, DMAP; (u) NaBH₄, O₂; (v) Swern oxid.; (w) Al₂O₃ (a') DHP, PPTS; (b') nBuLi; HCHO; (c') RedAl-H, then l₂; (d') TBDPSCI, imid.; (e') Ally-MgBr, CuI; (f) PPTS, EtOH; (g') (py)₂CrO₃.

D. Masamure et al. J. Am. Chem. Soc. 1990, 112, 7407. (Cont'd)

End Game (Bryostatin 7, Masamune)

Key : (a) PhLi, -78°C; 3; BzCl, DMAP, -78°C to 25°C; (b) Na-Hg, NaHPO₄, -20°C; (c) TBAF; (d) TBSCl, imid.; (e) Ac₂O, Py, DMAP; (f) TBAF; (g) MnO₂, NaCN, AcOH; (h) Swern oxid.; (i) boron enolate(I), DIPEA; (j) CSA. MeOH; (k) TESOTf, 2,6-lutidine; (I) Hg(O₂CCF₃)₂, NaHPO₄; (m) HF·Py; (n) DCC, PPTS, Py; (o) K₂CO₃, MeOH; (p) TBSCl, TEA, DMAP; (q) Ac₂O, Py; (r) HF, MeCN.

E. Hale et al. Org. Lett. 2001, 3, 3791; Org. Lett. 2003, 5, 503; Org. Lett. 2006, 8, 4477.

Fragment 1

Key: (a) KH, then MeI; (b) H_2 , Pd(OH)₂/C; (c) TBDPSiCI, imidazole; (d) $Im_2C=S$; (e) Bu_3SnH , AIBN; (f) Me_3AI , IPA; (g) PMBOC(=NH)CCI₃, PPTS; (h) TBAF; (i) TPAP, NMO, 4A MS; (j) **A**, KHMDS. (k) Catecholborane, (PPh₃)₃RhCI, then NaOH (aq.), H_2O_2 ; (l) 1,3-Propanedithiol, BF_3 •OEt₂; (m) TBDPSiCI, imidazole; (n) $Me_2C(OMe)_2$, PPTS.

Key: (a) *t*BuLi, HMPA, then TBSCI; (b) Hg(ClO₄)₂•xH₂O, CaCO₃; (c) AllyIMgBr; (d) OsO₄, NalO₄; (e) (CF₃CO)₂O, Et₃N, DMAP; (f) *i*Bu₂AlH; (g) TBAF; (h) MnO₂; (i) TFA, anisole; (j) Cyclohexanone, pTsOH; (k) PMBOC(=NH)CCl₃, PPTS; (l) NaBH₄, CeCl₃•7H₂O; (m) TBDPSiCl, imidazole; (n) 1,3-Propanedithiol, BF₃•OEt₂; (o) MsCl, collidine; (p) NaH, imidazole; (q) CSA; (r) TsCl, Pyr; (s) Nal.

Fragment 3

Key: (a) PhSSPh, PBu₃; (b) Oxone; (c) RuCl₃•xH₂O, NalO₄; (d) K₂CO₃, Mel; (e) (MeO)₂P(O)Me, *n*BuLi.

E. Hale et al. Org. Lett. 2001, 3, 3791; Org. Lett. 2003, 5, 503; Org. Lett. 2006, 8, 4477. (Cont'd)

Fragment 4

Key: (a) AD-mix- β ; (b) TBSCI, imidazole; (c) OsO₄, NalO₄; (d) Ph₃P=CH₂CO₂Et; (e) DIBAL; (f) (-)-DET, Ti(O*i*Pr)₄, *t*BuO₂H, 4A MS; (g) Red-AI; (h) PMPCH(OMe)₂, PPTS; (i) DIBAL; (j) (COCI)₂, DMSO, Et₃N.

Fragment Union 1

Key: (a) *t*BuLi, HMPA, then **2**; (b) Hg(ClO₄)•xH₂O, CaCO₃; (c) PPTS, (MeO)₃CH, MeOH; (d) Ac₂O, Pyr, DMAP; (e) DDQ; (f) TPAP, NMO, 4A MS.

Fragment Union 2

Key: (a) LiCl, *i*Pr₂NEt; (b) Pd(OH)₂/C, H₂; (c) CSA; (d) TBAF; (e) Me₂C(OMe)₂, PPTS; (f) DMDO, Me₂C(OMe)₂, PPTS, 4A MS, MeOH; (g) PDC; (h) *n*BuLi, **B**; (i) NaBH₄, CeCl₃•7H₂O; (j) TESOTf, 2,6-lutidine.

End Game

F. Keck et al. ACS Chem. Biol. 2013, 8, 767.

G. Wender et al. J. Am. Chem. Soc. 2011, 133, 9228.

Fragments 1,2

Key : (a) chloroacetic acid, NaOH, benzylalcohol; (b) Ti(OiPr)₄, (*R*)-BINOL, allyttributyltin; (c) TBDPSCI, imid.; (d) O₃; PPh₃; (e) Ketone **2**, (+)-Ipc₂BCI, Et₃N, then **aldehye**; (f) Me₄NBH(OAc)₃,1:1 HOAc:MeCN,-15 °C; (g) CSA, PhH, reflux; (h) BnBr, NaHMDS; (i) Ethyl acetoacetate, LDA, -78 °C; (j) PPTS, MeOH, 40 °C; (k) NaBH₄, EtOH, -15 °C; (l) TESCI, imid.; (m) CeCl₃·2LiCI, TMSCH₂MgCI; (n) NaHMDS, THF, 0 °C; (o) Lithium naphthalenide, -30°C - -10 °C; (p) TEMPO, PhI(OAc)₂, 4:1 MeCN/H₂O; then NaH₂PO₄, NaClO₂, 2-methyl-2-butene, 0 °C; (q) Ac₂O, DMAP. (a') MeI, K₂CO₃.

Fragment 3

Key : (a) NaH, TBSCI; (b) SO₃pyr, NEt₃, DMSO; (c) (i) 4-chloro-1-butanol, MeMgCI, THF, -78 °C - rt; (ii) Mg, reflux; (iii) **aldehyde**, -78 °C; (d) (COCl)₂, DMSO, Et₃N, -78 °C; (e) (*R*)-BINOL, 4 A MS, Ti(OiPr)₄, B(OMe)₃, allyl-SnBu₃; (f) cat. pTsOHH₂O; (g) MMPP, NaHCO₃, 0 °C; (h) TPAP, NMO, 4 A MS; (i) O₃, -78 °C; PPh₃: (j) I₂CHCH₃, CrCl₂, 0 °C; (k) K₂CO₃, methyl glyoxylate; (l) NaBH₄, CeCl₃:7H₂O, MeOH, -49 °C; (m) Butyric anhydride, DMAP; (n) 3HF:Et₃N; (o) Dess-Martin periodinane; (p) (Z)-1-Bromo-2-ethoxyethylene, t-BuLi, Me₂Zn, -78 °C; (q) K₂OSO₄:2H₂O, DHQD₂PYR, K₂CO₃, K₃Fe(CN)₆, 4 °C; (r) p-TsOH; (s) TBSCI, imid.

0

End Game (Bryostatin 9, Wender)

Key : (a) 2,4,6-Trichlorobenzoyl chloride, Et₃N, PhCH₃; then alcohol 3, DMAP; (b) PPTS, MeOH; (c) O₃, -78 °C; then thioure; (d) [(R)-BINOL]-P(O)CH₂CO₂Me, NaHMDS, -78 °C to 4 °C (e) HF-py; (f) PPTS, 20% H₂O in THF.

H. Trost et al. Nature 2008, 456, 485.

Fragment 1

Fragment 2

Key : (a) (Z)-1-bromo-2-ethoxyethene, t-BuLi, (CH₃)₂Zn; **aldehyde**, -78 °C; NaHSO₄, rt; (b) (3-bromo-1-propynyl)-trimethylsilane, indium powder, InF₃, 65 °C; (c) Dess-Martin periodinane, NaHCO₃; (d) (S)-2-methyl-CBS-oxazaborolidine, catecholborane, -78 °C.

Fragment 3

Key : (a) n-BuLi, methyl propionate, BF₃·OEt₂, -78 °C; (b) Cu(OTf)₂, PMBOC(NH)CCl₃, -10 °C; (c) PPTS, MeOH; (d) TBSOTf, 2,6-lutidine.

H. Trost et al. Nature 2008, 456, 485. (Cont'd)

Fragment 4

Key : (a) CpRu(CH₃CN)₃PF₆; (b) NBS; (c) CSA, MeOH, 0 °C; (d) PdCl₂(CH₃CN)₂, dppf, CO (1 atm), MeOH, TEA, 80 °C; (e) Dess-Martin periodinane, NaHCO₃; (f) Ohira-Bestmann reagent, K₂CO₃, MeOH; (g) TBAF, AcOH; (h) (CH₃)₃SnOH, 80 °C; (i) TESOTf, 2,6-lutidine, -10 °C to 0 °C.

End Game (Bryostatin 16, Trost)

Key : (a) 4, 2,4,6-trichlorobenzoyl chloride, TEA, then 3, DMAP; (b) DDQ; (c) Pd(OAc)₂, TDMPP; (d) AuCl(PPh₃), AgSbF₆, NaHCO₃, 0 °C to rt; (e) Piv₂O, DMAP, DCM, 50 °C; (f) TBAF.

Graphical Summary of Previous Syntheses of Swinholide Fragments

A. Paterson et al. Tetrahedron 1995, 51, 9393.

Fragment 1

Key: (a) allyl bromide, Zn, DMF; (b) (+)-DIPT, Ti(O*i*Pr)₄, *t*BuOOH, 4Å MS, CH₂Cl₂, then DMS; (c) Red-Al, THF; (d) O₃, MeOH, then DMS, 1M HCl; (e) NaH, Mel, THF; (f) allyl-TMS, Me₃SiOTf, MeCN; (g) O₃, CH₂Cl₂, MeOH, NaHCO₃, then DMS; (h) Ph₃P=C(Me)CHO, toluene.

Fragment Union

Key: (a) $(c-C_6H_{11})_2$ BCI, Et₃N, Et₂O, then **1**, then H₂O₂, pH7 buffer, MeOH; (b) Me₄NBH(OAc)₃, AcOH, MeCN; (c) *t*Bu₂Si(OTf)₂, 2,6-lutidine, CH₂Cl₂; (d) Thexylborane, THF, then H₂O₂/NaOH; (e) (Imid)₂C=S, THF; (f) *n*Bu₃SnH, toluene; (g) H₂, Pd/C, EtOH; (h) (COCl)₂, DMSO, CH₂Cl₂, then Et₃N.

B. Keck et al. J. Org. Chem. 1999, 64, 4482.

Key: (a) RuBINAP, H₂; (b) CCl₃C(NH)OBn, H⁺; (c) DIBAL, CH₂Cl₂; (d) TiCl₄, then allyl-Sn(Ph)₃; (e) KH, MeI; (f) Li/NH₃; (g) O₃, MeOH, then DMS, 1M HCI; (h) allyl-TMS, TMSOTf; (i) O₃, CH₂Cl₂, then PPh₃.

Fragment Union

Key: (a) **1**, TiCl₄, *i*Pr₂NEt; (b) Me₄NBH(OAc)₃; (c) LiBH₄, Et₂O; (d) PMBOMe, DDQ; (e) TCDI, THF; (f) Bu₃SnH, toluene; (g) DIBAL, CH₂Cl₂; (h) Dess-Martin periodinane, CH₂Cl₂; (i) **A**, BF.OEt₂, CH₂Cl₂; (j) Cl₃CC(NH)OPMB, CSA; (k) DIBAL.

C. Miyashita et al. Org. Lett. 2003, 5, 3579; Org. Lett. 2005, 7, 2929.

Fragment 1

Key: (a) CH₃CO₂*t*Bu, LDA, THF; (b) Me₄NBH(OAc)₃, AcOH, CH₃CN; (c) PPTS, CICH₂CH₂Cl; (d) Mel, Ag₂O, 4A MS, Et₂O, CH₂Cl₂; (e) DIBAL, CH₂Cl₂, then pyridine, DMAP, (CH₃CO)₂O.

Fragment 2

Key: (a) BnOC(=NH)CCl₃, TfOH, CH₂Cl₂; (b) LiAlH₄, THF; (c) DMSO, (COCl)₂, CH₂Cl₂, then Et₃N; (d) di-*o*-tolyl ethoxycarbonyl-methyl phosphate, NaH, THF; (e) DIBAL, THF; (f) *m*-CPBA, CH₂Cl₂; (g) DMSO, (COCl)₂, CH₂Cl₂, then Et₃N; (h) triethyl phosphonoacetate, NaH, THF; (i) (CH₃)₃Al, CH₂Cl₂, then H₂O; (j) TESCl, DMAP, imidazole, CH₂Cl₂; (k) DIBAL, THF; (l) *m*-CPBA, CH₂Cl₂; (m) Me₃CuLi, Et₂O; (n) *t*-BuCOCl, pyridine, Ch₂Cl₂; (o) TBAF, THF; (p) *t*Bu₂Si(OTf)₂, 2,6-lutidine, CH₂Cl₂; (q) DIBAL, THF; (r) DMSO, (COCl)₂, CH₂Cl₂, then Et₃N; (s) Ph₃P, CBr₄, pyridine, CH₂Cl₂; (t) BuLi, THF.

Key: (a) BuLi, Me₂AlOTf, then **1**, CH₂Cl₂; (b) H₂, Pd(OH)₂/C, AcOEt; (c) HF-Py, THF; (d) 4-MeOC₆H₄CH(OMe)₂, CSA, DMF; (e) MOMCI, *i*Pr₂NEt, DCE; (f) DIBAL, CH₂Cl₂; (g) Dess-Martin periodinane, CH₂Cl₂.

Graphical Summary of Previous Syntheses of Erythromycins

A. Woodward et al. J. Am. Chem. Soc. 1981, 103, 3210.

Fragment 1 and 2

Key: (a) HOCH₂CH₂OH, TsOH; (b) NCS; (c) thiourea; (d) aq. NaOH; (e) aq. HCl; (f) HC(OMe)₃, TsOH (a') conc. H₂SO₄, MeOH; (b') HCOOH, LDA; (c') conc. H₂SO₄, MeOH; (d') LAH; (e') MsCl, Py

Fragment Union, Fragment 3 and 4

Key: (a) NaH, DMSO; (b) AcOH; (c) D-Proline; (d) MsCl, Py; (e) alumina, EtOH; (f) NaBH₄; (g) MOMI, KH; (h) OsO₄, NaHSO₄, Py; (i) Me₂C(OMe)₂, TsOH; (j) TFA; (k) TFAA, DMSO (j') Raney-Ni, H₂; (k') o-NO₂C₆H₄SeCN, PBu₃, then H₂O₂; (l') O₃, then Me₂S

Fragment Union

Key: (a) mesityl-Li; (b) TFAA, DMSO, *i*Pr₂NEt; (c) KH, AcCI; (d) NaBH₄; (e) MsCI, Py; (f) BnSH, BuLi; (g) LAH; (h) Raney-Ni, H₂; (i) o-NO₂C₆H₄SeCN, PBu₃, then H₂O₂; (j) O₃, then Me₂S; (k) LDA; (l) *t*BuLi, then AcOH; (m) Na₂CO₃; (n) Bz₂O, Py; (o) MsCI, Py; (p) LiOH, H₂O₂

A. Woodward et al. J. Am. Chem. Soc. 1981, 103, 3210. (Cont'd)

Key: (a) LiN₃, HMPA; (b) PtO₂, H₂; (c) Na₂CO₃; (d) NH₂OH-HCl, KH₂PO₄; (e) TEA; (f) meityl-CH(OMe)₂, CSA; (g) EtSH, BuLi, HMPA; (h) TEA; (i) PPh₃, heat

Glycosidation and End Game

Key: (a) BPCOCI, TEA, DMAP; (b) NaOH, H₂O; (c) SiO₂, aq. TFA; (d) NH₂OH-HCI, KH₂PO₄; (e) AgOTf; (f) MeOH; (g) CICO₂Me, NaHCO₃; (h) Pb(CIO₄)₂, MeCN; (i) MeOH; (j) Na-Hg/MeOH; (k) NCS, Py; (l) AgF, HMPA

B. Martin et al. J. Am. Chem. Soc. 1997, 119, 3193; Tetrahedron 2007, 63, 5709.

Chiral Auxiliary and Sugar

Functionalization of Furan

Key: (a) BuLi; (b) Bu₂BOTf; (c) LiBH₄; (d) Br₂; (e) LiCuMe₂; (f) MeLi-CeCl₃; (g) PPTS; (h) TBSCl; (i)CDl; (j) Hg(ClO₄)₂, CaCO₃; (k) LHMDS; (l) Me₄NBH(OAc)₃; (m) Me₃C₆H₂CH(OMe)₂, CSA; (n) LiBH₄

Glycosylation

Key: (a) AgOTf, 2,6-*t*Bu₂Py; (b) TBAF; (c) TESOTf, *i*Pr₂NEt; (d) (COCI)₂, DMSO, TEA; (e) BF₃-OEt₂; (f) OsO₄, Oxone, NaHCO₃; (g) Pd/C, HClO₄; (h) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (i) TBAF; (j) Cu(OTf)₂, CuO; (k) AcOH; (l) TBAF; (m) Dess-Martin Periodate; (n) MeOH, heating

C. Corey et al. J. Am. Chem. Soc. 1979, 101, 7131.

Key: (a) Allyl-Br, NaOMe; (b) BH₃+THF, H₂O₂, NaOH; (c) CrO₃, H₂SO₄; (d) Br₂, KBr; (e) KOH; (f) Amine, recrystallization; (g) MsOH; (h) Br₂, KBr; (i) Bu₃SnH, AlBN; (j) H₂, Pd(OH)₂/C, HOAc-THF; (k) BzCl, Py; (l) Zn(BH₄)₂,

Key: (a) NMO, OSO₄, THF-H₂O; (b) BZCI, Py; (c) DMAP; (d) water associate P₅₀₀; (e) Ac₂O, DMSO, HOAc; (f) KOH, H₂O, MeOH; (g) TBSCI, DMAP, DMF; (h) Cy₂BH, then Et₃NO; (i) Hg(OAc)₂, NaCI; (j) I₂, Py

Coupling Fragment 1 and 2

Key: (a) BuLi, MgBr₂; (b) Zn(BH₄)₂

C. Corey et al. J. Am. Chem. Soc. 1979, 101, 7131. (Cont'd)

End Game

Key: (a) AcOH; (b) LiOH, H₂O₂; (c) KOH; (d) CH₂N₂; (e) Me₂C(OMe)₂, Amberlite-50; (f) Ac₂O, DMAP; (g) Ac₂O-DMSO-HOAc; (h) K₂CO₃; (i) Ac₂O-DMSO-HOAc; (j) NaOH, MeOH; (k) TBAF, THF; (l) PPh₃; (m) heating; (n) K₂CO₃, Mel, H₂O, THF; (o) mCPBA; (p) PCC; (q) Pd/C, H₂, (r) CH₂=C(Me)OMe, CSA; (s) Triton B methoxide; (t) PPTS, MeOH

D. Kinoshita *et al. Bull. Chem. Soc. Jpn.* **1989**, *62*, 2618.

Fragment 1

Key: (a) MeMgI; (b) NaIO₄; (c) LiAIH₄; (d) TBDPSCI, imidazole; (e) PCC; (f) vinylmagnesium bromide; (g) O₃, PPh₃; (h) EtMgBr; (i) NaH, BnBr; (j) FeCI₃, acetone; (k) TBAF; (l) NaIO₄; (m) MeMgI; (n) PCC; (o) NH₂NH₂-H₂O, TEA; (p) I₂, tetramethylguanidine

Fragment 2

Key: (a) TrCl, TEA, DMAP; (b) LAH; (c) NaH, BnBr; (d) amberlyst¹⁵; (e) (COCl)₂, TEA, DMSO; (f) HOCH₂CH₂OH, TsOH; (g) H₂, Pd/C; (h) EtBr, PPh₃, DEAD

Fragment 3

Fragment Union

Key: (a) Mg; (b) TESOTf, 2,6-lutidine; (c) SnCl₂, acetone

D. Kinoshita *et al. Bull. Chem. Soc. Jpn.* **1989**, *62*, 2618. (Cont'd)

End Game

Key: (a) BuLi; (b) CIRh(PPh₃)₃, 50 atm H₂; (c) TBAF; (d) HCl, H₂O; (e) TSOH, acetone; (f) TESOTF, TEA; (g) Pd/C, H₂; (h) TBDPSCI, TEA; (i) TSOH, acetone; (j) Ac₂O, TEA; (k) TBAF; (l) (COCl)₂, TEA, DMSO; (m) NaClO₂; (n) LiOH, H₂O; (o) (2-pyr)₂S₂; (p) CuOAc; (q) AcOH; (r) PhCH(OMe)₂, CSA; (s) PCC; (t) H₂, Pd/C

E. Carreira et al. Angew. Chem. Int. Ed. 2005, 44, 4036; J. Org. Chem. 2009, 74, 8695.

Fragment 1, 2, 3

Key: (a) tBuOCl; (b) iPrOH, ErMgBr; (c) TPAP, NMO; (d) THF; (e) TESOTf, 2,6-lutidine; (f) Raney-Ni, B(OH)₃, H₂; (g) Zn(BH₄)₂; (h) PhCH(OMe)₂, CSA; (i) DDQ; (j) TEMPO, NaOCl; (k) H₂NOH-HCl, Py

Seco Acid and End Game

Key: (a) *t*BuOCI; (b) *i*PrOH, ErMgBr; (c) TEMPO, NaOCI, KBr; (d) PrPPh₃Br, *t*BuLi; (e) (DHQD)₂PHAL, K₃[Fe(CN)₆], MeSO₃NH₂, K₂CO₃, K₂OsO₄; (f) HF-Py, Py; (g) TEMPO, NaOCI, KBr; (h) NaClO₂, 2-methyl-2-butene; (i) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (j) HF-Net₃, Net₃; (k) Raney-Ni, AcOH, H₂; (l) Pd(OAc)₂, MeOH, H₂

F. Corey et al. J. Am. Chem. Soc. 1978, 100, 5620.

Key: (a) Allyl-Br, NaOMe; (b) BH₃•THF, H₂O₂, NaOH; (c) CrO₃, H₂SO₄; (d) Br₂, KBr; (e) KOH; (f) Amine, recrystallization; (g) MsOH; (h) Br₂, KBr; (i) Bu₃SnH, AlBN; (j) Al/Hg; (k) H₂, Raney-Ni; (l) BzCl, Py; (m) Mel, LDA, HMPA; (n) LiOH; (o) CrO₃, H₂SO₄; (p) AcOOH; (q) PPh₃

Key: (a) H₂O₂, Na₂WO₄; (b) Amine, recrystallization; (c) MsOH; (d) CICO₂Et, TEA; (e) NaBH₄; (f) POCI₃; (g) Lithium reagent; (h) Amberlite-50; (i) MsCl, Py; (j) Me₂CuLi; (k) TBSCl, Imidazole; (l) LDA, Mel; (m) Cp₂ZrHCl; (n) I₂, CCI₄

Coupling Fragment 1 and 2

Key: (a) BuLi, MgBr₂; (b) Zn(BH₄)₂

F. Corey et al. J. Am. Chem. Soc. 1978, 100, 5620. (Cont'd)

End Game

Key: (a) AcOH; (b) LiOH, H₂O₂; (c) KOH; (d) CH₂N₂; (e) HBr; (f) Me₂C(OMe)₂, Amberlite-50; (g) KOH; (h) PPh₃; (i) Heating; (j) MnO₂; (k) H₂O₂, NaOH; (l) H₂, Pd/C; (m) K₂CO₃; (n) HCI

G. Kochetkov et al. Tetrahedron Lett. 1987, 28, 3835.

Fragment 1

Key: (a) HS(CH₂)₂SH, BF₃OEt₂; (b) Ac₂O-Py; (c) DMP-Me₂CO, TsOH; (d) HgCl₂, CaCO₃; (e) Ph₃P=CH₂; (f) MeONa, MeOH; (g) (COCI)₂, DMSO, TEA; (h) MeMgCl; (i) (COCI)₂, DMSO, TEA; (j) K₂CO₃, MeOH

Fragment 2

Key: (a) HS(CH₂)₂SH, BF₃OEt₂; (b) DMP-Me₂CO, TsOH; (c) NaH, PMBCI; (d) AcOH, H₂O; (e) TsCl, Py; (f) K₂CO₃, MeOH; (g) MeMgCI, CuCl-Me₂S, THF; (h) *t*-BuPh₂SiClO₄, TEA; (i) HgCl₂-CdCO₃; (j) C₂H₅COTr, BuLi; (k) DDQ, 3A MS, DCM; (l) LiBHEt₃; (m) Ph₂S₂, PBu₃, Py; (n) MCPBA, FAA; (o) collidine

Fragment Union and End Game

Key: (a) LDA, THF; (b) TFAA, Nal, Me₂CO; (c) Na, NH₃; (d) TBAF, THF; (e) O₃; (f) mCPBA, pH = 7 buffer; (g) 2,2'-dithiobis(4-t-bu-l-i-pr-imidazole), PPh₃, PhCH₃; (h) TFA; (i) PhCH(OEt)₂, CSA; (j) PCC, 3A MS; (k) AcOH, H₂O

H. Mulzer et al. J. Am. Chem. Soc. 1991, 113, 910.

Key: (a) BuLi, *t*BuOK; (b) CI-B(NMe₂)₂; (c) distillation (a') -78 °C; (b') TsCl; (c') PPTS; (d') NaHCO₃; (e') Me₂CuLi

Fragment 1 and 2

Key: (a) NaH, BnBr; (b) TBSCI, Imid.; (c) O₃, PPh₃; (d) H₂C=C(Me)-MgBr; (e) TBAF; (f) DMP, H^{*}; (g) O₃, PPh₃ (a') TrCI, DMAP, Py; (b') NaH, BnBr; (c') HCOOH, then KOH; (d') (COCI)₂, DMSO, TEA; (e') EtMgBr; (f') TBSCI, TEA; (g') O₃, PPh₃; (h') Ph₃P-C(Me)COOMe; (i') DIBAL-H; (j') Bu₃P, (PhS)₂, Py

Fragment Union and End Game

Key: (a) BuLi, TMEDA, then BF₃; (b) Li/EtNH₂; (c) Ac₂O, DMAP, Py; (d) tBuOK; (e) PDC, DMF; (f) NaOH; (g) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (h) BH₃•SMe₂, then H₂O₂; (i) PCC; (j) 80% HOAc

I. Nelson et al. Angew. Chem. Int. Ed. 2010, 49, 2591.

Catalyst and Homologation Reagent

Fragment 1

Key: (a) EtCOCI, iPr2NEt, LiCIO4; (b) EtSH, KHMDS; (c) DIBAL-H; (d) EtCOCI, iPr2NEt, LiI; (e) MeO(Me)NH2CI, Me2AICI; (f) EtMgBr; (g) PMBOC(NH)CCI3, BF3-OEt2

Fragment 2

Key: (a) EtCOCI, iPr2NEt, Lil; (b) EtSH, KHMDS, TBSCI, NEt3; (c) DIBAL-H; (d) 1N HCI; (e) Me2C(OMe)2, CSA; (f) NaOMe; (g) O3, Me2S; (h) EtMgBr; (i) O3, Me2S; (j) TESOTF, 2,6-lutidine

Fragment Coupling and End Game

Key: (a) LHMDS; (b) Zn(BH₄)₂; (c) DDQ; (d) KHMDS, CS₂, MeI; (e) AIBN, Bu₃SnH; (f) PMPCH(OMe)₂, CSA; (g) LiOH; (h) TBAF; (i) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP

J. Stork et al. J. Am. Chem. Soc. 1987, 109, 1565.

Fragment 1

Key: (a) BuLi, propionyl chloride; (b) 9-BBN, (*R*)-pinene; (c) H₂C=C(Me)OMe, CSA; (d) dimethylthiocuprate, then acid; (e) OsO₄, NMO; (f) TMSCI, Imid.; (g) LHMDS, EtOC(O)CH₂OBn; (h) K₂CO₃; (i) MeCH(COMe)₂, CSA; (j) (PhO)₂P(O)CI, Na₂CO₃, TBABr; (k) Me₂Zn, Ni(acac)₂; (l) H₂, Pd/C; (m) TMSNMe₂; (n) LHMDS, EtOC(O)CH₂OBn; (o) K₂CO₃; (p) Ac₂O, TEA, DMAP; (q) (PhO)₂P(O)CI, Na₂CO₃, TBABr; (r) Me₂Zn, Ni(acac)₂; (s) Rh/Alumina, H₂; (t) LAH, HOAc, HIO₄; (u) NaBH₄; (v) CH₃C(Oet)₃, PPTS; (w) BH₃-THF; (x) (PhS)₂, PPh₃

Fragment 2

Key: (a) (*R*)-pinene, BH₃-THF, then H₂O₂; (b) VO(acac)₂; (c) CrO₃, H₂SO₄; (d) NEt₃, then TBSCI, DMAP; (e) LiCuMe₂, then TMSCI; (f) O₃, NaBH₄; (g) 2N HCI; (h) DIBAL-H; (i) 2-propenyl lithium; (j) TBAF; (k) PivCI, DMAP, TEA; (l) Me₂C(OMe)₂, PPTS; (m) O₃, PPh₃

Fragment Union

Key: (a) 4,4'-dibutylbiphenyl, Li; (b) MgBr₂; (c) MeLi; (d) PDC; (e) Me₂SO₄; (f) O₃; (g) KOH, aq. MeOH; (h) DCC, DMAP, refluxing chloroform; (i) HCI

K. Yonemitsu et al. Tetrahedron Lett. 1987, 28, 4569.

Fragment 1

Key: (a) BzCl, Py; (b) PMPCMe(OMe)₂, CSA; (c) 1N KOH, MeOH; (d) (COCl)₂, DMSO, TEA; (e) Ph₃P=CMeCO₂Et, EDC; (f) LAH; (g) mCPBA; (h) NaBH₃CN, BF₃OEt₂; (i) BzCl, Py; (j) 4N HCl; (k) CH₂=C(Me)OMe, PPTS; (l) MMCl, *i*-Pr₂NEt; (m) 1N NaOH; (n) TsCl, TEA, DMAP; (o) PhSNa, EtOH; (p) NalO₄

Fragment 2

Key: (a) Me₂C(OMe)₂, CSA; (b) 10% Pd-C, H₂; (c) PCC, 4A MS; (d) HS(CH₂)₃SH, BuLi; (e) TsOH; (f) TBDPSCI, imid.; (g) CH₂=C(Me)OMe, PPTS; (h) MeI, NaHCO₃

Fragment Union and Macrocyclization

Key: (a) LDA; (b) Raney Ni; (c) (COCI)₂, DMSO, TEA; (d) MeLi; (e) MMCI, *i*-Pr₂NEt; (f) TBAF; (g) Jones reagent; (h) 10% Pd/C, H₂; (i) 2,4,6-CI₃C₆H₂COCI, TEA, then DMAP; (j) 50% HOAc

L. Paterson et al. Tetrahedron Lett. 1989, 30, 7463.

Precusor 1 and 2

Key: (a) NaBH₄, I₂; (b) K₂CO₃, diethyl carbonate; (c) BuLi, then propionyl chloride; (d) Bu₂BOTf, *i*Pr₂NEt

Fragment 1 and 2

Key: (a) NaOMe; (b) TBSOTf, 2,6-lutidine; (c) NCS; (d) ZnBr₂; (e) NaIO₄; (f) (+)-N-methylephedrine, N-ethylaniline, LAH; (g) DIBAL-H (a') NaOMe; (b') TBSOTf, 2,6-lutidine; (c') NCS; (d') PhSSiMe₃, ZnBr₂; (e') BuLi; (f') (+)-N-methylephedrine, N-ethylaniline, LAH; (g') DIBAL-H

Fragment Union and Macrocyclization

Key: (a) *i*Pr₂NEt, LiCl; (b) HgO, *aq.* HBF₄; (c) NaClO₂, 2-methyl-2-butene, NaH₂PO₄; (d) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (e) H₂, Rh/Al₂O₃; (f) LDA, CH₂O; (g) MsCl, TEA, then DBU; (h) L-selectride, then TMSCl; (i) OSO₄, NMO, quinuclidine; (j) $Zn(BH_4)_2$; (k) 40% aq. HF; (I) OsO_4 , NMO, then $Na_2S_2O_5$

M. Hoffmann et al. Angew. Chem. Int. Ed. 1993, 32, 101.

Chiral Auxiliary

Key: (a) *i*PrOH; (b) THF, 0°C

Iterative Crotylation

Key: (a) (+)-dimethyl tartrate, Ti(O/Pr)₄, tBu₂O₂; (b) (COCl)₂, TEA, DMSO; (c) SnCl₄, cyclopentanone; (d) 3d, benzene, 80°C; (e) NaH, PMBCl; (f) O₃, PPh₃; (g) pet. ether, 2d; (h) DDQ; (i) O₃, PPh₃; (j) Ph₃PCH(CH₃)COOEt; (k) LAH; (l) tBuOOH, (+)-dimethyl tartrate, Ti(O/Pr)₄; (m) NMO, TPAP; (n) 10 kbar, pet. ether, 3d; (o) *i*PrMgCl; (p) LAH; (q) PMBCl, NaH; (r) NMO, OSO₄; (s) NalO₄; (t) 10 kbar, pet. ether, 3d

End Game

Key: (a) DDQ; (b) NMO, OsO4; (c) NaIO4; (d) CrO3, acetone; (e) TNT, 2N HCI; (f) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (g) 2N HCI

N. Woerpel et al. J. Am. Chem. Soc. 2003, 125, 6018.

AllyIsilane and Auxillary Synthesis

Key: (a) TiCl₄; (b) LAH; (c) NaH, PMBCl; (d) PhMe₂CCOOH; (e) NaH, BnBr; (f) CAN; (g) I₂, PPh₃; (h) Piv₂O, Sc(OTf)₃; (i) Zn, HOAc; (j) TBSOTf; (k) DIBAL-H; (l) HMDS, Pt(0), H₂O₂; (m) MeOC₆H₄CH(OMe)₂, PPTS; (n) DIBAL-H; (o) (COCl)₂, DMSO, TEA

Fragment Union

Key: (a) TiCl₄, (-)-sparteine; (b) DDQ; (c) HF-Py, Py; (d) (COCl)₂, DMSO, TEA; (e) Sn(OTf)₂, TEA; (f) Zn(BH₄)₂; (g) DDQ; (h) NaH, CS₂, Mel; (i) AIBN, Bu₃SnH; (j) LiOOH; (k) TBAF; (l) 2,4,6-trichlorobenzoyl chloride, TEA, then DMAP; (m) H₂, Pd(OH)₂/C

O. Masamune et al. J. Am. Chem. Soc. **1981**, 103, 1568.

Auxiliary Preparation

Key: (a) Rh/Al₂O₃; (b) EtLi, -78 °C; (c) TBSOTf, 2,6-lutidine

Fragment 1

Key: (a) c-pentylBOTf, iPr2NEt, then acetyl aldehyde; (b) HF-MeCN; (c) NaIO4; (d) CH2N2; (e) TESCI, DMAP; (f) DIBAL-H; (g) CrO3•2Py

Fragment 2

(18 steps in LLS)

Key: (a) lipase, MeOH; (b) (COCl)₂; (c) Pd-BaSO₄, H₂; (d) **S-1**, *c*-pentylBOTf, *i*Pr₂NEt; (e) HF-MeCN; (f) NalO₄; (g) (COCl)₂; (h) Pd-BaSO₄, H₂; (i) **S-1**, *c*-pentylBOTf, *i*Pr₂NEt; (j) TBAF; (k) NalO₄; (l) ClCO₂Et, Py; (m) TIStBu, HStBu; (n) KOH, H₂O; (o) TBDPSCI, DMF; (p) MeC(OMe)=CH₂, TFA; (q) (COCl)₂, Py; (r) LiCuEt₂

End Game

Key: (a) LHMDS; (b) NaBH4, MeOH; (c) (CHCl2CO)2O, Py; (d) HOAc; (e) CuOTf, iPr2NEt; (f) KOH, H2O/THF/MeOH; (g) PCC; (h) TFA, MeCN/H2O

P. Danishefsky et al. J. Org. Chem. 1990, 55, 1636.

Danishefsky Diene Preparation

Key: (a) NaH, then ethyl formate; (b) TsOH, relux; (c) TMSOTf, TEA

Iterative Lewis Acid Catalyzed Diene Aldehyde Condensation

Key: (a) ZnCl₂, formaldehyde; (b) CeCl₃, NaBH₄; (c) TsOH; (d) BH₃•SMe₂; (e) 1,3-propanedithiol, TiCl₄; (f) TBDPSCI, TEA; (g) NaH, BnBr, TBAI; (h) NBS, NaHCO₃; (i) ZnCl₂, BF₃•OEt₂; (j) CeCl₃, NaBH₄; (k) TsOH, *i*PrOH; (l) Pd/Al₂O₃, H₂ (50 psi); (m) 1,3-propanedithiol, TiCl₄; (n) NaH, BnBr, TBAI; (o) NBS, acetone; (p) ZnCl₂, BF₃•OEt₂; (q) CeCl₃, NaBH₄; (r) TsOH, then LiBH₄; (s) PivCI, TEA; (t) BnC(NH)CCl₃, TfOH; (u) LAH; (v) Dess-Martin periodate

Key: (a) PhSH, BuLi; (b) BH₃•SMe₂; (c) PhCH(OMe)₂, PPTS; (d) DIBAL-H; (e) Dess-Martin periodate; (f) EtMgBr; (g) TBSOTf, TEA; (h) Li/NH₃ (i) (MeO)₂CH₂, CSA; (j) TBAF, reflux; (k) RuCl₂(PPh₃)₃; (l) 2-methyl-2-butene, NaH₂PO₄, NaClO₂; (m) TEA, 2,4,6-trichlorobenzoyl chloride, then DMAP; (n) CSA; (o) (MeO)₂CH₂, CSA; (p) PCC; (q) TFA, MeCN/H₂O

Q. Evans et al. Tetrahedron Lett. 1997, 38, 53; J. Am. Chem. Soc. 1998, 120, 5921.

Key: (a) NaBH₄, I₂; (b) K₂CO₃, diethyl carbonate; (c) BuLi, then propionyl chloride; (d) Cy₂BOTf, *i*Pr₂NEt, then propionaldehyde; (e) SO₃•Py, TEA, DMSO

Fragment 1

Key: (a) TiCl₄, *i*Pr₂NEt, then methacrolein; (b) Zn(BH₄)₂; (c) Me₂C(OMe)₂, CSA; (d) 9-BBN; (e) (COCI)₂, TEA, DMSO

Fragment 2

Key: (a) Sn(OTf)₂, TEA, then propionaldehyde; (b) NaBH(OAc)₃, AcOH; (c) TBSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeNH+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (f) Cl₃CC(NH)O-(p-OMe)Bn, TfOH; (g) BuLi, (PhMe₂Si)₂NH, TMSOTf, 2,6-lutidine; (d) AIMe₃, (MeO)MeN+HCI; (e) EtMgBr; (d) AIMe₃, (d) AIMe₃

End Game

Key: (a) BF₃•OEt₂; (b) Zn(BH₄)₂; (c) DDQ; (d) NaH, then CS₂, then MeI; (e) AIBN, Bu₃SnH; (f) LiOOH; (g) TBAF; (h) TEA, 2,4,6-trichlorobenzoyl chloride, then DMAP (i) Pd(OH)₂/C, *i*PrOH; (j) PCC; (k) 1M HCI

R. Crimmins et al. Org. Lett. 2006, 8, 2191.

Chiral Auxiliary Synthesis

Key: (a) NaBH₄, I₂; (b) KOH, CS₂, H₂O, reflux; (c) propionyl chloride, DMAP, TEA

Iterative Aldol Addition

Key: (a) TiCl₄, *i*Pr₂NEt, then propionaldehyde; (b) TIPSOTf, 2,6-lutidine; (c) DIBAL; (d) TiCl₄, (-)-sparteine, NMP; (e) TBSOTf, 2,6-lutidine; (f) DIBAL-H; (g) TiCl₄, *i*Pr₂NEt; (h) TESOTf, 2,6-lutidine; (i) LiBH₄; (j) PPh₃, I₂; (k) TSOH, MeOH; (l) *p*-MeOPhCHO, CSA; (m) TBSOTf, 2,6-lutidine; (n) LDA, LiCl; (o) LDA, BH₃•NH₃; (p) Dess-Martin periodate; (q) TiCl₄, (-)-sparteine, NMP; (r) TESOTf, 2,6-lutidine; (s) DIBAL-H; (t) TiCl₄, (-)-sparteine, NMP; (v) (MeO)₂CMe₂, CSA; (w) LiOH
S. White et al. Nature Chem. 2009, 1, 547.

Chiral Auxiliary Synthesis

Key: (a) propionyl chloride, DMAP, TEA; (a') K₂CO₃, diethyl carbonate; (b') BuLi, then propionyl chloride; (a") NaBH₄, I₂; (b") K₂CO₃, diethyl carbonate; (c") BuLi, then propionyl chloride; (d") Cy₂BOTf, *i*Pr₂NEt, then propionaldehyde; (e") SO₃·P y, TEA, DMSO

C-H Macrolactonization Precursor

Key: (a) LDA, LiCl; (b) LDA, BH₃•NH₃; (c) (COCl)₂, DMSO, TEA; (d) Bu₂BOTf, iPr₂NEt; (e) AlMe₃, (MeO)NHMe•HCl; (f) PMBBr, NaH; (g) DIBAL-H; (h) Bu₂BOTf, TEA; (i) DDQ; (j) LAH; (k) PPh₃, I₂, imidazole; (l) LDA, LiCl; (m) TBSOTf, 2,6-lutidine; (n) LDA, LiCl; (o) Ti(O/Pr)Cl₃, TEA; (p) Zn(BH₄)₂; (q) (MeO)₂CMe₂, CSA; (r) LiOOH

End Game: C-H Macrolactonization

Key: (a) Cat., benzoquinone; (b) Pd(OH)₂/C, H₂; (c) TPAP, NMO; (d) 1M HCI

Graphical Summary of Previous Syntheses of Cyanolide A and Clavosolide A

A. Hong et al. Org. Lett. 2010, 12, 2880.

Starting Material Synthesis

Key: (a) isobutyraldehyde, removal of H₂O; (b) N-chlorosuccinamide, benzene; (c) **1**, THF:Et₂O (1:1); (d) trimethyl phosphonoacetate, KO^tBu, THF 0 °C; (e) DIBAL, toluene, -78 °C; (f) Ac₂O, pyridine, 0 °C to rt; (g) thiophenol, BF₃·OEt₂, CH₂Cl₂, 0 °C; (h) NaOMe, MeOH, 25 °C, then Amberlite IR-120(H⁺) resin; (i) NaH, MeI, DMF, rt.

Reagents: (a) **2**, ^tBuLi, HMPA/THF, -78 °C; (b) MnO₂, CH₂Cl₂, dimethyl triazolium iodide, DBU, MeOH, MnO₂, 4Å MS, 25 °C.

A. Hong et al. Org. Lett. 2010, 12, 2880. (Cont'd)

Dimerization-Glycosylation Route:

Key: (a) DDQ, H₂O:CH₂Cl₂ (1:10), 25 °C; (b) SO₃·pyr, Et₃N:DMSO:CH₂Cl₂ (1:1:10), 0 °C to 25 °C; (c) Et₂Zn, (+)-MIB, toluene:hexanes (1:2), 0 °C; (d) LiOH, THF:MeOH:H₂O (2:1:1), 25 °C; (g) MNBA, DMAP, toluene, 90 °C; (e) I₂, sat. aq. NaHCO₃:CH₃CN (1:1), 0 °C; (f) NaBH₄, MeOH, -40 to -20 °C; (g) **3**, MeOTf, Et₂O, 4Å MS, 25 °C.

Glycosylation-Dimerization Route:

Key: (a) I₂, sat. aq. NaHCO₃:CH₃CN (1:1), 0 °C; (b) NaBH₄, MeOH, -40 to -20 °C; (c) **3**, MeOTf, Et₂O, 4Å MS, 25 °C; (d) DDQ, H₂O:CH₂Cl₂ (1:10), 25 °C; (e) TPAP, NMO, 4 Å MS, CH₂Cl₂, 25 °C; (f) Et₂Zn, (+)-MIB, toluene:hexanes (1:2), 0 °C; (g) LiOH, THF:MeOH:H₂O (2:1:1), 25 °C; (h) MNBA, DMAP, toluene, 90 °C.

B. Pabbaraja et al. J. Org. Chem. 2011, 76, 1922.

Linear Synthesis

Key: (a) Benzyl imidate, $BF_3 \cdot Et_2O$, CH_2Cl_2 :Cyclohexane (1:2); (b) DIBAL, CH_2Cl_2 , -78 °C; (c) PPh₃CH₃I, ^tBuOK, THF, rt; (d) PCC, CH_2Cl_2 , rt; (e) (*R*)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethanone, TiCl₄, DIPEA, CH_2Cl_2 , 0 °C to -78 °C; (f) $CH_3NHOCH_3\xi$ HCl, imidazole, CH_2Cl_2 , rt; (g) lithium naphthalenide, THF, -20 °C; (h) Ba(OH)₂\xi8H₂O, THF:H₂O (1:1), rt; (i) DIBAL, CH_2Cl_2 , -78 °C; (j) 1-(triphenylphosphoranylidene)butan-2-one, benzene, reflux; (k) TBSCI, 2,6-lutidine, DMF, 0 °C to rt; (l) (S)-CBS, BH₃ξDMS, THF, -30 °C; (m) BH₃ξDMS, NaOH, H₂O₂, THF, 0 °C; (n) TEMPO, BAIB, CH_2Cl_2 :H₂O (2:1) 0 °C to rt; (o) MNBA, DMAP, toluene, 90 °C; (p) 70% HF·pyr, THF, 0 °C to rt.

C. She et al. Org. Biomol. Chem. 2011, 9, 984.

Linear Synthesis

Reagents: (a) 2-allyl-1,3-dithiane, ^{*n*}BuLi, THF, 0 °C; (b) I_2 , CaCO₃, THF:H₂O (4:1), 0 °C; (c) SmI₂, EtCHO, THF, -10 °C; (d) O₃, CH₂Cl₂, -78 °C; (e) Zn, prenyl bromide, aq. NH₄Cl:THF (4:1), 0 °C; (f) 2,2-dimethoxypropane, TsOH (cat.), CH₂Cl₂, 0 °C; (g) LiAlH₄, THF, 0 °C; (h) 4-methoxyphenol, DIAD, PPh₃, THF, 25 °C; (i) 1 N HCl, MeOH, 0 °C; (j) PdCl₂ (cat.), CuCl₂, CH₃CN, MeOH, CO, 30 °C; (k) (3*R*,4*S*,5*R*)-3,4,5-trimethoxy-2-(phenylthio)tetrahydro-2*H*-pyran, MeOTf, 4Å MS, 25 °C; (l) CAN, CH₃CN:H₂O (4:1), 0 °C

D. Reddy et al. J. Org. Chem. 2011, 76, 936.

Fragment 1

Key: (a) LDA, TMSCI, THF, -78 to 0 °C

Longest Linear Sequence

Reagents: (a) AgO, BnBr, DMF, 0 °C; (b) DIBAL, CH_2Cl_2 , -78 °C; (c) methyl triphenylphosphonium bromide, THF, ^{*n*}BuLi in hexanes, 0 °C; (d) TBDMSCI, DMAP, pyridine, 0 °C; (e) BH₃·THF, THF, -20 °C to rt, then NaOH, H₂O₂; (f) (COCl)₂, CH_2Cl_2 , DMSO, Et₃N, -78 °C; (g) **1**, BF₃·Et₂O, CH_2Cl_2 , -78 °C; (h) catecholborane, THF, -10 °C; (i) 2,2-dimethoxypropane, PPTS, CH_2Cl_2 , 25 °C; (j) TBAF, THF, 60 °C; (k) (COCl)₂, DMSO, Et₃N, CH_2Cl_2 , -78 °C; (l) Ph₃PCHCOOEt, toluene, reflux

Key: (m) PTSA, CHCl₃, reflux; (n) LiOH·H₂O, H₂O:MeOH:THF (1:1:2), 25 °C; (o) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, DMAP, toluene, reflux; (p) Pd(OH)₂, MeOH, H₂, rt.

E. Rychnovsky et al. J. Am. Chem. Soc. 2011, 133, 9727.

Key: (a) (MeS)₂CH₂, ⁿBuLi, THF; (b) I₂, MeOH, reflux.

Linear Synthesis

Key: (a) Zn, ethylorthoformate, benzene; (b) LiCH₂TMS, pentane; (c) KHMDS, PhNTf₂, THF; (d) CIMgCH₂TMS, Pd(PPh₃)₄, LiCl, Et₂O; (e) *p*TSA•H₂O, H₂O:acetone (1:1); (f) (*S*)-1-(4-(*tert*-butyl)-2-thioxothiazolidin-3-yl)ethanone, (-)-sparteine, PhBCl₂, CH₂Cl₂; (g) LiOH¬H $_2$ O, H₂O:THF (1:2.6); (h) **1**, Cl₃PhCOCl, DMAP, Et₃N, benzene; (i) TMSOTf, CH₂Cl₂; (j) OsO₄, NMO, H₂O:acetone (1:3.15), then NalO₄; (k) NaBH₄, MeOH.

F. Jennings et al. J. Org. Chem. 2011, 76, 8027.

Linear Synthesis

Key: (a) BH₃·DMS, THF, 0 °C; (b) allylmagnesium bromide, Et₂O, -78 °C; (c) propanal, Et₂O, -78 °C; (d) 2-ethylhexyl acrylate, Grubbs' 2nd Generation, benzene, rt; (e) PhCHO, ^tBuOK, THF, 0 °C; (f) DIBAL, CH₂Cl₂, -78 °C; (g) BF₃·Et₂O, ((1-ethoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane, CH₂Cl₂, -78 °C; (h) MOMCI, DIPEA, CH₂Cl₂; (i) Pd(OH)₂, H₂, MeOH, rt, then TFA, THF, H₂O; (j) allylmagnesium bromide, THF, -78 °C, then TFA, CH₂Cl₂; (k) O₃, C Reagents: (l) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^tBuOH, -10 °C; (m) 2,4,6-trichloro-benzoyl chloride, DMAP, toluene, 125 °C; (n) LiBF₄, CH₃CN:H₂O, 60 °C.

G. Lee et al. Org. Lett. 2006, 8, 661.

Linear Synthesis

Key: (a) isobutylene, TMEDA, n BuLi, (-)-(lpc)₂BOMe, Et₂O; (b) PMBO(C=NH)CCl₃, TsOH; (c) TBAF, THF; (d) CBr₄, PPh₃, THF; (e) LAH, THF; (f) O₃, pyridine, MeOH; (g) (S)-3-((*tert*-butyldimethylsilyl)oxy)-2-methylpropanal, i Pr₂NEt, Bu₂BOTf, Et₂O; (h) Me₄NB(OAc)₃H, MeCN-AcOH; (i) 2,2-methoxypropane, PPTS, CH₂Cl₂; (j) TBAF, THF; (k) Dess-Martin periodinane, NaHCO₃; (l) MeO₂CCH₂P(O)(OMe)₂, LiCl, i Pr₂NEt, MeCN; (m) CSA, MeOH-H₂O; (n) NaH, THF; (o) TBSOTf, Et₃N, CH₂Cl₂; (p) DDQ, CH₂Cl₂-H₂O; (q) LiOH, THF-H₂O-MeOH; (r) 2,4,6-Cl₃PhCOCl, Et₃N, THF, then DMAP, toluene, reflux; (s) TBAF, THF; (t) (2*R*,3*R*,4*S*,5*R*)-3,4,5-trimethoxytetrahydro-2*H*-pyran-2-yl 2,2,2-trichloroacetimidate, BF₃·OEt₂, 4 Å MS, CH₂Cl₂.

H. Smith et al. Org. Lett. 2006, 8, 3315.

Key: (a) 3-((triisopropylsilyl)oxy)propanal, c-Hex₂BOTf, Et₃N, CH₂Cl₂; (b) LiOH, THF/H₂O.

Key: (a) (*S*)-1-(4-isopropyl-2-thioxothiazolidin-3-yl)ethanone, TiCl₄, DIPEA; (b) MeNH(OMe)-HCI, CH₂Cl₂, rt; (c) Et₂Zn, CH₂I₂, CH₂Cl₂; (d) AcOH, PPh₃, DIAD, PhCH₃; (e) K₂CO₃, MeOH; (f) TIPSOTf, 2,6-lutidine, CH₂Cl₂; (g) DIBAL, THF; (h) HMDS, **1**, CH₂Cl₂, then lactone, TMSOTf, DtBMP, CH₂Cl₂; (i) Cp₂TiMe₂, Me₃CCOOEt, THF, dark; (j) Me₂AlCl, 4 Å MS, CH₂Cl₂, rt; (k) NaBH₄, EtOH.

H. Smith et al. Org. Lett. 2006, 8, 3315. (Cont'd)

End Game

Reagents: (I) BnBr, NaH, TBAI, DMF, rt; (m) 1% HCl, EtOH; (n) TEMPO, NaOCI, KBr, TBAC, NaCI, NaHCO₃, CH₂Cl₂/H₂O, 0 °C; (o) 2,4,6-trichlorobenzoyl chloride, Et₃N, then DMAP, toluene; (p) 10% Pd/C, H₂ (1 atm), EtOH; (q) (2*S*,3*R*,4*S*,5*R*)-3,4,5-trimethoxytetrahydro-2*H*-pyran-2-yl 2,2,2-trichloroacetimidate, TMSOTf, CH₂Cl₂, 4 Å MS.

I. Willis et al. Org. Lett. 2006, 8, 3319.

Linear Synthesis

Reagents: (a) IBX, ethyl acetate, reflux; (b) but-2-enylmagnesium chloride, THF; (c) TsOH·H₂O, CH₂Cl₂, BnOCH₂CH₂CH₂CHO; (d) methyl propiolate, quinuclidine; (e) TFA, CH₂Cl₂; (f) K₂CO₃, MeOH; (f) TIPSCI, DMF, imidazole; (g) H₂, Pd/C, EtOH; (h) Dess-Martin periodinane; (i) CrCl₂, NiCl₂, DMF; (j) TBSOTf, imidazole, DMF; (k) CH₂ICI, Et₂Zn, CH₂Cl₂; (l) 1% v/v HCI, EtOH; (m) TMSONa, CH₂Cl₂; (o) 2,4,6-trichlorobenzoyl chloride, Et₃N, DMAP, toluene, reflux; (p) TBAF, THF; (q) (2*S*,3*R*,4*S*,5*R*)-3,4,5-trimethoxy-2-(phenylthio)tetrahydro-2*H*-pyran, NBS, CH₃CN.

J. Chakraborty et al. Tetrahedron, 2008, 64, 5162.

o Me Me Me a,b,c Me d OTBDPS OTBDPS OTBDPS BnO BnO BnO BnO CHO ŌΗ он он ŌΗ Me Me Мe OTBDPS OH h,i,j OH k,l f BnO BnO g BnO Ο 0. 0 0. Ō, Ō. Mé Me Mé Me Me Me Me OH OH .OH m,n,o р q BnO Me, Me, ŌΗ ۰Ō Ο BnO BnO **`OTBDPS** `OH **N** Me Me OMe OMe .,ОМе . OMe MeO, MeO, r,s,t \cap Me, Me, OH BnO BnO **`OTBDPS** Ме 1

Fragment 1

Key: (a) EtOAc, LDA, THF; (b) LAH, Et₂O; (c) TBDPSCI, Et₃N, DMAP, CH_2CI_2 ; (d) (+)-DIPT, TBHP, $Ti(^{i}PrO)_4$, 4 Å MS, CH_2CI_2 ; (e) Cp_2TiCl , cyclohexa-1,4-diene; (f) 2,2-dimethoxypropane, CSA, CH_2CI_2 ; (g) TBAF, THF; (h) (COCl)₂, DMSO, Et₃N, CH_2CI_2 ; (i) $PH_3P=CHCO_2Et$, CH_2CI_2 ; (j) DIBAL-H, CH_2CI_2 ; (k) (-)-DIPT, $Ti(O^{i}Pr)_4$, TBHP, 4 Å MS, CH_2CI_2 ; (l) Red-AI, THF; (m) TBDPSCI, Et₃N, DMAP, DMF; (n) MsCI, Et₃N, DMAP, CH_2CI_2 ; (o) CSA, MeOH; (p) TBDPSCI, Et₃N, DMAP, CH_2CI_2 ; (q) (2*R*,3*R*,4*S*,5*R*)-3,4,5-trimethoxytetrahydro-2*H*-pyran-2-yl-2,2,2-trichloroacetimidate, TMSOTf, 4 Å MS, CH_2CI_2 ; (r) TBAF, THF; (s) (COCI)₂, DMSO, Et₃N, CH_2CI_2 ; (t) LDA, propyne, THF, then the aldehyde.

J. Chakraborty et al. Tetrahedron, 2008, 64, 5162. (Cont'd)

End Game and Dimerization

Key: (a) Red-Al, Et₂O; (b) CH_2I_2 , Et₂Zn, CH_2CI_2 ; (c) Dess-Martin periodinane, CH_2CI_2 ; (d) LAH, THF; (e) TBSOTf, 2,6-lutidine, CH_2CI_2 ; (f) H_2 , Pd-C, EtOAc; (g) Dess-Martin periodinane, CH_2CI_2 ; (h) $Ph_3P=CH_2$, Et_2O ; (i) (*c*hex)₂BH, THF, then 30% H_2O_2 , NaOH; (j) Dess-Martin periodinane, CH_2CI_2 ; (k) NaOCI₂, NaH₂PO₄·2H₂O, 2-methyl-2-butene, ^{*t*}BuOH; (l) CSA, MeOH-CH₂CI₂ (1:1); (m) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, then DMAP, toluene.

K. Jennings *et al. Org. Lett.* **2009**, *11*, 769. Linear Synthesis

Key: (a) TiCl₄, (-)-sparteine, NMP, (*E*)-crotonaldehyde, CH₂Cl₂; (b) imidazole, MeN(H)OMe·HCl, CH₂Cl₂; (c) Et₂Zn, CH₂L₂, CH₂Cl₂; (d) DIAD, PPh₃, HOAc, toluene; (e) allylmagnesium bromide, THF; (f) Et₂BOMe, NaBH₄, THF; (g) DMP, PPTS, CH₂Cl₂; (h) O₃, Sudan III, CH₂Cl₂; (i) ^{*n*}Bu₂BOTf, Et₃N, (*R*)-4-benzyl-3-propionyloxazolidin-2-one, CH₂Cl₂; (j) MOMCl, DIPEA, CH₂Cl₂; (k) BnOLi, THF; (l) TFA, THF; (m) (i) allylmagnesium bromide, THF; (ii) TFA then Et₃SiH; (n) O₃, Sudan III, CH₂Cl₂; (o) NaOCl₂, NaH₂PO₄, 2-methyl-2-butene, ^{*t*}BuOH; (p) 2,4,6-trichlorobenzoyl chloride, DMAP, toluene; (q) 2-bromobenzo[*a*][1,3,2]dioxaborole, CH₂Cl₂.

L. Floreancig *et al. Org. Lett.* **2012**, *14*, 5614. Fragment 1

Key: (a) (S,S)-Noyori-TsDPEN, CH₂Cl₂, Et₃N, then formic acid; (b) MsCl, Et₃N, CH₂Cl₂; (c) 3-((triisopropylsilyl)oxy)propanal, Et₂Zn, Pd(OAc)₂, Ph₃P, CH₂Cl₂.

Linear Synthesis

Key: (d) AcCl, AlCl₃, CH₂Cl₂, then Et₃N; (e) MeMgBr, Cul, (*R*)-TolBINAP, ^tBuOMe; (f) NaOH, H₂O; (g) LDA, THF, then (EtO)₂P(O)Cl, then LDA, then (CH₂O)_n; (h) MsCl, Et₃N, CH₂Cl₂; (i) NaH, 15-C-5, THF, then 1; (j) [(*p*-cymene)RuCl₂]₂, HOAc, Na₂CO₃, PhMe; (k) DDQ, LiClO₄, 2,6-Cl₂Py, DCE; (l) NaBH₄, MeOH, then K₂CO₃, MeOH; (m) (2*S*,3*R*,4*S*,5*R*)-3,4,5-trimethoxy-tetrahydro-2*H*-pyran-2-yl 2,2,2-trichloroacetimidate, TMSOTf, CH₂Cl₂; (n) BH₃·SMe₂, (*R*)-1-methyl-3,3-diphenylhexahydropyrrolo[1,2-*c*][1,3,2]oxazaborole, THF; (o) HCl, EtOH; (p) TEMPO, NaOCl, KBr, Bu₄NCl, NaHCO₃, CH₂Cl₂, H₂O; (p) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, then DMAP, toluene.

M. Breit et al. Angew. Chem. Int. Ed. 2015, 54, 15530.

Key: a) AlMe₃, TMSCI, CuBr (cat.), b) KOH, c) *E*-crotyl chloride, Mg, d) (EtO₃)COMe, MeCH₂CO₂H, e) DIBAL-H.

Key: a) *p*TsOH-H₂O, b) yneone, quinuclidine, TFA, c) K₂CO₃, MeOH, d) LiOH, H₂O, e) MeOTf, 4Å MS, sugar, f) LiOH, H₂O, g) [Rh(cod)Cl]₂, (*R*,*R*)-DIOP, Cs₂CO₃, h) Grubbs II, (*Z*)-2-butene, i) ICH₂Cl, Et₂Zn.

N. Kim, Hong et al. Tetrahedron Lett. 2015, 56, 3120.

Synthesis

Key: a) TrCl, Et₃N; b) LAH; c) (COCl)₂, DMSO, *i*-Pr₂EtN; d) HS(CH₂)₃SH, BF₃-OEt₂; e) SO₃-pyridine, DMSO, *i*-Pr₂EtN; f) (MeO)₂POCH₂CO₂Me, KHMDS, 18crown-6; g) DIBAL-H; h) allyl bromide, Zn; i) (-)-DIPT, Ti(O*i*-Pr)₄, TBHP, 4Å MS (resolution); j) Boc₂O, DMAP; k) NIS; I) K₂CO₃; m) NaH, TIPSOTf; n) *t*-BuLi, HMPA; o) MnO₂, then Me₂-triazolium I, DBU, MnO₂, 4Å MS, MeOH; p) I₂, NaHCO₃; q) NaBH₄; r) sugar, MeOTf, 4Å MS; s) CICH₂I, Et₂Zn; t) TBAF; u) LiOH, H₂O; v) MNBA, DMAP. **O.** Aggarwal et al. Angew. Chem. Int. Ed. **2016**, 55, 2498.

Sugar and Boronate Synthesis

Key: a) BzCl, DMAP, pyr, b) HBr, AcOH, c) Ag₂CO₃, H₂O, acetone, d) DBU,CNCCl₃, e) HBBr-SMe₂, then NaOH, then HCl, f) diethanolamine, g) Me₄-D-tartaramide, h) Et₂Zn, CH₂I₂, tartaramide, then pinacol.

Synthesis of Fragment 3

Key: a) Cl(CO)N*i*Pr₂, Et₃N, b) *s*-BuLi, (–)-sparteine, then vinyl-B(pin), MgBr₂-Et₂O, c) TIB-Cl, NaH, d) TEMPO, KBr, NaHCO₃, NaClO, e) *n*-BuLi, TFAA, then aldehyde, f) acrolein, TFA, g) K₂CO₃, h) **1**, TMSOTf, 4Å MS, i) NaOMe, j) Mel, NaH, k) Cy₂BH, then H₂O₂, KOH, I) TBSCl, Et₃N.

Fragment Union and End Game

Key: a) *s*-BuLi, (+)-sparteine, then **2**, then NaOH, H₂O₂, b) HCl, c) TEMPO, KBr, NaHCO₃, NaOCl, d) 2,4,6-*i*Pr₃BzCl, Et₃N, then DMAP.

Graphical Summary of Previous Syntheses of Zincophorin

A. Danishefsky et al. J. Am. Chem. Soc. 1987, 109, 1572; J. Am. Chem. Soc. 1988, 110, 4368.

Reagents

Key: (a) **S1**; (b) NaH, HMPA, then H₂O; (c) BOMCl, *i*-Pr₂EtN; (d) Ozonolysis; (e) **S2**, MgBr₂; (f) NaBH₄, CeCl₃; (g) 3,4-(OMe)₂PhCH₂Cl, p-TsOH; (h) BH₃-THF, then H₂O₂, NaOH; (i) (COCl)₂, DMSO, then Et₃N; (j) L-Selectride; (k) DDQ; (l) LiBH₄; (m) TBDPSCl; (n) Me₂C(OMe)₂, PPTS; (o) TBAF; (p) **S3**; (q) NaBH₄, CeCl₃; (r) Ac₂O, DMAP; (s) (*E*)-crotylsilane, BF₃-OEt₂; (t) OsO₄, NalO₄; (u) CrO₃; (v) H₂, Pd-C; (w) BzCl, pyridine; (x) p-TsOH.

A. Danishefsky et al. J. Am. Chem. Soc. 1987, 109, 1572; J. Am. Chem. Soc. 1988, 110, 4368. (Cont'd)

Fragment 2

Key: (a) LDA, then MeI; (b) LAH; (c) (COCI)₂, DMSO, then Et_3N ; (d) $Ph_3PC(Me)CO_2Et$; (e) DIBAL-H; (f) **A1**, TiCl₄; (g) *p*-TsCl, pyridine, DMAP; (h) TBSOTf, Et_3N ; (i) KSPh; (j) PhSeSePh, H_2O_2 .

Fragment Union and End Game

Key: (a) *n*-BuLi, MgBr₂; (b) Na/Hg; (c) 1M HCI/MeOH/THF; (d) 2.0 M LiOH in MeOH/THF, then 1N HCI; (e) CH₂N₂.

B. Cossy Org. Lett. 2003, 5, 4037; J. Org. Chem. 2004, 69, 4626.

Reagents

Fragment 1

Key: (a) Rh₂(R-MEPY)₄; (b) MeLi, then TBDPSCI; (c) MsCI, NEt₃, DMAP; (d) BH₃-THF, H₂O₂; (e) PCC, 4A MS; (f) (EtO)₂P(O)CH₂COOEt; (g) H₂, PtO₂; (h) DIBAL-H; (i) Cy₂BCI, Et₂NMe; (j) HF-Py; (k) Hg(TFA)₂, KBr; (l) Bu₃SnH; (m) TBDPSCI, IM; (n) LiBH₄, then NalO₄; (o) NaClO₂; (p) TMSCHN₂; (q) HF-Py

Fragment 2

Key: (a) DMP; (b) Pd(OAc)₂, PPh₃, ZnEt₂; (c) H₂, Pd/BaSO₄; (d) TBSOTf, 2,6-lutidine; (e) OsO₄, NMO; (f) NaIO₄; (g) Et₂CuLi; (h) DMP

Fragment 3

Key: (a) Pd(OAc)₂, PPh₃, ZnEt₂; (b) MOMCI; (c) BuLi, RBr, HMPA; (d) TBAF; (e) DMP, Py; (f) (Z)-propenyl MgBr, MgBr₂-OEt₂; (g) diketene, DMAP; (h) Al₂O₃; (i) DIBAL-H; (j) MsCI, NEt₃; (k) LAH; (l) TSOH; (m) TBSOTf; (n) Li, NH₃; (o) DMP, Py.

Fragment Union and End Game

Key: (a) TiCl₄; (b) NaBH₄; (c) HF-Py

C. Miyashita et al. Angew. Chem. Int. Ed. 2004, 43, 4341.

Starting Materials

Key: (a) (SiClPh₂SiMe₂Ph, Et₃N; (b) Cp₂Zr(H)Cl, then Me₂Zn, 4Å sieves, BOMCl; (c) Pd(acac)₂, *t*-BuCH₂C(Me)₂NC; (d) *n*-BuLi. (Fukuda, K.; Miyashita, M.; Tanino, K. *Tetrahedron Lett.* **2010**, *51*, 4523.)

Key: (a) $(COCI)_2$, DMSO, then Et₃N; (b) (o-Me-PhO)₂P(O)CH₂CO₂Et, NaH; (c) DIBAL-H; (d) MCPBA; (e) (i-PrO)₂P(O)CH₂CO₂Et, *t*-BuOK; (f) Me₂Zn-CuCN; (g) H₂, PtO₂; (h) Ti(O*i*-Pr)₄; (i) DIBAL-H, then Ac₂O, pyridine; (j) **S1**, TiCl(O*i*-Pr)₄; (k) TIPSOTf, 2,6-lutidine; (l) Ca, NH₃; (m) Ti(O*i*-Pr)₄, D-(–)-DIPT, *t*-BuOOH, 4Å sieves; (n) Me₂CuLi; (o) TESOTf, 2,6-lutidine; (p) Ti(O*i*-Pr)₄, D-(–)-DET, *t*-BuOOH, 4Å sieves; (q) $(EtO)_2P(O)CH_2CO_2Et$, NaH; (r) TBAF; (s) Me₃Al-D₂O; (t) PPh₃, I₂, imidazole; (u) BuLi; (v) TBSCI, DMAP; (w) NaClO₂, NaH₂PO₄, 2-methyl-2-butene; (x) TMSCHN₂ (y) 9-BBN.

C. Miyashita *et al. Angew. Chem. Int. Ed.* **2004**, *4*3, 4341. (Cont'd)

Fragment 2

Fragment Union and End Game

Key: (a) aq. Cs₂CO₃, AsPh₃, [PdCl₂(dppf)]; (b) TEAF; (c) LiOH, H₂O/MeOH/THF.

D. Leighton et al. J. Am. Chem. Soc. 2011, 133, 7308.

TBSO

Me Me

BnO.

Fragment 2

1

Key: (a) NaBH₄, I₂; (b) KOH, CS₂, H₂O, reflux; (c) propionyl chloride, DMAP, TEA.

Key: (a) NaH, BnBr; (b) Shi epoxidation, oxone, Na₂EDTA; (c) Propyne, BuLi, AlMe₃; (d) dicrotylsilane, NaH; (e)Rh(acac)(CO)₂, then H₂O₂, KF; (f) TBSOTf, 2,6-lutidine; (g) DIBAL-H; (h) CDI; (i) OsO₄, NMO, then NaIO₄; (j) K-trifluorocrotylborate, TBAI.

0

Ňе

OMe

N-N Ph

f,g'

0

Мe

0

Ŵе

OMe

2

0

(17 steps in LLS)

Ñe Ñe

TBSO

02

Ph

N-N

Key: (a) Rh(acac)(CO)₂, PPh₃, CO/H₂; (b) Ac₂O, Py, DMAP; (c) TiCl₄, SnCl₄, /Pr₂NEt; (d) DMAP, MeOH; (e) Pd/C; (f) DIAD, PPh₃; (g) (NH₄)₆Mo₇O₂₄-⁴H₂O, H₂O₂

A1

c,d,e

TBSO

193 Y Me

HO.

0

Me Me

S133

D. Leighton et al. J. Am. Chem. Soc. 2011, 133, 7308. (Cont'd)

Fragment 3

Key: (a) Sc(OTf)₃; (b) Hoveyda-Grubbs-II, then TsCl, Et₃N; (c) Sc(OTf)₃; (d) KHMDS, PMBBr, then LiBEt₃H; (e) OsO₄, NaIO₄, 2,6-lutidine.

Fragment Union and End Game

Key: (a) KHMDS; (b) DDQ, pH = 7 buffer; (c) NaOMe; (d) HF, H₂O.

E. Guindon et al. Tetrahedron 2015, 71, 709.

Reagents

Fragment 1

Key: (a) BF₃OEt₂, **S1**; (b)Bu₂BOTf, DIEA, then Bu₃SnH, BEt₃, air; (c) TESOTf, 2,6- lutidine; (d) DIBAL-H; (e) (COCl)₂, DMSO, then Et₃N; (f) Ph₃PC(H)=CO₂Me; (g) H₂, Pd–C; (h) DMP, NaHCO₃; (i) BiBr₃, **S1**; (j) Ph₃SnH, BEt₃, air; (k) BnO=CNHCl₃, TfOH; (l) TBAF; (m) TiCl₄, **S1**; (n) TBDPSCI, Et₃N, DMAP; (o) BF₃OEt₂, **S2**; (p)MePPh₃Br, *n*-BuLi; (q) 9-BBN, then NaOH/H₂O₂; (r) PivCl, pyridine; (s) NaClO₂, NaH₂PO₄, 2-methyl-2-butene; (t) TMSCHN₂; (u) TBSOTf, 2,6-lutidine; (v) K₂CO₃; (w) DIAD, PPh₃, **S3**; (x) (NH₄)₆Mo₇O₂₄-4H₂O, H₂O₄.

E. Guindon et al. Tetrahedron 2015, 71, 709.

Fragment 2

Key: (a) $(COCI)_2$, DMSO, then Et_3N ; (b) $Ph_3P=C(Me)CO_2Et$; (c) DIBAL-H; (d) $MgCI_2$, Et_3N , TMSCI, **A1**; (e) TFA; (f) PMPOC(NH)CCI_3 (g) LiBH₄; (h) DMP, NaHCO₃.

Fragment Union and End Game

Key: (a) KHMDS; (b) DDQ, pH 7 buffer; (c) TBAF.

Graphical Summary of Previous Syntheses of Cryptocaryol A

A. Mohapatra et al. Eur. J. Org. Chem. 2013, 1051.

Linear Synthesis

Key: (a) PCC, CH₂Cl₂, rt; (b) TiCl₄, Ti(O*i*Pr)₄, (S)-BINOL, Ag₂O, allyltributylstannane, -20 °C; (c) NaH, BnBr, THF, 0 °C; (d) OsO₄, NalO₄, 2,6-lutidine, dioxane, rt; (e) allyITMS, TiCl₄, -78 °C; (f) Boc₂O, Et₃N, CH₂Cl₂, rt; (g) NIS, CH₃CN, -40 to 0 °C; (h) K₂CO₃, MeOH, rt; (i) first iteration: NaH, PMBCI, THF, DMF, 0 °C (subsequent iterations: NaH, MOMCI, THF, DMF, 0 °C); (j)vinylmagnesium bromide, Cul, THF, -20 °C; (k) acryloyl chloride, DIPEA, CH₂Cl₂, 0°C; (l) Grubbs I, CH₂Cl₂, reflux; (m) TiCl₄, CH₂Cl₂, rt.

B. O'Doherty et al. J. Am. Chem. Soc. 2013, 135, 9334.

Linear Synthesis

Key: (a) PMBCI, NaH, TFAB, 0 °C; (b) CICO₂Me, *n*-BuLi, THF, -78 to 0 °C; (c) PPh₃, PhOH, benzene, 50 °C; (d) AD-mix- α , *t*-BuOH/H₂O, 0 °C; (e) triphosgene, pyridine, DMAP, CH₂CI₂, -78 °C; (f) PdPPh₃, Et₃N, HCO₂H, THF, reflux; (g)PhCHO, KOtBu, THF, 0 °C; (h) DIBALH, CH₂CI₂, -78 °C; (i) (*R*,*R*)-Leighton, Sc(OTf)₃, CH₂CI₂, -10 °C, (j) ethyl acetate, Grubbs II, CH₂CI₂; (k) PhCHO, KOtBu, THF, 0 °C; (l) DIBALH, CH₂CI₂, -78 °C; (m) 1-pentadecyne, *n*-BuLi, THF, -78 °C; (n) DMP, CH₂CI₂, 0 °C; (o) (*R*,*R*)-Noyori, Et₃N, HCO₂H; (p) NBSH, Et₃N, CH₂CI₂; (q) TBSCI, imidazole, DMF; (r) DDQ, CH₂CI₂, H₂O, 0 °C; (s) DMP, CH₂CI₂, 0 °C; (t) (*S*,*S*)-Leighton, Sc(OTf)₃, CH₂CI₂, -10 °C; (u) acrylic acid, DCC, DMAP, CH₂CI₂; (v) Grubbs I, CH₂CI₂, reflux; (w) AcOH/H₂O = 4:1, 80 °C.

C. Cossy et al. J. Org. Chem. 2015, 80, 8668.

Starting Materials

Key: (a) NaH, BnBr, *n*-Bu₄NI, THF, rt, 7h; (b) PCC, NaOAc, 4 Å MS, CH_2Cl_2 , rt, 3h; (c) TsCl, Et₃N, DMAP, CH_2Cl_2 , 0 °C to rt, 3 h; (d) Li₂CuCl₄, vinylmagnesium bromide, THF, -40 °C, 3h.

Key: (a) TFA, CH_2CI_2 , rt, 3 then NaHCO₃, Et_3N ; (b) DMP, CH_2CI_2 , rt 2.5 h; (c) L-Selectride, THF, -78 °C, 1 h; (d) TBDPSCI, imidazole, CH_2CI_2 , rt, 14 h; (e) H_2 , Pd/C, MeOH, EtOAc, rt, 16 h; (f) TPAP, NMO, CH_2CI_2 , rt, 2 h; (g) **B**, TFA, CH_2CI_2 , rt, 3 h then Et_3N , NaHCO₃ (aq); (h) DMP, CH_2CI_2 , rt, 2h; (i) NaBH₄, MeOH, - 40 °C, 1 h; (j) NaI, acetone, ∞ w, 120 °C, 2 h; (k) acryloyl chloride, *i*Pr₂NEt, CH_2CI_2 , 0 °C to rt, 3.5 h; (l) Zn, THF/H₂O = 5:1, 70 °C, 1 h; (m) TBSOTf, 2,6-lutidine, CH_2CI_2 , -78 °C, 1 h; (n) Grubbs I (10 mol%), CH_2CI_2 , 45 °C, 2.5 h; (o) O₃, CH_2CI_2 , -78 °C then PPh₃; (p) (1) heptadecan-2-one, Cy_2BCI , Et_3N , pentane, 0 °C, 2 h (2) aldehyde, pentane, -78 °C to 40 °C, 4 h (3) MeOH/pH7 buffer/H₂O₂, -40 °C to rt, 16 h; (q) Me₄NBH(OAc)₃, $CH_3CN/MeOH = 1:1$, -20 °C, 7 h; (r) HF•CH₃CN, rt, 2.5 h.

D. Dias et al. Org. Biomol. Chem. 2015, 13, 3575.

Linear Synthesis

Key: (a) PMB trichloroacetimidate, CSA, CH₂Cl₂, rt; (b) PdCl₂, CuCl, O₂, DMF, H₂O, rt; (c) (1) Cy₂BCl, Et₃N, Et₂O, -30 °C (2) 3-butenal, -78 °C; (d) LiBH₄, Et₂BOMe, THF, MeOH, -78 °C; (e) 2,2-DMP, CSA, rt; (f)PdCl₂, CuCl, O₂, DMF, H₂O, rt; (g) (1) Cy₂BCl, Et₃N, Et₂O, -30 °C (2) 3-butenal, -78 °C; (h) Me₄NHB(OAc)₃, MeCN, AcOH, -30 to -20 °C; (i) 2,2-DMP, PPTS, rt; (j) DDQ, CH₂Cl, buffer, 0 °C; (k) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; (l) OsO₄, NMO, *t*-BuOH, THF, H₂O, rt; (m) NalO₄, THF, H₂O; (n) ethyl 2-(bis(*o*-tolyloxy)phosphoryl)acetate, NaH, THF, -78 °C; (o) (1) Cy₂BCl, Et₃N, Et₂O, -30 °C (2) palmitaldehyde, CH₂Cl₂, -78 °C; (p) Me₄NHB(OAc)₃, MeCN, AcOH, -30 to -20 °C; (q) CSA, MeOH.