
Proof that the multiscale spatio-temporal model
checking problem is well-defined

To show that the multiscale spatio-temporal model checking problem is well-
defined we will first prove that the number of required model simulations and
state transitions within each simulation are finite.

Finite number of required simulations

Considering the approximate probabilistic model checking approaches described
in Table 1, a finite number of model simulations is sufficient to determine if a
logic property holds.

Table 1: Classification of considered approximate probabilistic model checking
approaches. Bayesian methods consider prior knowledge when deciding if a logic
property holds. Conversely frequentist approaches assume no prior knowledge
is available. All methods except probabilistic black-box take as input a user-
defined upper bound on the approximation error. They request additional model
executions until the result is sufficiently accurate. Probabilistic black-box model
checking takes a fixed number of model simulations as input and computes a
p-value as the confidence level of the result.

Frequentist Bayesian

Estimate
Chernoff-Hoeffding bounds

based [1]
Bayesian mean and
variance based [5]

Hypothesis
testing

Improved frequentist
statistical hypothesis

testing [4, 8] Bayesian statistical
hypothesis testing [2, 3]

Probabilistic
black-box [6, 7]

Probabilistic black-box model checking is the only considered approach
which can provide an answer regardless of the number of model simulations
executed. The other considered model checking approaches require at least
a certain number of model simulation traces to be available. Depending on
the considered approach the minimum number of required model simulations
can be determined at the beginning of the model verification process (for the
Chernoff-Hoeffding bounds based approach) or not (for the improved frequen-
tist and Bayesian statistical hypothesis testing, and Bayesian mean and variance
estimate based approaches). Although all model checking methods require a fi-
nite number of model simulations, the execution time varies with the temporal
bounds employed (see Definition 1 below), the value of the user-defined prob-
ability θ (for the probabilistic black-box, improved frequentist and Bayesian
statistical hypothesis testing approaches), and the true probability p of the con-
sidered PBLMSTL specification to hold.

For practical applications users could potentially want to set an upper bound
on the execution time before an answer is provided. Therefore the wrapper
Algorithm 1 is employed to execute each model checking algorithm specified

1

in Table 1. If an answer can be provided using the requested approach within
the specified execution time interval then it is reported to the user. Otherwise
probabilistic black-box model checking is employed to report the answer based
on the model simulations generated and evaluated so far.

In the beginning of Algorithm 1 areMoreModelSimulationsRequired,
the boolean flag indicating if more model simulations are required, is set
to true. Afterwards the collection of valid model simulations is ini-
tialised based on the given simulationsInputSet. The model checker
of type modelCheckingType is then executed to verify if the logic
property logicProperty holds considering the available simulations
and set of modelCheckingParameters. While the number of elapsed
minutes is less than extraEvaluationTime and the number of avail-
able model simulations is insufficient to evaluate logicProperty (i.e.
areMoreModelSimulationsRequired is true) the loop comprising the fol-
lowing steps is executed:

1. Run extraEvaluationProgram to generate new simulations;

2. The collection of simulations is updated considering valid and previ-
ously unevaluated simulation input files;

3. The modelCheckingType model checker execution is resumed consid-
ering the additional simulations.

The loop is exited when either extraEvaluationTime min-
utes elapsed or enough model simulations have been provided (i.e.
areMoreModelSimulationsRequired is false). In the former case
the probabilistic black-box model checker is executed to provide a result
considering the provided multiscaleArchitectureGraph. Otherwise the
result is computed using the modelCheckingType model checker. In
the end both result and confidence level are reported to the user; see
Table 2 for a description of the input parameters, result and confidence
level for each approximate probabilistic model checking approach considered.
The result is encoded as a boolean value (i.e. true/false). Conversely the
confidence level is encoded as one or more real values. For all model
checking approaches considered the confidence level is equal to the input
parameters, except probabilistic black-box where the confidence level
represents p-values.

The main advantages of Algorithm 1 are:

• The model checking execution time and number of generated and eval-
uated simulations is finite. Depending on the parameters of the model
checker, the distribution of the data and the number of required simula-
tions, the answer will be provided using the desired model checker type or
the default probabilistic black-box model checker.

• In contrast to traditional model checking methods in our approach the
model checking task is decoupled from a specific model and model simu-
lation environment. The path to an external program responsible for sim-
ulating the model and generating corresponding MSTML files is provided
as input to the model checker. Whenever additional model simulations are

2

Algorithm 1 The wrapper algorithm employed to call specific model check-
ing algorithms (see Table 1 for the considered approaches). If sufficient model
simulations are generated and evaluated within extraEvaluationT ime minutes,
then the model checking algorithm selected by the user is employed to provide
an answer. Otherwise the user is informed that the maximum evaluation time
threshold was reached and the answer is provided using the probabilistic black-
box model checking approach. Model simulations are generated and stored in
an input set simulationsInputSet using the external model simulation program
extraEvaluationProgram. The logic property to be verified is stored in the
variable logicProperty.

Require: modelCheckingType is the specific model checking approach,
modelCheckingParameters is the collection of parameters required by the
chosen modelCheckingType, extraEvaluationT ime is the maximum num-
ber of minutes allowed for generating and evaluating additional model sim-
ulations, extraEvaluationProgram is the model simulation program which
is called whenever new simulations are required, simulationsInputSet is the
set containing the simulations, and logicProperty is the PBLMSTL logic
property to be verified

Ensure: A true/false answer together with a confidence level is provided

1: areMoreModelSimulationsRequired ← true;
2:

3: simulations← GetSimulations(simulationsInputSet);
4:

5: RunModelChecker(modelCheckingType, modelCheckingParameters,
6: simulations, logicProperty,
7: multiscaleArchitectureGraph, result,
8: confidence, areMoreModelSimulationsRequired);
9:

10: while (number of minutes elapsed < extraEvaluationT ime) AND
11: (areMoreModelSimulationsRequired == true) do
12: GenerateModelSimulations(extraEvaluationProgram);
13: UpdateCollectionOfSimulations(simulations, simulationsInputSet);
14: RunModelChecker(modelCheckingType, modelCheckingParameters,
15: simulations, logicProperty,
16: multiscaleArchitectureGraph, result,
17: confidence, areMoreModelSimulationsRequired);
18: end while
19:

20: if (areMoreModelSimulationsRequired == true) then
21: RunProbBlackBoxModelChecker(simulations, logicProperty,
22: multiscaleArchitectureGraph,
23: result, confidence);
24: end if
25:

26: Output result and confidence;

required this external program is executed. For the algorithm implemen-

3

Table 2: Mapping between input parameters, result and confidence
level for the considered approximate probabilistic model checking approaches.
Columns from left to right record the name, input parameters (excluding φ and
MSTML files), result and confidence level corresponding to each approximate
probabilistic model checking approach, where φ ≡ P./θ[ψ] denotes the PBLM-
STL statement against which the model is verified. The description of the input
parameters was previously given in Table 2 in the main paper and will not be
restated here.

Name Input result
confidence

level

Chernoff-
Hoeffding
bounds
based

ε, δ
True if p ./ θ, where p is the
estimated probability of ψ to
hold, and false otherwise.

ε, δ

Improved
frequentist
statistical
hypothesis

testing

α, β
True, if we fail to reject the
null hypothesis (corresponding
to φ), and false otherwise.

α, β

Probabilistic
black-box

-

True, if the p-value computed
for the null hypothesis
(corresponding to φ) is smaller
than the p-value corresponding
to the alternative hypothesis
(corresponding to the opposite
of φ), and false otherwise.

p-values
computed for
the null and

the
alternative
hypotheses

Bayesian
mean and
variance

based

α, β, T
True if p ./ θ, where p is the
estimated probability of ψ to
hold, and false otherwise.

α, β, T

Bayesian
statistical
hypothesis

testing

α, β, T
True, if we fail to reject the
null hypothesis (corresponding
to φ), and false otherwise.

α, β, T

tation our recommendation is that the employed external program could
be a script (e.g. Bash [UNIX], Batch [Windows]) which calls the model
simulator, processes the output and stores the resulting MSTML files into
a predefined location.

4

Finite number of state transitions

Bounded temporal logic (including BLMSTL) properties can be evaluated
against model simulations which cover only a finite interval of time. The upper
bound of this interval can be computed based on the temporal operators/func-
tions contained by the evaluated logic properties. Let us denote the upper bound
corresponding to a generic BLMSTL logic property ψ by dψe.

Definition 1. The upper bound dψe ∈ R+ corresponding to a BLMSTL logic
property ψ considering an execution σ and the abbreviations introduced in S5
Text, Table 1 is defined recursively on the structure of the logic property as
follows:

• dtnm1 � tnm2e = max(dtnm1e, dtnm2e);

• dcm(tnm1) � tnm2e = max(1 + dtnm1e, dtnm2e) ≤ 1 +
max(dtnm1e, dtnm2e) because the value of tnm1 is computed considering
both σ0 and σ1;

• d∼ ψe = dψe;

• dψ1 ∧ ψ2e = max(dψ1e, dψ2e);

• dψ1 ∨ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇒ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇔ ψ2e = max(dψ1e, dψ2e);

• dψ1 U [a, b] ψ2e = b+ max(dψ1e, dψ2e);

• dF [a, b] ψe = b+ dψe;

• dG[a, b] ψe = b+ dψe;

• dX ψe = 1 + dψe;

• dX[k] ψe = k + dψe;

• d(ψ)e = dψe.

• The upper bound dtnme corresponding to the temporal numeric measure
tnm is defined recursively on the structure of the temporal numeric mea-
sure as follows:

– dree = 0, because the value of re is employed directly;

– dnsve = 0, because the value of nsv is computed considering only
σ[0];

– dnstme which is computed as described below;

– dunm(tnm)e = dtnme;
– dbnm(tnm1, tnm2)e = max(dtnm1e, dtnm2e).

• The upper bound dnstme corresponding to the numeric statistical mea-
sure nstm is defined recursively on the structure of the numeric statistical
measure as follows:

5

– dusm(nmc)e = dnmce;
– dbsm(nmc1, nmc2)e = max(dnmc1e, dnmc2e);

– dbsqm(nmc, re)e = dnmce.

• The upper bound dnmce corresponding to the numeric measure collection
nmc is defined recursively on the structure of the numeric measure collec-
tion as follows:

– d[a, b]nme = b+ dnme;
– dsmce = 0, because the value of smc is computed considering only
σ[0].

• The upper bound dnme corresponding to the numeric measure nm is de-
fined recursively on the structure of the numeric measure as follows:

– dpnme = 0, because the value of pnm is computed considering only
σ[0];

– dunm(nm)e = dnme;
– dbnm(nm1, nm2)e = max(dnm1e, dnm2e).

Thus the minimum upper bound for the simulation time interval to be cov-
ered by model executions when verifying a BLMSTL logic property ψ is dψe.

Lemma 1. Let us assume that a BLMSTL logic property ψ is verified against
an infinite execution σ = {(s0, t0), (s1, t1), (s2, t2), ...}. Moreover let us denote
a finite prefix of σ by σ̂ = {(ŝ0, t̂0), (ŝ1, t̂1), ..., (ŝm, ˆtm)}, where

ŝi = si and t̂i = ti,∀i = 0,m with

m∑
i=0

ti ≥ dψe and

m−1∑
i=0

ti < dψe.

Then σ |= ψ if and only if σ̂ |= ψ.

Proof. Trivial.

Lemma 2. The number of state transitions required to verify if a BLMSTL
logic property holds is finite.

Proof. Trivial.

Well-defined model checking problem

Theorem 1. The multiscale spatio-temporal model checking problem is well-
defined.

Proof. In Subsection “Finite number of required simulations” it was shown that
the number of model simulations required to verify if a PBLMSTL logic property
φ holds is finite. Moreover according to Lemmas 1 and 2 only a finite prefix
and a finite number of state transitions has to be considered for each model
simulation. Thus the evaluation of φ is reduced to the problem of evaluating
atomic properties over a finite number of states for each model simulation which
is decidable. Hence the model checking problem is well-defined.

6

References

[1] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Pey-
ronnet. Approximate probabilistic model checking. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpre-
tation, number 2937 in Lecture Notes in Computer Science, pages 73–84.
Springer Berlin Heidelberg, January 2004.

[2] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay,
André Platzer, and Paolo Zuliani. A bayesian approach to model check-
ing biological systems. In Pierpaolo Degano and Roberto Gorrieri, editors,
Computational Methods in Systems Biology, number 5688 in Lecture Notes
in Computer Science, pages 218–234. Springer Berlin Heidelberg, January
2009.

[3] Sumit Kumar Jha, Edmund M Clarke, Christopher J Langmead, Axel Legay,
Andre Platzer, and Paolo Zuliani. Statistical model checking for complex
stochastic models in systems biology. Technical report, Carnegie Mellon
University, 2009.

[4] Chuan Hock Koh, Sucheendra K. Palaniappan, P. S. Thiagarajan, and
Limsoon Wong. Improved statistical model checking methods for pathway
analysis. BMC Bioinformatics, 13(Suppl 17):S15, December 2012. PMID:
23282174.

[5] C.J. Langmead. Generalized Queries and Bayesian Statistical Model Check-
ing in Dynamic Bayesian Networks: Application to Personalized Medicine.
In Proc. of the 8th International Conference on Computational Systems
Bioinformatics (CSB), pages 201–212, California, August 2009. Life Sciences
Society.

[6] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model check-
ing of black-box probabilistic systems. In Rajeev Alur and Doron A. Peled,
editors, Computer Aided Verification, number 3114 in Lecture Notes in Com-
puter Science, pages 202–215. Springer Berlin Heidelberg, January 2004.

[7] H̊akan L. S. Younes. Probabilistic verification for “Black-Box” systems. In
Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verifi-
cation, number 3576 in Lecture Notes in Computer Science, pages 253–265.
Springer Berlin Heidelberg, January 2005.

[8] H̊akan L.S. Younes and Reid G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and Com-
putation, 204(9):1368–1409, September 2006.

7

