Supplementary information

Title:

In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode *C. elegans*

Authors: Yuki Tanimoto¹*, Ying Grace Zheng¹*, Xianfeng Fei², Yukako Fujie¹, Koichi Hashimoto³, Koutarou D. Kimura¹

Items:

Supplementary Figure S1 Supplementary Table S1 - S4 Supplementary Video S1 - S3

trp-4(sy695), well-fed, CEPD

trp-4(sy695), well-fed, CEPV

Figure S1. Individual calcium responses of PDE pair from well-fed wild-type animals and CEPD and CEPV neuron pairs from well-fed *trp-4* animals. When the average R/R_0 after t = 0 was <1.1 in PDE or in both of CEPD and CEPV in an animal, the animal was regarded as "not responding" one and the data is shown in grey. Similarly to Fig. 3, the time when an animal entered a bacterial lawn was determined as t = 0.

Targeted neuron	CEPDL	CEPDR	CEPVL	CEPVR	Targeting CEP
ADLR				2	single
AFDL	1				single
AINL	1				single
ALML	2				single
ASGR				2	single
AVEL		6		7	DV
AVER	8		3		DV
BDUR		3			single
CEPDR	1	3		1	DV and LR
CEPshVL			1		single
CEPshVR				2	single
IL1R		1			single
IL1DL	6				single
IL1DR		7			single
IL1VL			2		single
IL1VR				4	single
IL2DL	1				single
IL2VR				1	single
OLLL	4		3		DV
OLLR		7		8	DV
OLQDL	8				single
OLQDR		9			single
OLQVL			5		single
OLQVR				6	single
PVR			1		single
RIAL			1	1	LR
RIAR				1	single
RIBL	2		1		DV
RIBR		1			single
RICL	7	8	6	3	DV and LR
RICR	4	9	4	3	DV and LR
RIFR		1			single
RIH	1	1			LR
RIPL	3		2		DV
RIPR				1	single
RIS	2				single
RIVL				1	single
RMDR		1			single
RMDDL	1		6		DV
RMDDR				3	single
RMDVL	9				single
RMDVR		2	1		DV
RMGL	4		1		DV
RMGR		1			single
RMHL	1	3	3		DV and LR
RMHR	6	1	4	4	DV and LR

Supplementary Table S1. Numbers of synaptic connections from CEP neurons to target neurons.

(continue)

(continued)

Targeted neuron	CEPDL	CEPDR	CEPVL	CEPVR	Targeting CEP
SIADR	2				single
SIAVL			1		single
SIAVR				4	single
SIBDR	1				single
SIBVR		1			single
SMBDL		1			single
SMBDR	3				single
SMBVL			1		single
SMBVR				1	single
SMDDR				1	single
SMDVR			1		single
URADL	3				single
URADR		2			single
URAVL			2		single
URAVR				2	single
URBL	6				single
URBR		7			single
URXL			1		single
URXR		2			single
URYDL	3				single
URYDR		1			single
URYVL			3		single
URYVR				1	single
dBWMR3		3			single
dBWML5	1				single
dBWMR5		2			single
vBWMR3				1	single
vBWML5			1		single
vBWMR5				2	single
vBWML7			2		single
vBWMR8				2	single
glial			1		single

CEPDL, CEPD-left; CEPDR, CEPD-right; CEPVL, CEPV-left; CEPVR, CEPV-right.

Plasmid name	Promoter	cDNA
pYFU207	<i>dat-1</i> ⁵⁵	mCherry ³⁶
pYFU210	same as above	GCaMP6f ³⁵
pYFU230	same as above	ChR2(H134R)::GFP ⁵⁴

Supplementary Table S2. Plasmids generated for this study.

Supplementary Table S3. Transgenic strains used in this study.

Fig. no.	strain name	genotype	DNA injected
Fig. 3	KDK53204 KDK53214 KDK53236 KDK53250	N2;oskEx53204 N2;oskEx53214 N2;oskEx53236 N2;oskEx53250	 45 ng/μl of <i>dat-1p::GCaMP6f</i> (pYFU210) 45 ng/μl of <i>dat-1p::mCherry</i> (pYFU207) 10 ng/μl of <i>lin-44p::mRFP</i> (a gift from Dr. M. Koga) 10 ng/μl of PvuII-cut N2 genome as a carrier
Fig. S1	KDK53289	trp-4(sy695);oskEx53204	same as above (the extrachromosomal array was transferred from KDK53204 by mating)
Fig. S1	KDK53291	trp-4(sy695);oskEx53236	same as above (the extrachromosomal array was transferred from KDK53236 by mating)
Fig. S1	KDK53293	trp-4(sy695);oskEx53250	same as above (the extrachromosomal array was transferred from KDK53250 by mating)
Fig. S1	KDK53295	trp-4(sy695);oskEx53214	same as above (the extrachromosomal array was transferred from KDK53214 by mating)
Fig. 4b	KDK53665 KDK53715	lite-1(xu7);oskEx53665 lite-1(xu7);oskEx53665	60 ng/μl of <i>dat-1p::ChR2(H134R)::GFP</i> (pYFU230) 20 ng/μl of <i>dat-1p::mCherry</i> (pYFU207) 20 ng/μl of PvuII-cut N2 genome as a carrier

Supplementary Table S4. Details of the statistical analyses shown in Fig. 4b.

Multiple comparison results

Statistical test: Kruskal-Wallis Comparison of interest: Normalized locomotion speeds of each condition in the presence of blue light illumination *P* value: 0.0002

Comparison	P value
All (ATR -) vs All (ATR +)	0.0019
All (ATR -) vs CEPD (ATR +)	0.0053
All (ATR -) vs CEPV (ATR +)	0.2744
All (ATR -) vs PDE (ATR +)	0.6299

Post hoc Steel-Dwass test results with blue light

Two-tailed Mann-Whitney test results with or without blue light

Targeted cell type	P value
All (ATR -)	0.4307
All (ATR +)	0.0043
CEPD (ATR +)	0.0185
CEPV (ATR +)	0.2150
PDE (ATR +)	0.5972

Supplementary Video Legends

Supplementary Video 1. Tracking of dopaminergic neurons. GCaMP fluorescence (left) and Bright field image (right) are shown. The video speed is 1×.

Supplementary Video 2. Off-line optical flow tracking of fluorescent signals from multiple DAergic neuronal cell bodies for calcium imaging.

Supplementary Video 3. On-line optical flow tracking of fluorescent signals from multiple dopaminergic neuronal cell bodies for optogenetic stimulation. One of CEP neuron was targeted.