
Formal verification using model checking

Model checking [1, 8] is a formal method for verifying if an abstract represen-
tation of a system (i.e. a model) is correct relative to a formal specification
describing the desired/expected system behaviour. The general model checking
workflow comprises the following steps:

1. Model construction: Creating an abstract representation of the system
(e.g. a computational model);

2. Formal specification: Encoding the formal specification describing the
desired/expected system behaviour;

3. Model checking: Automatically verifying the correctness of the model
relative to the formal specification.

Model construction

Computational models of biological systems are usually encoded using high
level modelling formalisms such as (ordinary) differential equations [3, 5], Petri
nets [2, 11, 14], process algebras (e.g. Bio-PEPA [7, 13]), software-specific (e.g.
BIOCHAM [6], BioNetGen [9, 12]) rule-based modelling languages, or timed
automata [4, 18]. However for model checking purposes these computational
models are usually translated to a single common low level (probabilistic) la-
belled state transition (LSTS) [1, Chapters 2 and 10] representation. The main
reason for this is that the model checking algorithms can then be defined only
once relative to a single rather than multiple modelling formalisms.

Executions or simulations of LSTSs are represented as discrete sequences
of states where transitions between states are triggered by events and are ex-
ecuted instantaneously. Relevant system properties are encoded by state vari-
ables whose values may change between states. Therefore the behaviour of the
system is usually defined by time series data describing how the values of the
state variables change over time.

Formal specification

The specifications against which the models are verified comprise statements
which describe what is the expected system behaviour, respectively how the
state variable values are expected to change over time. One class of formal
languages which enable reasoning about system changes over time, and which we
consider here, are called temporal logics. Depending on the underlying structure
of time the temporal logic can be either linear or branching; here only linear
temporal logics are considered.

One of the most commonly employed temporal logics which assumes a linear
representation of time is called Linear Temporal Logic (LTL) [10, 19]. State-
ments written in this language can be decomposed into three types of proposi-
tions, namely atomic, Boolean and temporal.

Atomic propositions are Boolean expressions defined over (state) variables
(e.g. concentration of a protein [X]), constants (e.g. real number 2.3) and pred-
icate symbols (e.g. comparison predicate >), which cannot be divided into sim-
pler logic statements.
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Conversely a Boolean proposition is a compound statement comprising a
Boolean operator and logic propositions (denoted here by φ):

• ∼ φ (not): The negation of logic proposition φ is true i.e. φ is false;

• φ1 ∧ φ2 (and): Logic proposition φ1 is true and logic proposition φ2 is
true;

• φ1 ∨ φ2 (or): Logic proposition φ1 is true or logic proposition φ2 is true;

• φ1 ⇒ φ2 (implication): Logic proposition φ1 is true implies logic propo-
sition φ2 is true;

• φ1 ⇔ φ2 (equivalence): Logic proposition φ1 is true equivalent to logic
proposition φ2 is true,

where ∼ is a unary Boolean operator, respectively ∧, ∨, ⇒, ⇔ are binary
Boolean operators.

Finally temporal propositions are used to reason about how a system changes
over time. They comprise a temporal operator and logic propositions (similarly
denoted by φ):

• Fφ (Future): Eventually logic proposition φ holds;

• Gφ (Globally): Logic proposition φ holds always;

• φ1Uφ2 (Until): Logic proposition φ1 holds until logic proposition φ2
holds;

• Xφ (neXt): Logic proposition φ holds in the next time point,

where F , G, X are unary temporal operators, and U is a binary temporal
operator.

One of the limitations of LTL is that it does not enable writing logic proper-
ties relative to finite sequences of states (e.g. the first 10 states) in a given com-
putation path. Therefore, in case of complex systems whose behaviour yields an
infinite sequence of states the evaluation of LTL logic properties could be poten-
tially intractable. In such cases logic properties considering finite subsequences
of states, called bounded logic properties, can be employed instead.

To enable writing such bounded logic properties, various extensions of LTL
were developed. One of these extensions is called Bounded Linear Temporal
Logic (BLTL). As indicated by Jha et al. [17] BLTL augments classic LTL
temporal operators F , G and U with an upper bound t ∈ Q≥0:

• F t φ: Eventually logic proposition φ holds within the time interval [0, t];

• Gt φ: Logic proposition φ holds always within the time interval [0, t];

• φ1 U t φ2: Logic proposition φ1 holds until logic proposition φ2 holds
within the time interval [0, t].

Moreover as suggested later by Jha and Ramanathan [16] it is possible to ad-
ditionally augment the temporal operators F , G and U with intervals [t1, t2],
t1, t2 ∈ Q≥0, such that logic propositions are evaluated against bounded time
intervals which start at time point t1 6= 0.
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Model checking

Model checking algorithms take a model and a formal specification as input and
decide if the model behaviour conforms to the given specification, respectively if
the values of the state variables change over time as expected. Such algorithms
are usually implemented in software tools called model checkers which automate
the entire verification process.

Depending if the model under consideration and corresponding formal spec-
ification are probabilistic or not, the employed model checking algorithms can
be either exhaustive/approximate probabilistic or exhaustive non-probabilistic.

Exhaustive (non-)probabilistic model checking algorithms explore the entire
system state space in order to decide if the model is correct relative to the given
specification. The main advantage of such approaches is that they guarantee the
(in)correctness of the model because all possible system states are potentially
considered. Conversely one of the main disadvantages is that the computational
complexity of exhaustive algorithms is proportional to the number of states
considered. Therefore they can only be employed for models whose state space
can be explored in reasonable time.

In contrast approximate probabilistic model checking algorithms explore the
system state space only partially by considering a finite number of finite model
simulations. One of the main disadvantages of such approaches is that the
result of the model checking procedure is only an approximation and is not
guaranteed to be correct. However several approximate probabilistic algorithms
(e.g. [15,20,21]) enable the user to place an upper bound on the approximation
error and thus ensure that the model checking result is provided with a certain
degree of confidence (e.g. 95%). Conversely one of the main advantages of such
approaches is that their complexity does not depend on the number of possible
system states and therefore can be employed for systems with both small and
large, potentially infinite, state spaces.
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