
Supporting Text

DAgger guarantees

A major contribution of the DAgger meta-algorithm for the imitation learning setting
is that the loss can be bounded in relation to online learning regret bounds [1]. This
allows the analysis of DAgger through established results in the literature. Note that
dπ is the distribution over states that arise from policy/decoder π.

Theorem 1 (modified statement of Theorem 4.1 from [1]). For DAgger, there exists
a policy π̂ ∈ π(1), . . . π(K) s.t.

Ex,n,o∼dπ̂ [`(π̂(x,n),o)] ≤ εK + 1
K · (2`max)

[
T
∑K
k=1 βk

]
+ γK , where γK is the average

regret of π(1), . . . π(K).

This theorem states that the expected loss of the policy (i.e. decoder) resulting from
DAgger is upper bounded by three terms. The first and second terms depend on the
model and meta-algorithm settings, whereas γK will depend on the specific update
method chosen. We note as well that this assumes that T is an upper bound on
T1, . . . , TK , so that the length of any trajectory is less than the maximum duration T .

We first discuss the two terms shared across update rules. The first term:

εK = min
π∈Π

K∑
k=1

Ex,n,o∼d
π(k)

[`(π(x,n),o)], (1)

is the loss that would have been incurred if the best decoder had been used the whole
time. In some settings εK may approach 0, but typically there is observation noise (i.e.
neural noise in this case), and additional variability could arise from model mismatch.
For BCI, we consider εK to be the error due to neural noise of the best decoder. The
second term is dependent on βi, which controls how the algorithm blends the oracle
policy and the learned decoder during training. βi can be chosen to be 0 for all i, which
would eliminate this term. However, this term decays quickly, O(1

K), so assisted
training may help performance in practice. The constant `max is the maximum value of
`(π(x,n),o) for π ∈ π(1), . . . , π(K) and k ∈ 1, . . . ,K over effector states and neural
observations. In the BCI setting, degrees of freedom of the effector have a bounded
range and neural activity is physiologically bounded. So we expect `max will scale with
the variance of the decoded variable.

The γK term, which is the average regret of the π(1), . . . π(K), is given by

γK = RegretK(Π)/K. (2)

We note that Theorem 1 covers the asymptotic case. Theorem 4.2 of [1] addresses
the finite sample case, where the bound will hold with probability at least δ when the

term `max

√
2 log(1/δ)

K is added to the right hand side. The effect of this is that it adds a

small amount of slackness to Theorem 1 that increases if we want the theorem to hold
with higher probability. This term decays O

(
1√
K

)
. While this term may have a slower

rate than the other terms, we note both that this will still maintain a no-regret
algorithm and that for practical values this term will be comparatively small.

As written in [1], Theorem 1 requires the use of probabilistic mixing of the oracle
policy and the learned policy. Probabilistic mixing refers to using the oracle policy
exactly with probability βk and the decoded policy exactly with probability 1− βk.
However, we have advocated using a linear mixture of the decoding policy rather than
probabilistic mixing to match the existing BCI literature. We note that this will only

superficially alter the form of Theorem 1. The term 1
K · (2`max)

[
T
∑K
k=1 βk

]
is

1

dependent on Lemma 4.1 of [1], but a slightly different bound can be derived using
triangle inequality (the naive bound given in Lemma 4.1 of [1]). When using this linear

mixing, the bound in Theorem 1 would instead have a term 1
K · (2`max)

[∑K
k=1 1{βk 6=0}

]
,

where 1{·} denotes an indicator function (1 if the condition is true, 0 otherwise). This
term is the same for any non-zero βk chosen. This is a very loose bound, but the
original bound is also very loose on this term and for the sequences of βk used in the
experiments there will be minimal differences. For example, the sequence of β1 = 1 and
βk = 0, k > 1 will yield the same result on this term for linear mixing and probabilistic
mixing.

Regret in linear-quadratic setting

For a given objective function, we can use established results to analyze the decoder
update options. We specialize our statements for the case of a quadratic loss. The
SSKF takes a linear autoregressive form, so concrete statements about the quadratic
loss will be applicable for the SSKF decoder. We consider a linear decoder which
attempts to estimate intention from covariates – we let W be the parameters of the
linear decoder π and zkt be the covariates. With a slight abuse of notation, we define:

`(W, zkt,okt) = ||Wzkt − okt||2. (3)

This generic linear decoder may be explicitly specialized to the SSVKF in Eqn. 8 by
setting W = [Fv bv Gv] and zkt = [nkt 1 xkt]

>.
The linear-quadratic setting is widely seen in applications and mean square error

convergence properties of linear models have been analyzed specifically for the least
mean square (LMS) algorithm [2]. Perhaps surprisingly, the quadratic loss does not
satisfy the assumptions required by the simplest online optimization frameworks for
regret analysis, because the total loss is not a Lipschitz function [3]. An L-Lipschitz
function is defined as |f(x + δ)− f(x)| ≤ L||δ|| with respect to a given norm, typically

the `2 norm (i.e. ||x||2 =
(∑

i x
2
i

)1/2
). For a squared loss, L would go to infinity at the

tails. However, the squared loss is a Lipschitz function over a bounded region, so in
practical settings this is sufficient.

We consider the three updates in Table 1 (OGD, FTL, and MA), specifically for the
linear-quadratic case. The OGD update takes the form:

Wk+1 = Wk −
1

ηk
∇W

Tk∑
t=1

`(Wk, zkt,okt). (4)

The regret scales as O(
√
K), so γK is O(1√

K
) [4].

Strong convexity on the loss
∑Tk
t=1 `(Wk, zkt,okt) for all k will give a regret rate of

O(logK) [5]. This can be achieved by adding regularization on W, which is typically
done in practice. Alternatively, this condition will usually be satisfied when Tk is
greater than the number of parameters in Wk, although this also depends on the data
zkt and okt.

The MA update is given by:

Wk+1 = λWk + (1− λ)W∗
k (5)

W∗
k = arg min

Tk∑
t=1

`(Wk, zkt,okt)) (6)

for λ ∈ [0, 1]. As discussed in the main text, this algorithm suffers from regret that is at
least O(K), so it is not a no-regret algorithm.

2

The FTL update is given by:

π(k) = arg minπ∈Π

∑k−1
k′=1

∑Tk
t=1 `(π, zk′t,ok′t), (7)

⇔ W = arg minW

∑k−1
k′=1

∑Tk′
t=1 ||Wzk′t − ok′t||2 + g(W). (8)

g(W) is a optional regularization penalty. Typical regret analysis for FTL depends on
the Lipschitz properties of the loss function (for a smooth function, this implies that the
gradient is bounded). We emphasize that any standard optimization technique can be
used here, and the FTL strategy is not sensitive to step-sizes. Restricting the parameter
set to a ball such that ||W||22 ≤ B and assuming ||zkt||2 ≤ 1 ∀k, t and ||okt||2 ≤ 1 ∀k, t
yields L(W,D(1:k)) =

∑k−1
k′=1

∑Tk′
t=1 `(W, zk′t,ok′t) as B2-Lipschitz, which can be used

to analyze a bounded least-squared problem [5]. These conditions will be satisfied when
using feasible data generated in the system with a regularized g(W).

To get a better regret bound for FTL, we must analyze it through the perspective of
another approach, called Exponentially-weighted online optimization (EWOO) [5]. We
will not talk about this method in general; however, for the specific case of the least
squares loss function and `2 regularization, the updates for EWOO are identical to the
updates for FTRL (or FTL if the regularization is omitted). We emphasize that these
updates are not equivalent in general. This is beneficial in our case because it derives a
logarithmic regret bound O(`max

α logK), and α will be described below. In this case, γK
will scale as O(log(K)/K), which is an improvement over the O(1/

√
K) rate. Instead of

being dependent on Lipschitz smoothness of the loss function, the constants are
dependent on an alternative property called α-exp-concavity, which is defined:

∀W ∈ P,∀k ∈ 1, . . . ,K : ∇2[exp(αL(W,D(1:k)))] � 0. (9)

This property depends on a non-empty convex set, P ⊆ RP , which corresponds to the
feasible parameters of the decoder/policy. In general, this is unconstrained; however,
given certain properties of the dataset, the set P can be quite constrained. We note
that any strongly convex function has α-exp-concavity, but that this is a weaker
property than strong convexity. For the least squares problems, without this assumption
the α constant can be arbitrarily bad. We will discuss reasonable assumptions below,
and mention how they restrict P and therefore the constant α as well.

Since α affects the regret of the algorithm, we need to get a sense of the value of α
in practice in order to truly assess the performance of this algorithm. For our case, α
can be simplified to 1

α = maxW∈P,k,t ||Wzkt − okt||22. Next, we will utilize a standard
trick, where P is set and analyzed over realizable values that W can take [3]. To get a
simpler form of this analysis, we will make the significant, but reasonable, assumption
that the worst parameter settings will be our initialization, which we set to 0 here for
simplicity. This assumption makes 1

α scale as O(||o||22). The same assumption will set
`max to O(||o||22). Hence, we expect the total regret to scale as O(||o||42 logK). This
gives a strong, but reasonable, dependency on the magnitude of the oracle movements.

References

1. Ross S, Gordon GJ, Bagnell JA. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. Artificial Intelligence and
Statistics (AISTATS). 2011;15.

2. Widrow B, Stearns SD. Adaptive signal processing. Englewood Cliffs. 1985;.

3. Shalev-Shwartz S. Online Learning and Online Convex Optimization. Foundations
and Trends in Machine Learning. 2011;4(2):107–194.

3

4. Kivinen J, Warmuth MK. Additive Versus Exponentiated Gradient Updates for
Linear Prediction. In: Proceedings of the Twenty-seventh Annual ACM
Symposium on Theory of Computing. STOC ’95. New York, NY, USA: ACM;
1995. p. 209–218.

5. Hazan E, Agarwal A, Kale S. Logarithmic regret algorithms for online convex
optimization. Machine Learning. 2007;69(2-3):169–192.

4

