SUPPLEMENTARY INFORMATION for the article "Black perithecial pigmentation in *Fusarium* species is due to the accumulation of 5-deoxybostrycoidin-based melanin"

Rasmus J.N. Frandsen*, Silas A. Rasmussen, Peter B. Knudsen, Silvio Uhlig, Dirk Petersen, Erik Lysøe, Charlotte H. Gotfredsen, Henriette Giese & Thomas O. Larsen

Contents

Prediction of the catalytic potential of the PGL1 gene cluster	2
Primers used for genetic modifications and validation	3
Genetic modification strategy	5
Validation of genetically modified strains by PCR and Southern blot analysis	7
Evolutionary models for the development of pigment biosynthesis in Fusarium	15
UV/VIS and MS data for compound (1) to (5)	16
NMR data for compound (3) and (5)	17
Possible configuration of purpurfusarin (5)	19
Selected HMBC and NOE correlation for purpurfusarin (5)	19
Purification scheme for compound (3), (4) and (5)	21

Prediction of the catalytic potential of the PGL1 gene cluster

• 11 01 01 01 0			
Name	Accession no	Identified structural domains	Predicted catalytic potential or
			function
PGL1	FGSG_17168	SAT (aa 1 - aa 369)	Polyketide synthase
		KS (cd00833)	
		AT (pfam00698)	
		PT (aa 1227 - aa 1576)	
		ACP (pfam00550)	
		ACP (pfam00550)	
		Dehydrogenase (COG3320)	
PglJ	FGSG_15669	O-methyltransferase	O-methyltransferase (EC2.1.1.110)
		(pfam00891)	
PglM	FGSG_09184	FAD-binding monooxygenase	Monooxygenase (EC 1.14.13.8)
		(pfam01494)	
PglL	FGSG_09185		Adenylosuccinate lyase (EC 4.3.2.2)
PglX	FGSG_17170	Zinc-binding dehydrogenase	Dehydrogenase/quinone reductase (EC
		(pfam00107)	1.6.5.5)
PglV	FGSG_09187	Short chain dehydrogenase	Short-chain dehydrogenase (EC
		(COG1028)	1.1.1.100)
PglR	FGSG_17171	Zn(II) ₂ Cys ₂ transcription factor	Fungal transcription factor
		(c100068)	
PglE	FGSG_09189	Alpha/beta hydrolase family	Esterase
		(pfam12697)	
		Esterase (cd12809)	

Table S1Prediction of the catalytic potential of the PGL1 gene cluster.Predictions based on the identified Pfam & CDD motifs, combined with the most similarcharacterized enzymes.

Primers used for genetic modifications and validation

Table S2 Primers used in the study. In application: S/V = Screening and validation

Gene	Sequence	gDNA	Application
PGL1-A1	5' - TCGGTACCAAGGCCC TAGGAGGTCAGCCTTTGTGATGCCACC	1005 bp	Replacement of
PGL1-A2	5'- GGCCGTGGCCAGCCC TGGACACCTGTCAACGACATCGCTGAT	1090 bb	PGL1
PGL1-A3	5' - CGTTTAAACGGATTTTCATTGCAAAACTCTTCAACGCCCTCA	1839 bp	Replacement of
PGL1-A4	5' - GACATTAATTAATTTGCGCCAAGCAAATGCTCGACATTAGAG	1023 05	PGL1
PGL1-T3	5' - TCGCTTTCGCAGCGGGCTTGATAA	2327 bp	S/V
PGL1-T4	5' - CGGCCCTTGATCTCCTCTGGTAGGTCT	2237 p	S/V
PGL1-01	5' - GACATTAATTAATTTCGAGGTGGGATAAAAATACTTACATC	1294 bp	Overexpression
PGL1-02	5'- CGTTTAAACGGATTT AACAAAGGTGTTGAATCTTGTAAAG	1274 DP	of PGL1
PGL1-03	5'- GAGCAGACATCACCCATGGCTTCCCATATTAAGCTGTATCTC	1222 hn	Overexpression
PGL1-04	5'- TCGGTACCAAGGCCC AACGATAGCAAGCTTTGGCTTGGC	IZZZ DP	of PGL1
PGL1-OT1	5'- ACTGAACGCATGCCACGACAACTCATC	2044 bp	S/V
PGL1-OT2	5'- CGAAGACTTGGGACTGGCTTGTGAACA	1569 bp	S/V
PGLJ-U1	5´- GG <mark>GT</mark> TTAA <mark>U</mark> AGCTTGGCTGAGCTTGTGTTAGTGA	1001 bp	Replacement of
PGLJ-U2	5'- GG <mark>AC</mark> TTAA <mark>U</mark> CATCTTGGGTTAGGTTATGTTGTATGCA	1001 DP	PGLJ
PGLJ-U3	5′– GG <mark>CA</mark> TTAA <mark>U</mark> TAGATTGGGGTAGATTGGGGTAGATTTG	1003 bp	Replacement of
PGLJ-U4	5′- GG <mark>TC</mark> TTAA <mark>U</mark> ACTGGCAGCTCAAGTTCAGAGATCC	1002 05	PGLJ
PGLJ-T1	5'- CCATCTCTTACGATCAAGCCGC	579 bp	S/V
PGLJ-T2	5'- GGGAGGTCTTCAATCACGAAGTTG	gu cre	
PGLJ-T3	5' - TGCCAGCCAAGTATTGTGCAAG	1573 bp	S/V
PGLJ-T4	5'- AGAACAACGCAGTGCACCCAGC	1208 bp	S/V
PGLM-U1	5´- GG <mark>GT</mark> TTAA <mark>U</mark> TCATGTTAGCCACAGCATTTCTCAATC	1000 bp	Replacement of
PGLM-U2	5′ – GG <mark>AC</mark> TTAA <mark>U</mark> TAAGCGAGTTTAGGGGAGTGTTAGGG	1000 05	PGLM
PGLM-U3	5′- GG <mark>CA</mark> TTAA <mark>U</mark> CATATCTTGGGCATGCGTTTTCTC	1009 bp	Replacement of
PGLM-U4	5′– GG <mark>TC</mark> TTAA <mark>U</mark> GCGGTTTATTATGTGCAGAATCTCAAA	1002 05	PGLM
PGLM-T1	5´- TTGCGAGAGTGACGCCGTCTTCAAT	520 bp	S/V
PGLM-T2	5´- GCGTTGAAGGACCCTTTGGTCA	520 BP	
PGLM-T3	5´- TATCATGGCTGCGCTGAAAACC	1474 bp	S/V
PGLM-T4	5´- GCTGCTGAGTTGAATGTTTAAAGAGC	1281 bp	S/V
PGLX-U1	5´- GG <mark>GT</mark> TTAA <mark>U</mark> AATCTCAAGGAAACTGGCCT	1000 bp	Replacement of
PGLX-U2	5'- GG <mark>AC</mark> TTAAUTGATTGAAATACTTTTCAATAATAT	1000 %F	PGLX
PGLX-U3	5'- GG <mark>CA</mark> TTAAUAGAGCTGTTCTGTTCGACAGACGATAA	1039 bp	Replacement of
PGLX-U4	5'- GG <mark>TC</mark> TTAA <mark>U</mark> TGAGGCTTCTTCATTCACCGTCG		PGLX
PGLX-T1	5´- GCTGAAGTATCTGGTAAAAACATATCCAAAG	553 bp	S/V
PGLX-T2	5 ⁻ AACATGGCTGACGATGATCACA		
PGLX-T3	5 ⁻ GTAACACTGGTACCAAAACCAGTAACAGCGTTG	1300 bp	S/V
PGLX-T4	5 ⁻ TAGCTCCTGTTCGCGTCAACGC	1056 bp	S/V
PGLV-U1	5´- GG <mark>GT</mark> TTAA <mark>U</mark> TCATACACTCCTTCGCCAACCTCA	1000 bp	Replacement of
PGLV-U2	5'- GG <mark>AC</mark> TTAAUTAGAACGGAGAGACTGGTCTCCGA		PGLV
PGLV-U3	5'- GG <mark>CA</mark> TTAAUCATTTTGATGATTTGAAGTTTCAATTG	1028 bp	Replacement of
PGLV-U4	5' - GG <mark>TC</mark> TTAA <mark>U</mark> CGCAATTATCTTGACATACAATATTGGC		PGLV
PGLV-T1	5 ⁻ ACATCCTCCACCTGGCCAATCG	500 bp	S/V
PGLV-T2	5' - ATCCCTTGCAACCTCGGCTCCT		
PGLV-T3	5' - CAGAGTCTGGGACTGGAAGCCA	1416 bp	S/V
PGLV-T4	5' - GCGGTGAGGAATATGACGGAAG	1354 bp	S/V
PGLR-E1	5' - GGACTTAAUGTCTGACGGCTATCGAATTTTCGA	2196 bp	Overexpresion
PGLR-E2	5' - GGGTTTAAUGAGTGTTGATGCCATTTTGATGATTTG		ot PGLR
RF-1	5' - AAATTTTGTGCTCACCGCCTGGAC		S/V
RF-2	5' - 'TC'I'CCTTGCATGCACCATTCCTTG		S/V
RF-3	5' - TTGCGTCAGTCCAACATTTGTTGCCA		S/V
Hyg588 U	5' - AGCTGCGCCGATGGTTTCTACAA	ad 882	Screening
Hyg588 L	5' - GCGCGTCTGCTGCTCCATACAA		- 5

Gene	Sequence	gDNA	CDNA	Application
FG09177 upper	5' - CGGAAAACTCATCCCAGAACTCGTGGC	534	534	
FG09177 lower	5' - TGCCTATCGTTTCACATGCTTCCCAGA	bp	bp	RI-PCR
FG09178 upper	5' - ATAAGTAACGACGGCAACGGAGACGGC	545	545	
FG09178 lower	5' - TCATCAATCAAAAGCTCGCGGAATCG	bp	bp	RI-PCR
FG09179 upper	5' - AGAAGGTCCTAACCCCCGTGTTGGCGT	502	367	
FG09179 lower	5'- CGTCTGCCCCAGCAAATTCACCAA	bp	bp	RI-PCR
FG09180 upper	5' - TTCTTCAGCTTGGAAAACTGTGCCCCG	473	473	
FG09180 lower	5' - CGTTTCTTTTGCGCCAAGTTGTTCGA	bp	bp	RI-PCR
FG09181 upper	5' - ATCTGCGTTGTACCCTGACATTCCGCG	496	496	
FG09181 lower	5' - CGTATCCTCTTCCACGTATGCCACCGA	bp	bp	RI-PCR
Fgd371-210 upper	5' - ACGGGACTAACAGTCGAGCATCAGGGC	496	496	
Fgd371-210 lower	5' - TCCTGGTCAACAAGCGCATCTCCGT	bp	bp	RI-PCR
PGL1-T1 (CDS)	5' - GTTTGACCAGCTGCGAGACCCCATTG	541	541	RT-PCR and
PGL1-T2 (CDS)	5' - TCGTCCACAAGTATGCCGCTGGCTT	bp	bp	validation
FG09183 upper	5' - TTCGTGATTGAAGACCTCCCAGAGCCC	493	493	
FG09183 lower	5' - TGAACGCATGCCACGACAACTCATCTA	bp	bp	RT-PCR
FG09184 upper	5'- GCCCAATCTCCATCTTGCAAATCCTCC	528	528	
FG09184 lower	5' - GCAGCTCAAGTTCAGAGATCCCCACGA	bp	bp	RT-PCR
FG09785 upper	5' - TTCAACTCAGCAGCTTTGGCCTTCTGG	602	479	
FG09785 lower	5' - TGGAGCGATCTCTGGATGATTCCGC	bp	bp	RT-PCR
FG09186 upper	5' - CCCCTGCTGAATACCTTCCAATCCACC	593	491	
FG09186 lower	5' - CACTCACAGCACTAACTGCGGCATGTG	bp	bp	RT-PCR
FG09187 upper	5' - CATAAGCCTCAGCCACATCCTCCACCT	491	491	
FG09187 lower	5'- CGAGACCCTCAACTCGGAAGTCGAAAA	bp	bp	RT-PCR
PGLR-T1 (CDS)	5' - TGATCGGTCTCAACACAACGCCTTCTG	561	561	
PGLR-T2 (CDS)	5' - TGGCTTGGGATTACAGAGCATCGGAAT	bp	bp	RT-PCR
FG09189 upper	5´- CTGGCGTAAGAGGGGATCCGAT	472	472	
FG09189 lower	5´- GCCGCCCCATTCACAATAAGAA	bp	bp	RI-PCR
FG09190 upper	5'- TCCTGACATTACCTCCGACTACTATACC	458	458	
FG09190 lower	5´- CCTCCATAGCTTGCTCTACCGA	bp	bp	RI-PCR
FG09191 upper	5´- GACTCCATCTGACTCTCTTCATCTGAT	517	517	
FG09191 lower	5´- GGATGGAGAAGCATACAGAGAAGAAAT	bp	bp	RT-PCR
FG09192 upper	5' - TTATCCTTGCTTTAATGAGCTGGATTTTCC	608	479	
FG09192 lower	5'- CCTTCAAAGCTTCACCAGAAAAGACT	bp	bp	RT-PCR
FG09193 upper	5´- AAGACTGATGATGCTAGTTCCGTTTC	500	500	
FG09193 lower	5´- AGTACCCCGCATTCAGTAGGAAG	bp	bp	K.I PCK
FG09194 upper	5´- TTAGTCTAGCACCATAATACCAAGCCC	425	359	
FG09194 lower	5´- GCCAAAGTTATGCTTCTGGGGA	bp	bp	K.IPCK

Table S3Primers used for RT-PCR

Genetic modification strategy

Figure S1 Strategies for targeted replacement and overexpression of Gz-PGL1. The vectors were assembled in a single-step by In-Fusion PCR cloning. The validated plasmids were introduced in *Agrobacterium tumefaciens*, which mediated transformation of the T-DNA regions into *F. graminearum*. Targeted replacement of PGL1 (left in figure) was achieved by homologous recombination between the introduced T-DNA and the *PGL1 locus*, resulting in replacement of the *PGL1* coding sequence with the hygromycin resistance gene (*hph*). Targeted over expression (right in figure) was achieved by homologous recombination between the introduced T-DNA and the *PGL1 locus*, resulting in integration of the *gapdh* promoter in front of the *PGL1* coding sequence to obtain constitutive expression of the *PGL1* in vegetative tissue and production of the primary product of the PKS.

Figure S2 Strategy for ectopic overexpression of pglR. The PGLR coding sequence plus terminator was amplified by PCR, treated with USER enzyme mix and cloned into the expression vector pRF-HUE. The construct was introduced into the *F. graminearum* wild-type strain by *Agrobacterium tumefaciens* mediated transformation, where it was expected integrated randomly via the non-homologous end-joining pathway. However, only a single transformant was found to contain the full-length expression cassette integrated into the *PKS12* locus resulted in the recovery of several transformants carrying the full-length construct.

Validation of genetically modified strains by PCR and Southern blot analysis

Validation of the introduced genetic modifications was performed via diagnostic PCR followed by a Southern analysis.

The screening and validation process:

PCR validation:

The PCR screening and validation process consists of four different primer pairs for the gene deletion strains, three different primer pairs for the PGL1 *in locus* overexpression strain, and two primer pairs for the ectopic overexpression of *PGLR (PGL6)*. The aim of the PCR-based validation was to show that homologous recombination had occurred between both ends of the T-DNA and target locus in deletion and *in locus* overexpression strains. The used primers are described in Table S3 while the expected amplicon sizes for the GMO strain and the wild type are shown below.

Southern blot strategy:

Genetically modified strains that showed the expected results in the PCR screening were subjected to a Southern blot analysis to determine the T-DNA copy number. The "Vector NTI" software package was used to design Southern blot strategy for the individual GMO strains. A 588 bp long PCR amplified fragment of the hygromycin resistance gene was used as probe. The two included figures shows the location of genes (above the line), primers (below the line) and restriction sites (above the line).

Southern blot analysis:

The aim of the Southern blot analysis was primarily to determine the T-DNA copy number and secondly to provide evidence for correct integration of the T-DNA. A probe targeting only the selection marker gene (hygR) was used. This strategy only results in bands in the genetically modified strains and not the wild type, as the wild type does not contain the selection marker gene. The sizes of the obtained bands have been calculated based on their individual traveling length compared to that of the bands found in the utilized 2Log ladder, which is not shown on the blots.

∆PGL1 strain

PCR validation

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with SnaBI

Southern blot analysis with SnaBI digested gDNA

 → ~ 12 kb	
	∆PGL1 T1
3	∆PGL1 T2
3	∆PGL1 T1-
3	∆PGL1 T2
1	∆PGL1 T3.

∆PGL1 T2	Correct
∆PGL1 T14	Correct
∆PGL1 T21	Correct
∆PGL1 T32	Correct

Correct

Conclusion for the *APGL1* strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of ~12 kb. The Southern blot in addition showed that only a single copy had integrated.

<u>PGL1 strain</u>

PCR validation

and the second sec												
1	2	3	4	5	6	7	8	1	2 log ladder			
								2	Hyg588U/L	588 bp	٦	0
				-				3	PGL1-OT3/RF-3	2044 bp	7	DCL 1
				H				4	PGL1-OT4/RF-2	1569 bp	J	PGLI
		-	-	-				5	2 log ladder		2	
1			-	=				6	Hyg588U/L	No band		
	-	£		-				7	PGL1-OT3/RF-3	No band	ſ	WT
								8	PGL1-OT4/RF-2	No band	J	
		\neg		,		~						
	Ο	-PC	JL1			Ŵ	Т					

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with SnaBI

Enzym	WT	∆PGL1
SnaBI	6753 bp	11620 bp

Southern blot analysis with SnaBI digested gDNA

→ ~ 12 kb		
)	O-PGL1 #OT1	Correct
3	O-PGL1 #OT2	Correct
1	O-PGL1 #OT17	Correct
]	O-PGL1 #OT43	Correct

Conclusion for the O-PGL1 strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of \sim 12 kb. The Southern blot in addition showed that only a single copy had integrated.

<u> ⊿PGLJ strain</u>

PCR validation

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with SnaBI

Southern blot analysis with *SnaBI* digested gDNA $\sim 8 \text{ kb}$

	0 КО			
		PHI	G. zeae PH-1 wild-type	
	1	74	<i>∆PGLJ</i> T4	correct
1774	E	73	<i>∆PGLJ</i> T3	correct

Conclusion for the *APGLJ* strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of 8 kb. The Southern blot in addition showed that only a single copy had integrated.

<u>APGLM strain</u> PCR validation

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with SnaBI

Southern blot analysis with *SnaBI* digested gDNA

► /~ /.J KU		
PHI	Gz PH-1 wild-type	
73 72	ΔPGLM T3	double insert
	△PGLM T2	correct

Conclusion for the *APGLM* strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of 7.5 kb. The Southern blot in addition showed that only a single copy had integrated.

<u>ApglX strain</u> PCR validation

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with HindIII

Southern blot analysis with HindIII digested gDNA

Conclusion for the *ApglX* strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of 6.2 kb. The Southern blot in addition showed that only a single copy had integrated.

<u>APGLV strain</u>

PCR validation

Southern blot strategy:

Theoretical digestion of gDNA from the wild type and mutant strain with Sall

Southern blot analysis with *Sall* digested gDNA ~ 9.5 kb

• ~ 9.5 KU	PHI Th	G. zeae PH-1 wild-type	
		△PGLV T6	correct
	73	$\Delta PGLV$ T3	correct

Conclusion for the *APGLV* strain

The isolated transformants displayed the expected band pattern in the PCR analysis. Southern blot analysis confirmed that the T-DNA had integrated by double homologous recombination, based on the hybridization band of 9.5 kb. The Southern blot in addition showed that only a single copy had integrated.

PGLR strain

PCR validation

Southern blot strategy:

The ectopic integration of the T-DNA makes it impossible to predict the fragment sizes obtained during the Southern blot analysis. We therefore chose to cut the genomic DNA with BstxI, which does not cut internally in the T-DNA. Based on this one would expect two bands when probing with the coding sequence of PGLR fragment (one from the endogenetic copy and one from the introduced copy)

Southern blot analysis with SnaBI digested gDNA

Conclusion for the EO-PGLR (PGL6) strain

The isolated transformant displayed the expected band pattern in the PCR analysis. Southern blot analysis using part of the pglR CDS as a probe showed that the strain only contained a single copy of the gene. This suggests that the T-DNA copy has integrated by a single homologous recombination event with the endogenic locus.

Evolutionary models for the development of pigment biosynthesis in *Fusarium*

The Figure S3 below shows the possible models for the evolution of pigment biosynthesis in the *Fusarium* genus. Loss of a gene cluster is indicated by '- 'in red, while gains (horizontal gene transfers) are indicated by '+' in green. The expression pattern of the individual cluster is indicated by 'm' for mycelium and 'p' for perithecial. '*' represent shifts in the expression pattern of the *PGL1* gene cluster following introduction of a redundant gene cluster.

UV/VIS and MS data for compound (1) to (5)

NMR data for compound (3) and (5)

Table S4 ¹H-¹³C correlations (δ in DMSO- d_6) observed in the HMBC spectra of 5deoxybostrycoidin anthrone (**3**).

#No	$\delta^{1}H$	δ ¹³ C	HMBC
	(Multiplicity)		
15	2.64 (s)	24.1	3, 4
16	3.87 (s)	54.9	6
10	4.24 (s)	31.5	1, 4, 5, 11, 12
			, 14
7	6.44 (s, <i>J</i> =1.8)	98.9	5, 8
5	6.46 (s, <i>J</i> =1.8)	105.8	12
4	7.17 (s)	121.6	3, 10, 14, 15
1	9.35 (s)	148.5	3, 14
OH-8	13.17 (s)	-	12
12	-	110.9	
3	-	162.1	
14	-	124.2	
11	-	141.7	
13	-	148.5	
6	-	165.6	
8	-	165.9	
9	-	n.o.	

Table S5. ¹H and ¹³C NMR and assignments and ¹H-¹³C correlations (δ in DMSO-*d*₆) observed in the HMBC spectra for purpurfusarin (**5**). ^{*1}H and ¹³C NMR shifts relative to (*CHD*₂)₂SO = 2.49 ppm and (*CD*₃)₂SO = 39.5 ppm, respectively. (w) refers to a weak correlation observed in a 3 Hz optimized HMBC experiment.

#No	δ ¹ H	δ ¹³ C	Integr	HMBC
	(Multiplicity)		al	
15, 15'	2.37 (s)	23.5	6	3, 4
7, 7'	6.39 (s)	104.2	2	5, 6, 8,
				12
4, 4'	7.72 (s)	123.6	2	13, 14,
				15
1, 1'	9.43 (s)	147.3	2	3, 9, 14,
				13,
OH-8, OH-8'	15.86 (s)	-	2	6, 7, 8,
				9,12
OH-6, OH-6'	18.43 (s)	-	1	6, 7
12, 12'	-	100.3		
5, 5'	-	120.6		
14, 14'	-	122.1		
10, 10'	-	125.5		
11,11'	-	130.0		
13, 13'	-	140.1		
3, 3'	-	157.8		
8, 8'	-	169.1		
6, 6'	-	173.4		
9, 9'	-	180.6		

Possible configuration of purpurfusarin (5)

The oxidative coupling of two anthrones could give rise to 2 different isomeric configurations, C1 and C2, as shown in the figure below. The NOESY spectrum shows a correlation between H-15 and H-1 and H-4 and it did not show any correlation between H-4 and H-7 that might have been expected if **5** had adopted the isomeric configuration C2. Hence, we expect (5) to adopt the C1 configuration.

Selected HMBC and NOE correlation for purpurfusarin (5)

Pupurfusarin (5)

¹⁵N-HMBC spectrum of pupurfusarin in MeOH-d4. The four protons H-1/H-1' ($\delta H = 9.43$ ppm), H-4/H-4' ($\delta H = 7.72$ ppm) and the protons of the methyl group H-15/H-15' ($\delta H = 2.73$ ppm) all showed long-range correlation to a ¹⁵N resonating at 317.5 ppm

15N-HMBC of (5)

Purification scheme for compound (3), (4) and (5)

Tuble bo pullieu		
Compound	Fractionation	Semi-Prep
(3) 5-	No fractionation of crude extract	(3) was almost pure after the
deoxybostrycoidin		Liquid-Liquid extraction with
anthrone		DCM. The final purification of (3)
		was first attempted on LUNA C18
		using a water-MeCN gradient with
		no success.
		(3) was successfully purified using
		LUNA PFP using a water-MeOH
		gradient from 60-100 % containing
		20 mM FA. The yield was 3.8 mg.

Table S6 purification of (3)

Table S7 purification of (2)

Compound	Fractionation	Semi-Prep
(4) 6-0-	10 g Isolute DIOL (Biotage, Uppsale,	The pooled fraction of the
Demethyl-5-	Sweden).	EtOAc:MeOH(95:5) and
deoxybostrycoidin	Eluted with the following solvent (30 ml):	EtOAc:MeOH (8:2) 33.8 mg was
anthrone	1. DCM	further purified on LUNA PFP
	2. DCM:EtOAc (1:1)	(250x10 mm, 5µm, Phenomenex,
	3. DCM:EtOAc (2:8)	Torrance, CA, U.S.) using a 60-
	4. EtOAc	100 MeOH % + 20 mM FA
	5. EtOAc:MeOH (95:5)	gradient over 20 min. The yield of
	6. EtOAc:MeOH (8:2)	(4) was below 1 mg.
	7. EtOAc:MeOH (1:1)	
	8. EtOAc:MeOH (1:1)	
	9. MeOH	
	10. MeOH	

Table S8 purification of (5)

Compund	Fractionation	Semi-Prep
Pupurfusarin (5)	10 g Isolute DIOL (Biotage, Uppsale,	LH-20 (40x4 cm) equilibrated in
	Sweden).	MeOH. The last five MeOH
	Eluted with the following solvent (15 ml):	fractions from the second Diol
	1. Heptane:DCM (1:1),	fractionation was pooled and dried.
	2. DCM:EtOAc (8:2),	The extract was dissolved in 400
	3. DCM:EtOAc (4:6),	ul MeOH and loaded on the
	4. DCM:EtOAc (2:8),	column. The column was eluted
	5. EtOAc	with MeOH with a linear flow rate
	6. EtOAc	of 3.2 cm/hour. The Purple band
	7. EtOAc:ACN (8:2),	was visually followed and eluted
	8. EtOAc:ACN (1:1),	after 16 hours.

9. EtOAc:ACN	
10. EtOAc	
11. EtOAc:ACN(8:2)	
12. EtOAc:ACN (1:1)	
13. EtOAc:ACN (1:1)	
14. ACN	
15. ACN	
16. ACN	
17. 5x MeOH,	
The last five MeOH fractions was then	
dried and re-run on a 10 g Isolute DIOL	
(Biotage, Uppsala, Sweden) with the	
following solvents:	
1. EtOAc	
2. EtOAc:ACN(8:2)	
3. EtOAc:ACN (1:1)	
4. ACN	
5. MeOH	