
Excerpts employed for writing the formal specifi-
cation of the Xenopus laevis cell cycle case study

The excerpts from the referenced paper [1] employed for writing the formal spec-
ification of the Xenopus laevis cell cycle case study, together with the derived
natural language and formal PBLMSTL statements are provided below.

Property 1

Excerpts

“The activation of CDK1 drives the cell into mitosis” [1].

Derived natural language statement

The probability is greater than 0.9 that whenever the concentration of CDK1
reaches very high levels (in our case >96% of its maximum value) all cells will
divide. The corresponding rephrased natural language statement is that the
probability is greater than 0.9 that if the concentration (denoted in PBLMSTL
as density) of CDK1 (corresponding to scale and subsystem Intracellular.CDK1)
increases above 0.96 then all cells will divide i.e. the sum of the (densities ×
areas) of all regions covered by cells (corresponding to scale and subsystem
Cellular.Embryo) will increase.

The value of 96% corresponds to the normalized threshold concentration 0.5
for CDK1 ([CDK1] ∈ [0, 0.515]) chosen by the developers of the multiscale
model [2] to trigger cellular division. Moreover the time interval considered in
the PBLMSTL statements corresponds to the time interval considered in the
model simulation.

PBLMSTL statement

P > 0.9 [G [0, 100] (((count(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1 ∧
density < 0.96))) = count(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1 )))) ∧
(X (count(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1 ∧
density > 0.96))) = count(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1 ))))))

⇒ (d(sum(multiply(area(filter(regions,

scaleAndSubsystem = Cellular.Embryo)),

density(filter(regions, scaleAndSubsystem =

Cellular.Embryo))))) > 0))]
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Property 2

Excerpts

“the activation of APC, which generally lags behind CDK1, drives the cell back
out of mitosis” [1].

Derived natural language statement

The probability is greater than 0.9 that whenever the average concentration of
APC increases and reaches its local maximum value no cell will divide. The
corresponding rephrased natural language statement is that the probability is
greater than 0.9 that if the average concentration (represented in PBLMSTL
as density) of APC (corresponding to scale and subsystem Intracellular.APC)
reaches a local maximum value i.e. increases and then decreases, then no cell
will divide i.e. the sum of the (densities × areas) of all regions covered by cells
(corresponding to scale and subsystem Cellular.Embryo) will remain constant.

The time interval considered in the PBLMSTL statements corresponds to the
time interval considered in the model simulation.

PBLMSTL statement

P > 0.9 [G [0, 100] (((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC

)))) > 0) ∧ (X (d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC

)))) < 0))) ⇒ (X (d(sum(multiply(

area(filter(regions, scaleAndSubsystem =

Cellular.Embryo)), density(filter(regions,

scaleAndSubsystem = Cellular.Embryo))

))) = 0)))]

Property 3

Excerpts

Figure 5C in [1] illustrates the oscillatory evolution over time of the concen-
tration of APC, CDK1 and Plk1. The oscillatory behaviour is additionally
emphasized in the figure caption “Time course of the system, showing sustained
limit cycle oscillations.” [1].

Derived natural language statement

The probability is greater than 0.9 that the average concentrations of CDK1,
Plk1 and APC increase and then decrease (i.e. oscillate) over time at least
three times. The corresponding rephrased natural language statement is that
the probability is greater than 0.9 that the average concentrations (represented
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in PBLMSTL as densities) of CDK1, Plk1 and APC (corresponding to scale
and subsystem Intracellular.CDK1, Intracellular.Plk1, respectively Intracellu-
lar.APC) increase and then decrease over time at least three times.

The minimum number of oscillations (in our case three) was chosen considering
the number of oscillations displayed in [1, Figure 5C]. Moreover the time in-
terval considered in the PBLMSTL statements corresponds to the time interval
considered in the model simulation.

PBLMSTL statement

P > 0.9 [(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.CDK1 )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.CDK1 )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.CDK1 )))) < 0)

)))))))))))) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.Plk1 )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.Plk1 )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1

)))) > 0) ∧
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(F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.Plk1 )))) < 0)

)))))))))))) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.APC )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.APC )))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC

)))) > 0) ∧ (F [0, 100] ((d(avg(density

(filter(regions, scaleAndSubsystem =

Intracellular.APC )))) < 0)

))))))))))))]
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