
Formal verification using model checking

Model checking [1, 8] is a formal method for verifying if an abstract represen-
tation of a system (i.e. a model) is correct relative to a formal specification
describing the desired/expected system behaviour. The general model checking
workflow comprises the following steps:

1. Model construction: Creating an abstract representation of the system
(e.g. a computational model);

2. Formal specification: Encoding the formal specification describing the
desired/expected system behaviour;

3. Model checking: Automatically verifying the correctness of the model
relative to the formal specification.

Model construction

Computational models of biological systems are usually encoded using high
level modelling formalisms such as (ordinary) differential equations [3, 5], Petri
nets [2, 11, 14], process algebras (e.g. Bio-PEPA [7, 13]), software-specific (e.g.
BIOCHAM [6], BioNetGen [9, 12]) rule-based modelling languages, or timed
automata [4, 18]. However for model checking purposes these computational
models are usually translated to a single common low level (probabilistic) la-
belled state transition (LSTS) [1, Chapters 2 and 10] representation. The main
reason for this is that the model checking algorithms can then be defined only
once relative to a single rather than multiple modelling formalisms.

Executions or simulations of LSTSs are represented as discrete sequences
of states where transitions between states are triggered by events and are ex-
ecuted instantaneously. Relevant system properties are encoded by state vari-
ables whose values may change between states. Therefore the behaviour of the
system is usually defined by time series data describing how the values of the
state variables change over time.

Formal specification

The specifications against which the models are verified comprise statements
which describe what is the expected system behaviour, respectively how the
state variable values are expected to change over time. One class of formal
languages which enable reasoning about system changes over time, and which we
consider here, are called temporal logics. Depending on the underlying structure
of time the temporal logic can be either linear or branching; here only linear
temporal logics are considered.

One of the most commonly employed temporal logics which assumes a linear
representation of time is called Linear Temporal Logic (LTL) [10, 19]. State-
ments written in this language can be decomposed into three types of proposi-
tions, namely atomic, Boolean and temporal.

Atomic propositions are Boolean expressions defined over (state) variables
(e.g. concentration of a protein [X]), constants (e.g. real number 2.3) and pred-
icate symbols (e.g. comparison predicate >), which cannot be divided into sim-
pler logic statements.

1



Conversely a Boolean proposition is a compound statement comprising a
Boolean operator and logic propositions (denoted here by φ):

• ∼ φ (not): The negation of logic proposition φ is true i.e. φ is false;

• φ1 ∧ φ2 (and): Logic proposition φ1 is true and logic proposition φ2 is
true;

• φ1 ∨ φ2 (or): Logic proposition φ1 is true or logic proposition φ2 is true;

• φ1 ⇒ φ2 (implication): Logic proposition φ1 is true implies logic propo-
sition φ2 is true;

• φ1 ⇔ φ2 (equivalence): Logic proposition φ1 is true equivalent to logic
proposition φ2 is true,

where ∼ is a unary Boolean operator, respectively ∧, ∨, ⇒, ⇔ are binary
Boolean operators.

Finally temporal propositions are used to reason about how a system changes
over time. They comprise a temporal operator and logic propositions (similarly
denoted by φ):

• Fφ (Future): Eventually logic proposition φ holds;

• Gφ (Globally): Logic proposition φ holds always;

• φ1Uφ2 (Until): Logic proposition φ1 holds until logic proposition φ2
holds;

• Xφ (neXt): Logic proposition φ holds in the next time point,

where F , G, X are unary temporal operators, and U is a binary temporal
operator.

One of the limitations of LTL is that it does not enable writing logic proper-
ties relative to finite sequences of states (e.g. the first 10 states) in a given com-
putation path. Therefore, in case of complex systems whose behaviour yields an
infinite sequence of states the evaluation of LTL logic properties could be poten-
tially intractable. In such cases logic properties considering finite subsequences
of states, called bounded logic properties, can be employed instead.

To enable writing such bounded logic properties, various extensions of LTL
were developed. One of these extensions is called Bounded Linear Temporal
Logic (BLTL). As indicated by Jha et al. [17] BLTL augments classic LTL
temporal operators F , G and U with an upper bound t ∈ Q≥0:

• F t φ: Eventually logic proposition φ holds within the time interval [0, t];

• Gt φ: Logic proposition φ holds always within the time interval [0, t];

• φ1 U t φ2: Logic proposition φ1 holds until logic proposition φ2 holds
within the time interval [0, t].

Moreover as suggested later by Jha and Ramanathan [16] it is possible to ad-
ditionally augment the temporal operators F , G and U with intervals [t1, t2],
t1, t2 ∈ Q≥0, such that logic propositions are evaluated against bounded time
intervals which start at time point t1 6= 0.

2



Model checking

Model checking algorithms take a model and a formal specification as input and
decide if the model behaviour conforms to the given specification, respectively if
the values of the state variables change over time as expected. Such algorithms
are usually implemented in software tools called model checkers which automate
the entire verification process.

Depending if the model under consideration and corresponding formal spec-
ification are probabilistic or not, the employed model checking algorithms can
be either exhaustive/approximate probabilistic or exhaustive non-probabilistic.

Exhaustive (non-)probabilistic model checking algorithms explore the entire
system state space in order to decide if the model is correct relative to the given
specification. The main advantage of such approaches is that they guarantee the
(in)correctness of the model because all possible system states are potentially
considered. Conversely one of the main disadvantages is that the computational
complexity of exhaustive algorithms is proportional to the number of states
considered. Therefore they can only be employed for models whose state space
can be explored in reasonable time.

In contrast approximate probabilistic model checking algorithms explore the
system state space only partially by considering a finite number of finite model
simulations. One of the main disadvantages of such approaches is that the
result of the model checking procedure is only an approximation and is not
guaranteed to be correct. However several approximate probabilistic algorithms
(e.g. [15,20,21]) enable the user to place an upper bound on the approximation
error and thus ensure that the model checking result is provided with a certain
degree of confidence (e.g. 95%). Conversely one of the main advantages of such
approaches is that their complexity does not depend on the number of possible
system states and therefore can be employed for systems with both small and
large, potentially infinite, state spaces.

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, June 2008.

[2] Paolo Ballarini, Emmanuelle Gallet, Pascale Le Gall, and Matthieu Man-
ceny. Formal Analysis of the Wnt/β-catenin through Statistical Model
Checking. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications, number 8803 in Lecture Notes in Computer
Science, pages 193–207. Springer Berlin Heidelberg, October 2014.

[3] Jǐŕı Barnat, Luboš Brim, Ivana Černá, Sven Dražan, Jana Fabriková, Jan
Láńık, David Šafránek, and Hongwu Ma. : A Framework for Parallel Anal-
ysis of Biological Models. Electronic Proceedings in Theoretical Computer
Science, 6:31–45, October 2009. arXiv: 0910.0928.

[4] Ezio Bartocci, Flavio Corradini, Emanuela Merelli, and Luca Tesei. Detect-
ing synchronisation of biological oscillators by model checking. Theoretical
Computer Science, 411(20):1999–2018, April 2010.

3



[5] Grégory Batt, Calin Belta, and Ron Weiss. Model Checking Genetic Reg-
ulatory Networks with Parameter Uncertainty. In Alberto Bemporad, An-
tonio Bicchi, and Giorgio Buttazzo, editors, Hybrid Systems: Computation
and Control, number 4416 in Lecture Notes in Computer Science, pages
61–75. Springer Berlin Heidelberg, January 2007.

[6] Laurence Calzone, Nathalie Chabrier-Rivier, François Fages, and Sylvain
Soliman. Machine Learning Biochemical Networks from Temporal Logic
Properties. In Corrado Priami and Gordon Plotkin, editors, Transactions
on Computational Systems Biology VI, number 4220 in Lecture Notes in
Computer Science, pages 68–94. Springer Berlin Heidelberg, 2006.

[7] Federica Ciocchetta, Stephen Gilmore, Maria Luisa Guerriero, and Jane
Hillston. Integrated Simulation and Model-Checking for the Analysis of
Biochemical Systems. Electronic Notes in Theoretical Computer Science,
232:17–38, March 2009.

[8] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[9] Edmund M. Clarke, James R. Faeder, Christopher J. Langmead,
Leonard A. Harris, Sumit Kumar Jha, and Axel Legay. Statistical Model
Checking in BioLab: Applications to the Automated Analysis of T-Cell
Receptor Signaling Pathway. In Monika Heiner and Adelinde M. Uhrma-
cher, editors, Computational Methods in Systems Biology, number 5307 in
Lecture Notes in Computer Science, pages 231–250. Springer Berlin Hei-
delberg, 2008.

[10] Bernd Finkbeiner and Henny Sipma. Checking finite traces using al-
ternating automata. Electronic Notes in Theoretical Computer Science,
55(2):147–163, October 2001.

[11] David Gilbert, Monika Heiner, and Sebastian Lehrack. A Unifying Frame-
work for Modelling and Analysing Biochemical Pathways Using Petri Nets.
In Muffy Calder and Stephen Gilmore, editors, Computational Methods in
Systems Biology, number 4695 in Lecture Notes in Computer Science, pages
200–216. Springer Berlin Heidelberg, 2007.

[12] Haijun Gong, Paolo Zuliani, Anvesh Komuravelli, James R. Faeder, and
Edmund M. Clarke. Computational Modeling and Verification of Signal-
ing Pathways in Cancer. In Katsuhisa Horimoto, Masahiko Nakatsui, and
Nikolaj Popov, editors, Algebraic and Numeric Biology, number 6479 in
Lecture Notes in Computer Science, pages 117–135. Springer Berlin Hei-
delberg, 2012.

[13] Maria Luisa Guerriero. Qualitative and Quantitative Analysis of a Bio-
PEPA Model of the Gp130/JAK/STAT Signalling Pathway. In Corrado
Priami, Ralph-Johan Back, and Ion Petre, editors, Transactions on Com-
putational Systems Biology XI, number 5750 in Lecture Notes in Computer
Science, pages 90–115. Springer Berlin Heidelberg, 2009.

[14] Monika Heiner, David Gilbert, and Robin Donaldson. Petri Nets for Sys-
tems and Synthetic Biology. In Marco Bernardo, Pierpaolo Degano, and

4



Gianluigi Zavattaro, editors, Formal Methods for Computational Systems
Biology, number 5016 in Lecture Notes in Computer Science, pages 215–
264. Springer Berlin Heidelberg, 2008.

[15] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Pey-
ronnet. Approximate probabilistic model checking. In Bernhard Steffen
and Giorgio Levi, editors, Verification, Model Checking, and Abstract In-
terpretation, number 2937 in Lecture Notes in Computer Science, pages
73–84. Springer Berlin Heidelberg, January 2004.

[16] S.K. Jha and A. Ramanathan. Quantifying uncertainty in epidemiological
models. In BioMedical Computing (BioMedCom), 2012 ASE/IEEE Inter-
national Conference on, pages 80–85, Washington, DC, Dec 2012. IEEE.

[17] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay,
André Platzer, and Paolo Zuliani. A bayesian approach to model checking
biological systems. In Pierpaolo Degano and Roberto Gorrieri, editors,
Computational Methods in Systems Biology, number 5688 in Lecture Notes
in Computer Science, pages 218–234. Springer Berlin Heidelberg, January
2009.

[18] Bing Liu, Soonho Kong, Sicun Gao, Paolo Zuliani, and Edmund M. Clarke.
Parameter Synthesis for Cardiac Cell Hybrid Models Using δ-Decisions. In
Pedro Mendes, Joseph O. Dada, and Kieran Smallbone, editors, Computa-
tional Methods in Systems Biology, number 8859 in Lecture Notes in Com-
puter Science, pages 99–113. Springer International Publishing, November
2014.

[19] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57, Providence, RI,
USA, Oct 1977. IEEE.

[20] H̊akan L. S. Younes. Verification and Planning for Stochastic Processes with
Asynchronous Events. Doctor of philosophy, Carnegie Mellon, Pittsburgh,
2005.

[21] H̊akan L. S. Younes, Marta Kwiatkowska, Gethin Norman, and David
Parker. Numerical vs. statistical probabilistic model checking. Interna-
tional Journal on Software Tools for Technology Transfer, 8(3):216–228,
June 2006.

5


