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SUPPLEMENT

Text S1 Algorithm
As initial step, we use tblastn 2.2.29+ with the following parameter settings:
-evalue 100.0 -comp_based_stats F -seg no.
We collect all tblastn hits of exons corresponding to one transcript in the reference genome in a list. Thereby, we filter the hits

according to strand and chromosome or contig, as we assume that a valid gene model has to be located on one chromosome or
contig in one orientation. This might be an oversimplification for highly fragmented genome assemblies.

We use a dynamic programming algorithm for each contig-strand combination to assemble the tblastn results and to compute
initial sum score of a potential gene model (Algorithm 1). Subsequently, we filter the contig-strand combinations using the initial
sum score and obtain promising contig-strand combinations carrying initial gene models.

For each of those contig-strand combinations, we identify regions that possibly encode for a transcript similar to the transcript
in the reference genome. In each region, we search for coding parts of the transcript that have no tblastn result. Subsequently,
we again use the dynamic programming algorithm that this time uses canonical splice sites and only in-frame combinations of
individual parts to obtain a gene model and a corresponding score (Algorithm 1).

Finally, we rank the predictions of each region using the score and return a user-specified number of predictions.

Algorithm 1 DP-algorithm for computing the optimal score of a gene model. The algorithm can be used on contig-strand
combination or smaller region. We compute the corresponding gene model using backtracking on sums. In line 11, we ensure that
the exons are in linear order with a user-specified maximum intron length. In addition, we can ensure that there’s an intron loss
or in-frame splice sites combination for two neighboring exons.

1: for i=parts.length; i ≥ 0; i– do
2: exon list← list.get(parts[i])
3: for j = sums[i].length-1; j ≥ 0; j– do
4: current blast hit← exon list.get(j)
5: b← raw score of current blast hit
6: //this exon is the last exon found
7: sums[i][j]← b + cost for end gap
8: //same & downstream exons
9: m←Math.min(i+MAX GAP,parts.length)

10: for k = i; k < m; k++ do
11: max← get maximum for exon k
12: end for
13: end for
14: end for

Text S2 Proof of concept
As a proof of concept, we compare GeMoMa to Genewise, Projector, GeneMapper, Exonerate and GenBlastG on the modified
projector data set (BCD04, MD04, CP06, SB05, SCU+11). The task is to prediction gene models in mouse given the
corresponding human gene models and an approximate genomic region. As performance measures, sensitivity (also known as
recall) and specificity (also known as precision) are measured for three categories: nucleotides, exons, and genes.

In Supplementary Table S1, we enrich the values of Genewise, Projector, and GeneMapper taken from Chatterji and
Pachter (CP06) with the results of Exonerate, GenBlastG, and GeMoMa. We find that GeneMapper and GeMoMa clearly
outperform the remaining tools especially for the categories exon and gene. While GeneMapper seems to be slightly better
than GeMoMa for the category exon, the opposite is valid for the category gene.

Category Measure Genewise Projector GeneMapper Exonerate GenBlastG GeMoMa
Gene Sensitivity 61.32% 59.88% 81.69% 57.82% 69.55% 83.74%

Specificity 60.91% 59.47% 81.69% 57.41% 69.20% 83.74%
Exon Sensitivity 92.76% 94.19% 97.15% 90.08% 93.25% 97.24%

Specificity 93.44% 90.47% 97.79% 92.96% 92.67% 97.34%
Nucleotide Sensitivity 99.86% 99.78% 99.88% 99.61% 98.83% 99.89%

Specificity 99.91% 99.70% 99.94% 99.94% 99.68% 99.99%
Table S1. Results for the modified projector data set predicting human genes in mouse (MD04, CP06). The results of Genewise, Projector, and GeneMapper
have been copied (CP06). The maximum in each row is highlighted in boldface.
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However, the results of this study only give a rough impression on the performance of GeMoMa for at least two reasons. First,
the data set is quite small, comprised only one two animal species, and might possibly be outdated due to updated annotations.
Second, the performance measures do not quantify for wrong predictions how bad or good the prediction still is.1

Unfortunately, GeneMapper and Projector are not available anymore and can hence not been used for gene model annotation
or in further evaluations on larger data sets. For this reason, we use Exonerate and GenBlastG for the genome-wide studies in the
main manuscript.

Text S3 Genomes and Annotation
We use the following genomes for the benchmark study.

Species Version Genome size Reference
Arabidopsis lyrata v1.0 207 Mb (HPB+11)
Arabidopsis thaliana TAIR10 135 Mb (LBL+12)
Carica papaya ASGPBv0.4 135 Mb (MHF+08)
Chlamydomonas reinhardtii v5.5 111.1 Mb (MPV+07)
Oryza sativa v7.0 372 Mb (OZH+07)
Solanum tuberosum v3.4 800 Mb (Con11)

Table S2. The organisms downloaded from Phytozome 10 (GSH+12).

Species Version Genome size Reference
Drosophila melanogaster BDGP5 143 Mb (ACH+00)
Homo sapiens GRCh38 3.1 Gb (Int01)
Gallus gallus Galgal4 1.0 Gb (HMB+04)
Mus musculus GRCm38 2.7 Gb (WLTB+02)

Table S3. The organisms downloaded from Ensembl version 78 (FAB+13).

In addition we download the definition of gene families from:

• AT: http://green.dna.affrc.go.jp/PGF-DB/Download.html

• HS: http://www.genenames.org/cgi-bin/download

Text S4 Performance Measure
Given a gene annotation and a gene prediction, we can count the number of true positive (TP), false positive (FP), and false
negative (FN) bases as depicted for one exon in Supplementary Fig. S1. The number of true negative is not relevant as it is
dominated by the genome size or the size of the assembly.

annotation

prediction

FN TP FP

Figure S1. Schematic visualization of true positives (TP), false positives (FP), false negatives (FN) for one coding exon.

Given the statistics TP, FP, and FN it is hard to compare different predictions. For this reason, we utilize the widely used F1
measure that combines these three values into on scalar,

F1=
2 ·TP

2 ·TP+FP+FN
=2 · precision·recall

precision+recall
. (1)

Recall is also known as nucleotide sensitivity, whereas precision is known as nucleotide specificity. As we compute the F1
based on nucleotide sensitivity and nucleotide specificity, we denote it as nucleotide F1. For the comparisons of predictions
to transcripts experimentally derived from RNA-seq data, we also consider the F1 measure on the level of exons. We count a
predicted exon as TP, if both borders of the exon perfectly match those of the corresponding experimentally derived transcript.

1For instance, a prediction that only differs by one bp or codon is counted as wrong prediction in the same way as a prediction that does not overlap with the
annotated gene model at all.

http://green.dna.affrc.go.jp/PGF-DB/Download.html
http://www.genenames.org/cgi-bin/download


“NAR˙article” — 2016/2/17 — 14:35 — page 3 — #14i
i

i
i

i
i

i
i

Supplemental material 3

We count as FP and FN those exons that are present in the predicted or experimentally derived transcript, respectively, but do not
have a perfectly matching counterpart.

For perfect predictions the F1 measure is 1, while it is 0 for completely wrong predictions. For F1≥0.8, we obtain precision
and recall of at least 2/3 (cf. Supplementary Fig. S2).
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Figure S2. Contour plot of F1 given precision and recall.

Text S5 Tools & Parameters
As competitors in the extended BRH approach, we use genBlastG and exonerate as shown in Supplementary Table S4.

Tool Version Parameters Reference
exonerate 2.2.0-x86 64 --model protein2genome -n 1

--score 10 --showalignment
false --showvulgar false
--showtargetgff true
<proteins> <genome>

(SB05)

genBlastG v139 -P blast -p genblastg -q
<proteins> -t <genome> -r 1
-gff -o <output>

(SCU+11)

Table S4. The tools which have been used in the comparison.

For GeMoMa we used default parameters for plants and set max intron length=200000 for animals.
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Text S6 Benchmark Results

Organism genBlastG exonerate GeMoMa GeMoMa improvement
MM 2,430 8,526 14,035 65%
GG 858 1,524 3,807 150%
AL 7,547 10,584 14,514 37%
CP 1,073 613 4,577 327%
ST 798 539 5,112 541%
OS 640 231 4,626 623%

(a) Correct transcript with minimal F1=1

Organism genBlastG exonerate GeMoMa GeMoMa improvement
MM 15,697 30,707 34,605 13%
GG 13,714 14,743 20,228 37%
AL 21,635 24,487 26,152 7%
CP 14,467 11,538 19,985 38%
ST 10,380 11,390 19,517 71%
OS 11,938 10,007 21,140 77%

(b) Correct gene family with minimal F1≥0.8

Table S5. Statistics per organism using genBlastG, exonerate, and GeMoMa for fixed thresholds and categories.

Organism No first match Same genomic region
MM 599 411
GG 9,607 8,068
AL 2,360 1,947
CP 1,994 1,622
ST 2,216 1,727
OS 762 438

Table S6. Number of transcripts per organism with no first match in the extended BRH approach using genBlastG, exonerate, and GeMoMa. Additional, in
column 3, we present the number of transcripts, where the predictions are located in the same genomic region.
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Text S7 BLOSUM62 vs. BLOSUM40
In the genome-wide studies, we used the default parameters of all tools for all organisms tested. However, due to the different
evolutionary distance between reference and target organism, it might be beneficial to tune the parameters. Homology-based
gene predictors rely on similarity searches with are affected by alignment parameters, as for instance the substitution matrix, gap
opening and gap extension costs. Here, we test the influence of the substitution matrix on the results of the extended BRH between
A. thaliana and O. sativa. As tblastn has some constraints on the gap opening and gap extension costs for different substitution
matrices, we ran tblastn with

1. BLOSUM62 and gap oppening and gap extension cost of -11 and -1, respectively, and

2. BLOSUM45 and gap oppening and gap extension cost of -12 and -2, respectively.

We used the same parameters for GeMoMa, and find the overall picture for both variants of GeMoMa remains the same, although
the results for some transcript change (cf. Figure S3). This indicates that GeMoMa is quite robust to changes of the substitution
matrix and gap costs.
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Figure S3. The results of genBlastG, exonerate, GeMoMa with BLOSUM62 and BLOSUM45. (a) The curves for GeMoMa with BLOSUM62 (green) and
BLOSUM45 (blue) could not be distinguished. (b) The results change for some transcripts, but the total number of predicted transcripts is nearly identical.
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Text S8 Distantly related species
We investigate the performance of genBlastG, exonerate, and GeMoMa on distantly related species. Hence, for the reference
species A. thaliana and H. sapiens, we choose a distantly related species for performing the extended BRH approach. Specificially,
we consider green algae (Chlamydomonas reinhardtii) and fruitfly (Drosophila melanogaster).
In Figure S4, we present the results of the extened BRH approach for the minimal F1 measure. We find that all three tools
yield only low numbers of predictions overlapping known transcripts (F1>0) in the BRH approach. This effect is especially
pronounced for genBlastG, where for D. melanogaster no overlapping predictions are found for the categories “correct transcript”
and “correct gene”. GeMoMa and especially exonerate yield larger numbers of transcripts for low F1 values, but both drop to
very low numbers for larger F1 values as well. Hence, we conclude that homology-based gene prediction using any of the three
tools considered greatly profits from the existence of a evolutionary related, well-annotated species that may be used as reference
species. If no such species is available and, hence, homology-based gene prediction would rely on distantly related species only,
RNA-seq based or ab-initio approaches might be the more appropriate choice for gene prediction.
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Figure S4. The results of genBlastG, exonerate, and GeMoMa for distantly related species.
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Text S9 GeMoMa ignoring intron position conservation
Testing the influence of intron position conservation, we ran GeMoMa using the complete the protein sequences as input instead
of the individual coding exons, which includes the initial similarity search using tblastn. Additionally, we set the intron gain/loss
penalty of GeMoMa to 0, which is 25 by default. We perform the extended BRH approach for A. thaliana and O. sativa as
depicted in Figure S5.
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Figure S5. The results of the extened BRH approach for A.thaliana and O.sativa using genBlastG, exonerate, and GeMoMa with and without intron position
conservation. GeMoMa-protein is the abbreviation for GeMoMa without intron position conservation.

We find that the performance of GeMoMa without intron position conservation decreases for high values of minimal F1
indicating that intron position conservation helps to substantially improve the predictions of GeMoMa. Additionally, we consider
the distributions of differences of number of exons (cf. Figure S6). We find that GeMoMa with intron position conservation yields
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a narrow and symmetric distribution whereas genBlastG, exonerate, and GeMoMa without intron position conservation yield a
broader, asymmetric distribution, especially when comparing the reference gene with all predictions.
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Figure S6. Exon difference distributions of genBlastG, exonerate and GeMoMa. The distribution for all predictions (dark blue) is broader and asymmetric for
exonerate, genBlastG , and GeMoMa without intron position conservation in constrast to GeMoMa with intron position conservation.
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Text S10 PCR

Gene ID Forward primer Reverse primer
At1g61780 TCGGAAGAAGAAGATGGTTTG GATACAACGTTGACATCAAAG
At2g40765 GATTGAAGCAGTAATGGCAG CGGTAACAAACTTAGAAACTG
At4g16566 GTTAGCAGCGATTTCAAATTC GCAACGCAATGCGGTTAAAC
At5g02060 GTTCTGATCAATGAAGAAGATG GAGATGGGTTTTGTTTGATATC

(a) AT - Genes with no first hit

Gene ID Forward primer Reverse primer
At1g61780 GGCTAAGCAACTATGGTGTG CACAGAATCGGTCATGATATC
At2g40765 ACCGAACCGTAAAATGGCAG ACTAATCATCCGCAAACTATTG
At4g16566 GGTTTTATCATCCATTTAGGTC∗ AGGAAGTATTTTGACTATTGAC
At4g16566 GCATTACTTGGTGATTCCTAAG CAAAACAAACTGGCATAAGCAC∗

At5g02060 ACATAGTGAGACGAAATGAAG GATCGCACACTGATTAAACTG

(b) CP - Genes with no first hit

Gene ID Forward primer Reverse primer
At3g57910 CAATGGCAGAATCGACGAG CCATACTAGTGTGGCTTATC
At4g38240 GTCGATATGGCGAGGATCTC TTGCATCAGGAATTTCGAATTC
At3g13120 ATGGCGGTTTCTACTGTATC CAGAGCTTCACTTCCACATC
At5g53450 TTGTTGGATGGCACTTTGTG CAAATGGCTACATAGACTTATG
At2g39910 GTTGAGCACAAGCTCTGATC GCTCTTGAGATCAACTTGAAC
At5g01580 CACCAATGGCATCATATCAG GTGATTGGAATAGCAAACTTG

(c) AT - Genes missing at least one exon

Gene ID Forward primer Reverse primer
At3g57910 CGCCAGTCAGAACTCTCAC GTGTCAGCATCTACAGAATTG
At4g38240 GAAAAATGGCACAGTTTTCGTG CAAGTAGTTTCAACTCCAAGC
cloned At4g38240 (M13) GTAAAACGACGGCCAGTG CACAGGAAACAGCTATGAC
At3g13120 AATGGCGGTTTCTTCAGTAC GCTTGACCTCCACGTCAAC
At5g53450 GAGTTTTGATAAATGGCTCTATG TACTTTCGTCTAGACATGACC
At2g39910 CACTCCACAATGTCGAACTC GGAAGTTTAGAGAGTGGATAC
At5g01580 TGGACTGTGGGCGATGTTTG GAATTTGGTTTGTTGCTGGTG
At5g01580 GCTCGTATTTGCATCTTCTG TCGATTGATTGAATTGGACTTC

(d) CP - Genes missing at least one exon

Table S7. Primers used for amplification of Arabidopsis and papaya DNA are shown in 5′→3′-direction. In case of At4g16566, primers marked by an asterisk
are used to amplify the full length ORF.
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(a) Genomic DNA for Arabidopsis thaliana
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(b) Complementary DNA for Arabidopsis thaliana
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(c) Genomic DNA Carica papaya
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(d) Complementary DNA Carica papaya

Figure S7. Gel electrophoresis images.
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Text S11 RNA-seq
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Figure S8. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations, and
mapped reads of one of the replicates. In this case, the prediction of GeMoMa perfectly matches the experimentally derived transcript. In contrast, exonerate and
the official annotation miss the last two coding exons, whereas genBlastG misses the last coding exon and predicts the second but last exon slightly shorter and
shifted compared with the experimentally derived transcript.
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Figure S9. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations, and
mapped reads of one of the replicates. GeMoMa and genBlastG predict several experimentally supported exons that are not present in the exonerate prediction or
the official annotation. However, exons 5 and 6 of the genBlastG prediction should be fused according to the experimentally derived transcripts.
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Figure S10. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations,
and mapped reads of one of the replicates. In this case, the predictions of GeMoMa and exonerate widely match the experimentally derived transcript, where only
the first and last exon predicted by GeMoMa are slightly longer than those predicted by exonerate. Both experimentally supported predictions differ substantially
from the official annotation. The prediction of genBlastG lacks one exon and shows some differences to the experimentally derived transcript in predicted exons
9 and 10.
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Figure S11. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations,
and mapped reads of one of the replicates. In this case, the predictions of GeMoMa and genBlast G match the official annotation and are supported experimentally,
but comprise three additional exons compared to the exonerate prediction.
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Figure S12. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations,
and mapped reads of one of the replicates. In this case, the prediction of GeMoMa for A. thaliana transcript AT3G51390.1 matches the experimentally derived
transcript, whereas the exonerate prediction and the official annotation lack several exons. The prediction of genBlastG is also highly similar to the experimentally
derived transcript, but the last exon is split in two. The predictions of GeMoMa and exonerate for AT2G04270.4 match the experimentally derived transcript and
the official annotation, whereas a prediction of genBlastG is missing.
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Figure S13. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations,
and mapped reads of one of the replicates. In this case, the prediction of GeMoMa matches the experimentally derived transcript except for UTRs, whereas
the exonerate prediction lacks one of the exons and positions one exon slightly downstream, the genBlastG predictions differs from the experimentally derived
transcript in its first four exons, and in the official annotation, this transcript is split in two.
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Figure S14. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions, and official annotations,
and mapped reads of one of the replicates. The region comprises one experimentally derived transcript with 10 exons. The prediction of GeMoMa for A. thaliana
transcript AT5G7740.1 perfectly matches the experimentally derived transcript except for the UTRs. The prediction of exonerate is similar in this case, but exons
6 and 7 are erroneously joined in the exonerate prediction. GenBlastG does not predict a transcript in this region using only the best prediction. Notably, the
official annotation reports two individual transcripts in this region, where the second one covers only the last exon of the experimentally derived transcript.
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