Supporting information for:

Metabolites from the induced expression of cryptic single operons found in the genome of *Burkholderia pseudomallei*.

John B. Biggins, Xiaofei Liu, Zhiyang Feng, and Sean F. Brady*

Laboratory for Genetically Encoded Molecules, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065

Table of Contents

Materials and Methods:	
General Methods	S2 - 5
Figures and table	
Table S1: Cloned putative biosynthetic operons	S2
Table S2: PCR cloning primers and buffers	S3
Table S3: Gene deletion PCR primers	S4
Figure S1: Gene deletion HPLC traces	S5
Over the Dete	
Operon BTH-II0204-207	
Compound isolation/characterization	56
BTH-II0204-207 (Δ) (1)	00
TableS4: NMR assignment table	S 7
	58
	50
	39
$D \Pi - IIU2U4 - 2U7 (D) (Z)$	010
	510
	511
13C NMR ; 150 MHZ	512
BTH-110204-207 (C) (3)	0.40
Table S6: NMR assignment table	S13
Table S7. X-ray table	S14
H NMR; 600MHz	S15
^{1°} C NMR ; 150 MHz	S16
BTH-II0204-207 (D) (4)	
Table S8: NMR assignment table	S17
Table S9: X-ray table	S18
¹ H NMR ; 600MHz	S19
¹³ C NMR ; 150 MHz	S20
Operon BPSS2111-2113	
Compound isolation/characterization	S21
BPSS2111-2113 (A) (5)	
Table S10: NMR assignment table	S22
¹ H NMR ; 600MHz	S23
¹³ C NMR ; 150 MHz	S24
BPSS2111-2113 (B) (6)	
Table S11: NMR assignment table	S25
¹ H NMR : 600MHz	S26
¹³ C NMR : 150 MHz	S27
BPSS2111-2113 (C) (7)	
Table S12: NMR assignment table	S28
Table S13: X-ray table	S29
1 H NMR : 600MHz	S30
¹³ C NMR : 150 MHz	S31

Operon cloning: Operons and genes of interest (Table S1) were PCR amplified from either Burkholderia pseudomallei K96243 and Burkholderia thailandensis E264 genomic DNA using Phusion High-Fidelity DNA polymerase (NEB; Cambridge, MA) and either an optimized FailSafe buffer (Epicentre; Madison, WI) or Phusion HF buffer. Forward and reverse primers were designed to contain Xbal and Pmel restriction sites, respectively (Table S2). PCR cycling conditions were as follows: 98°C for 30s, 30 cycles of 98°C for 30s; annealing for 30s (see Table S2 for annealing temperatures); 30s per kb extension at 72°C; 72°C, 10 min. Reactions that yielded a single amplicon of the correct predicted size were passed through a QIAquick PCR purification column (Qiagen). PCR reactions that yielded more than one PCR product were separated on a 1.0% agarose gel and the amplicon of the correct predicted size was recovered from gel (Qiagen, QIAquick Gel extraction kit). The purified amplicons were double digested with Xbal and Pmel. The resulting Xbal/Pmel cut amplicons were purified and ligated (Fast-link DNA ligation kit, Epicentre; Madison, WI) with pMMB67EXPH that had been digested with Xbal and Pmel. Ligation reactions were electroporated into E. coli EC100 (Epicentre; Madison, WI) and selected on LB/agar/ampicillin (50 µg-mL⁻¹). In each case the correct product was verified by end-sequencing and restriction mapping. The vector used here, pMMB67EXPH, was constructed from pMMB67EH (ATCC# 77289) by the following transformations: 1. digest with EcoRI and Xbal, blunt-end with End-It (Epicentre) and ligate to yield pMMB67EXH, 2. digest pMMB67EXH with Sbfl, blunt-end with End-It (Epicentre), CIP treated and ligate to a Pmel linker (p-GGGTTTAAACCC) to yield pMMB67EXPH.

	Amplified Operon (B.P. equivalent)	Description of	Description of ORF	Description of	December 1 and 1	December 1 and	December of	Description of	B
		ORF (1)	(2)	ORF (3)	ORF (4)	ORF (5)	ORF (6)	ORF (7)	ORF (8)
	Chromosome I								
1 (BPSL0212-0215 ^a (BTH_I0174-I0178)	S-adenosylmethionine synthetase	hypothetical	phytanoyl-CoA dioxygenase	hypothetical	aldo/keto reductase family oxidoreductase			
2	BPSL1081-1085 (BTH_I0949-I0953)	polyphosphate kinase	drug/metabolite transporter	aminotransferase	L-PSP family endoribonuclease	phenazine biosynthesis protein PhzF			
3	BPSL1234-1237 (BTH_I1083-I1086)	acyl-CoA dehydrogenase	phosphotransferase	phosphoglycerate mutase	enoyl-CoA hydratase				
4 (BPSL1488 ^b (BTH_I2209-I2210)	carboxymuconolactone decarboxylase	lipoic acid synthetase	•					
5 (BPSL1846-1849 ^b (BTH_I2487-I2491)	Thioesterase family	Aldo/keto oxidoreductase	transporter	hypothetical	hypothetical			
6	BPSL2328-2329 (BTH_11833-1834)	acyl-CoA dehydrogenase	CaiB/BaiF family CoA transferase						
	Chromosome II								
7	BPSS0023-0028 ^b (BTH_II0025-0031)	acyl-CoA dehydrogenase	cytochrome P450- related protein	hypothetical	AP endonuclease	hypothetical	radical SAM domain/B12 binding domain- containing protein	SAM-dependent methyltransferases	
8° (BPSS0130-0133 (BTH_II0204-0207)	NRPS	Epimerase	Epoxide Hydrolase	Methyltransferase				
9	BPSS1258-1259	iron-containing alcohol dehydrogenase	oxidoreductase/ dehydrogenase						
10	BPSS1318-1321	methyltransferase	Amidophospho- ribosyltransferase	D-fructose-6- phosphate amidotransferase	D-lactate dehydrogenase				
¹¹ (E	BPSS2037-2044 3TH_II 0274-0281)	Fatty acid desaturase	PKS	Mycolic acid synthase	Stearoyl-CoA desaturase	amidohydrolase	AMP-dependent synthetase	thioesterase	hydrolase
12°	BPSS2111-2113	monooxygenase	pseudogene	hypothetical					
¹³ (BPSS2338-2340 ^b BTH_II2358- 2361)	phytoene synthase	hypothetical	squalene-hopene cyclase	hopanoid- associated phosphorylase				

 Table S1.
 Cloned putative biosynthetic operons

pseudomallei denome, while beind a sin

^b One additional gene was included in the operon from *B. thailandensis* compared to corresponding operon in *B. pseudomallei*

^cGenerated clone-specific molecules in *P. aeruginosa*

Table S2. PCR cloning primers and buffers.

Forward primer (Xbal, <u>TCTAGA</u>) ^a	Reverse primer (Pmel, <u>GTTTAAAC</u>)	PCR	Annealing
		Buffer⁵	temp.(°C)
GCGC <u>TCTAGA</u> TGCCTCGCTCATTTCTTGTG	GCGC <u>GTTTAAAC</u> GAATTCCGCCACAACGTG	J	60
GCGC <u>TCTAGA</u> TGCGGCGCGGGAATCTGCGCAAG	GCGC <u>GTTTAAAC</u> GCAGGATATCGCTAACCGGGGGAAG	G	67
GCGC <u>TCTAGA</u> TGAACATGCCCAGCGCG	GCGC <u>GTTTAAAC</u> CAGTGCGAATGAGACAAAC <u>G</u>	J	60
GCGC <u>TCTAGA</u> TGGAACCACGAATCGAGGAA	GCGC <u>GTTTAAAC</u> GGCTCGCGTTCTATCTGC	HF	55
GCGC <u>TCTAGA</u> TGAACCCGTCTTCAGGCAAG	GCGC <u>GTTTAAAC</u> CTTCACGTCGCCATACTCG	J	60
GCGC <u>TCTAGA</u> TGAACATGATGAAAGAAATCGTCG	GCGC <u>GTTTAAAC</u> TCTACTTCGCCTCCTTCAGC	G	55
GCGC <u>TCTAGA</u> TGCAAACAAGTGGTTTCCTCG	GCGC <u>GTTTAAAC</u> TATAGCCCCACCAGATGGA	HF	55
GCGC <u>TCTAGA</u> TGACCCATCCTCTGTTCA	GCGC <u>GTTTAAAC</u> ATACGGCGACGCACAGGTA	J	60
GCGC <u>TCTAGA</u> TGCTGAATTTCGATTTCTACAACC	GCGC <u>GTTTAAAC</u> GCGAACTTAGAGCGTGTCG	HF	55
GCGC <u>TCTAGA</u> TGCGCATCGACAGAATCGG	GCGC <u>GTTTAAAC</u> CGTCCAGAACTCAGTCGAA	G	55
GCGC <u>TCTAGA</u> TGCAGCGCGAACGCGCA	GCGC <u>GTTTAAAC</u> GTTTCGATACGAGGCAAGGA	J	60
GCGC <u>TCTAGA</u> TGAAAAAAATCGTCGTAGTCGG	GCGC <u>GTTTAAAC</u> GTCCTTTCGGTCAGTTGTT	HF	55
GCGC <u>TCTAGA</u> TGTTTTGGAGTGGAGTTCGCCTTC	GCGC <u>GTTTAAAC</u> GAAACGGGACCGGCAATG	G	60
	Forward primer (Xbal, <u>TCTAGA</u>) ^a GCGC <u>TCTAGA</u> TGCCTCGCTCATTTCTTGTG GCGC <u>TCTAGA</u> TGCGGCGCGGGAATCTGCGCAAG GCGC <u>TCTAGA</u> TGAACATGCCCAGCGCG GCGC <u>TCTAGA</u> TGAACACGCCACGAATCGAGGAA GCGC <u>TCTAGA</u> TGAACCCGTCTTCAGGCAAG GCGC <u>TCTAGA</u> TGAACATGATGAAAGAAATCGTCG GCGC <u>TCTAGA</u> TGCAAACAAGTGGTTTCCTCG GCGC <u>TCTAGA</u> TGCCAACAACTGATTTCTACAACC GCGC <u>TCTAGA</u> TGCGCATCGACAGAATCGG GCGC <u>TCTAGA</u> TGCAGCCCATCCACGAATCGG GCGC <u>TCTAGA</u> TGCAGCGCAACGCGCA GCGC <u>TCTAGA</u> TGCAGCGCGAACGCGCA GCGC <u>TCTAGA</u> TGCAAAAAAATCGTCGTAGTCGG GCGC <u>TCTAGA</u> TGCAAAAAAATCGTCGTAGTCGG	Forward primer (Xbal, <u>TCTAGA</u>) ^a Reverse primer (Pmel, <u>GTTTAAAC</u>)GCGC <u>TCTAGA</u> TGCCTCGCTCATTTCTTGTGGCGC <u>GTTTAAAC</u> GCAGGATATCGCCAACGTGGCGC <u>TCTAGA</u> TGCGCGCGGGGAATCTGCGCAAGGCGC <u>GTTTAAAC</u> CCAGGCGCAACGGAACCGGGGGAAGGCGC <u>TCTAGA</u> TGAACATGCCCAGCGCGGCGC <u>GTTTAAAC</u> CCAGTGCGAATGAGACAAAC <u>G</u> GCGC <u>TCTAGA</u> TGAACATGCCCAGCGCGGCGC <u>GTTTAAAC</u> CCAGTGCGAATGAGACAAAC <u>G</u> GCGC <u>TCTAGA</u> TGAACACGCCACGAATCGAGGAAGCGC <u>GTTTAAAC</u> CGCCCGCTTATCTGCGCGC <u>TCTAGA</u> TGAACATGATGAAAGAATCGTCGGCGC <u>GTTTAAAC</u> CTCACGTCGCCATACTCGGCGC <u>TCTAGA</u> TGAACAACAGTGGTTTCCTCGGCGC <u>GTTTAAAC</u> CTCACGTCGCCACAGGTGGAGCGC <u>TCTAGA</u> TGACACAACAAGTGGTTTCCTCGGCGC <u>GTTTAAAC</u> ATACGGCGACGCACAGGTAGCGC <u>TCTAGA</u> TGCCCATCCTCTGTTCAGCGC <u>GTTTAAAC</u> GCGAACTCAGGCGACGCACGGCAGCGC <u>TCTAGA</u> TGCGCATCGACAGAATCGGGCGC <u>GTTTAAAC</u> GCGCAACGCGCAGCGC <u>TCTAGA</u> TGCAGCGCGAACGCGCAGCGC <u>GTTTAAAC</u> GTCCCAGAACTCAGTCGAAGCGC <u>TCTAGA</u> TGCAGCGCGAACGCGCAGCGC <u>GTTTAAAC</u> GTCTCCGTAGAGGCAAGGAGCGC <u>TCTAGA</u> TGAAAAAAATCGTCGTAGTCGGCGC <u>GTTTAAAC</u> GTCCTTTCGGTCAGTGTTGCGC <u>TCTAGA</u> TGAAAAAAATCGTCGTAGTCGGCGC <u>GTTTAAAC</u> GCCCTTTCGGTCAGTGTTGCGC <u>TCTAGA</u> TGAAAAAAATCGTCGTAGTCGCGCGC <u>GTTTAAAC</u> GCCCTTTCGGTCAGTGTTGCGC <u>TCTAGA</u> TGAAAAAAATCGTCGTAGTCGCGCGC <u>GTTTAAAC</u> GCCCTTTCGGCCAATGT	Forward primer (Xbal, <u>ICTAGA</u>) ^a Reverse primer (Pmel, <u>GTTTAAAC</u>) PCR Buffer ^b GCGC <u>ICTAGA</u> TGCCCCGCTCATTTCTGTG GCGC <u>GTTTAAAC</u> GCAAGGATATCGCCAACGTG J GCGC <u>ICTAGA</u> TGCGCGCGGGGAATCTGCGCAAG GCGC <u>GTTTAAAC</u> GCAGGATATCGCTAACCGGGGGAAG G GCGC <u>ICTAGA</u> TGAACATGCCCAGCGCG GCGC <u>GTTTAAAC</u> CAGGGCGAATCGAGAAAACG J GCGC <u>ICTAGA</u> TGGAACCACGAATCGAGGAA GCGC <u>GTTTAAAC</u> GCAGGCGCGCTTCTATCTGC HF GCGC <u>ICTAGA</u> TGGAACCACGAATCGAGGAA GCGC <u>GTTTAAAC</u> GGCTCGCGCTTCATACTCG J GCGC <u>ICTAGA</u> TGAACATGATGAAAGAAATCGTCG GCGC <u>GTTTAAAC</u> GGCTCCCCCACCAGATGGA HF GCGC <u>ICTAGA</u> TGCAAACAAGTGGTTTCCTCG GCGC <u>GTTTAAAC</u> ATACGCCCCACCAGGATGGA HF GCGC <u>ICTAGA</u> TGCAAACAAGTGGGTTTCCTCG GCGC <u>GTTTAAAC</u> GCGCAACGGCGAACGAGGAA J GCGC <u>ICTAGA</u> TGCCAATCCTCTGTTCA GCGC <u>GTTTAAAC</u> GCGCAACGGCAACGGGCAACGGGAA G GCGC <u>ICTAGA</u> TGCCAATCCTCTCTGTTCA GCGC <u>GTTTAAAC</u> GCGCAACGGCAACGGGAACGGGAA HF GCGC <u>ICTAGA</u> TGCCGCATCGACAGAATCGG GCGC <u>GTTTAAAC</u> GCGCCACAGAACTCAGTCGAA G GCGC <u>ICTAGA</u> TGCAGCGCCAACGCGCA GCGC <u>GTTTAAAC</u> GTCCTTCGATACGAGGCAAGGA J GCGC <u>ICTAGA</u> TGCAGCGCGCAACGCGCAA GCGC <u>GTTTAAAC</u> GTCCTTCGGTCAGTGTGTT HF GCGC <u>ICTAGA</u> TGCAGCGCGCAACGCGCAACGGCGCAA GCGC <u>GTTTAAAC</u> GTCCTTCGGTCAGTGTGTT HF

^a Terminus of Xbal site (<u>TCTAGA</u>TG...) contains transcription initiating ATG codon.

^bG, J: Epicentre FailSafe buffer mix; HF: 5X NEB Phusion HF buffer

Mating expression constructs into *Pseudomonas aeruginosa*: Expression constructs were transformed into *E. coli* S17.1 and mated into *Pseudomonas aeruginosa* (PA14 or PAK5) using the following bi-parental conjugation protocol. Equal volumes of overnight cultures of *E. coli* S17.1 and *P. aeruginosa* were mixed (50 μ l each), spotted upon LB/agar plate, allowed to air dry and then incubated 6h at 30 °C. The resulting mixed-colonies were scraped from the agar plates, distributed onto LB/agar/irgasan (25 μ g-mL⁻¹)/carbenicillin (200 μ g-mL⁻¹) plates and incubated at 30 °C. Exconjugates typically appeared after 24-48 hours.

Screening for clone-specific molecules: Representative exconjugates transformed with each expression construct were inoculated into 2 ml LB/carbenicillin (200 μ g-mL⁻¹) and grown at 30 °C for 12-18 h with shaking (200 rpm). 0.5 mL of this culture broth (1/100 dilution) was used to inoculate 50 mL cultures of LB/carbenicillin and these cultures were shaken at 30 °C until they reached an OD₆₀₀ of 0.1-0.2. IPTG was then added to reach a final concentration of 0.1 mM. After an additional 36 h at 30°C (250 rpm) cultures were extracted with an equal volume of ethyl acetate. Ethyl acetate was collected and dried *in vacuo* after phase separation by centrifugation (4,000 xg, 20 min). Extracts were eventually resuspended in 1 μ L of methanol per mL of starting culture broth and examined by normal phase (90:10 CHCl₃/CH₃OH) TLC. Extracts that appeared to contain metabolites that were not in extracts from vector control cultures were further analyzed by reversed-phase HPLC-MS (linear gradient from 20:80 CH₃OH:H₂O with 0.1% formic acid to 100% CH₃OH with 0.1% formic acid over 20 min; 1.5 mL-min⁻¹; Waters XBridge C18, 5 μ m, 4.6 x 150 mm). Six-liter batches of cultures grown under the same conditions used in our initial screen for molecule production were used to generate extracts for molecule isolation and structure determination.

Bioassay: Overnight cultures of *Sacchromyces cereviseae* W303, *Bacillus subtilis* BR151, *Staphylococcus aureus* ATCC 6538 P, and *Escherichia coli* strains EC100, BAS849 and DRC639 were diluted 1:10,000 in LB (*S. cereviseae* was grown in YPD). Individual wells of a sterile 96-well plate were filled with 100 μ L of these dilute cultures. 15 μ L of a methanol stock solution containing a pure compound was added to the first well in each row and then serially diluted in three-fold increments to yield concentrations from 0.4 to 100 μ g-mL⁻¹. Plates were incubated overnight at 30°C. Identical concentrations were screened against HeLa carcinoma cells as follows: cells were plated at 1000 cells per well overnight, compound added Day 2, and incubated 60 hours at 37°C, 5% CO₂. DMEM medium plus 10% fetal bovine serum used. Following treatment, wells were aspirated, washed with PBS, fixed with 1% paraformaldehyde, and stained with 0.1% crystal violet. Relative cell-count was quantified by extracting stained crystal violet from individual wells with 10% acetic acid (100 μ L) and measuring at 590 nm via UV/Vis plate reader.

Phosphodiesterase Assay: Phosphodiesterase (PDE) screening was provided by BPS Biosciences (San Diego, CA). The assay, as per protocol of PDE assay kit (Cat # 60300-60400), is based on the

binding of a fluorescent nucleotide monophosphate (FAM-cAMP) generated by PDEs to the binding agent, then screened by fluorescence polarization. Assay conditions: test compounds were prepared with 100% DMSO in assay buffer and 0.5 µL of the dilution was added to a 50 µL reaction so that the final concentration of DMSO is 1% in all of reactions. The enzymatic reactions were conducted at room temperature for 60 minutes (180 minutes for PDE6C) in a 50 µL mixture containing PDE assay buffer, 100nM FAM-cAMP, a PDE and the test compound. After the enzymatic reaction, 100 µL of a binding solution (1:100 dilution of the binding agent with the binding agent diluent) was added to each reaction and the reaction was performed at room temperature for 60 minutes. Fluorescence intensity was measured at an excitation of 485 nm and an emission of 528 nm using a Tecan Infinite M1000 microplate PDE activity assays were performed in duplicate at each concentration. Data analysis: reader. fluorescence intensity is converted to fluorescence polarization using the Tecan Magellan6 software. The fluorescence polarization data were analyzed using the computer software, Graphpad Prism. The fluorescence polarization (FP_t) in absence of the compound in each data set was defined as 100% activity. In the absence of PDE and the compound, the value of fluorescent polarization (FP_{b}) in each data set was defined as 0% activity. The percent activity in the presence of the compound was calculated according to the following equation: % activity = $(FP-FP_b)/(FP_t-FP_b) \times 100\%$, where FP = the fluorescence polarization in the presence of the compound.

Gene Deletions: Non-ribosomal peptide synthase-encoding gene BTH-II0204 from *B. thailandensis* E264 was deleted from the genome following protocol detailed by Thongdee *et al.* (ref. 14). Briefly, a two stage PCR was performed to incorporate a tetracycline-resistance cassette, amplified from plasmid pJWC1 (Craig, J. W.; Chang, F. Y.; Brady, S. F. *ACS Chem Biol* **2009**, *4*, 23-8.), flanked by regions of genomic DNA adjacent to BTH-II0204. The final PCR construct (100 ng) was then incubated with *B. thailandensis* E264 in Medium DM for 48 hours (2mL, 250 rpm, 37°C) and selected upon TSB/agar/tetracycline (50 µg-mL⁻¹). A colony chosen with successful gene deletion, herein designated as strain *B. thailandensis* E264(Δ II0204), was verified by PCR amplification as described (ref. 14). Operon BTH-II0204-207 was rendered functionally inactive, verified by elimination of *in vivo* monomethylated terphenyl compound production, illustrated in Figure S1. Primers for gene deletion protocol listed in Table S4.

Table S3. Gene deletion PCR primers

BTH-0204 deletion

- CCAGTTCGTCGCCCGGTGCGATTCGATATGAAATC 1F^a GAGCATTTCGGATCG<u>TCAGCGATCGGCTCGTTGCC^b</u> GACACTGCCATGAGCCTCTTCTCCTTGTTCATCGTG
- 1R AAGTCGGATATCAG<u>TCAATCGTCACCCTTTCTCGGTC</u>
- 2F CGGCGGATTCTTTCATGAAG
- 2R CGATCCGAAATGCTCGATTTC
- 3F CTGATATCCGACTTCACGATG
- 3R GACGTATTGCAGGCAATCCTG
- 4F ACGATCGGCTCTGGCTCTAT
- 4R GCGATCTATGCGGCTTCTAT
- 5F GGTGATTGTCGATGGATTGG
- 5R TCGTGTTGTCGAACGCATAG
- ^a Primer nomenclature detailed in Thongdee et al. (ref. 14)
- ^b Underlined region corresponds to tetracycline resistance cassette primer

Figure S1. HPLC trace comparison of wild-type *B. thailandensis* E264 (middle) and non-ribosomal peptide synthase deletion *B. thailandensis* E264(Δ II0204) strains (top), wherein monomethylated terphenyl biosynthesis is eliminated with NRPS deletion. Compound **1** control trace is on bottom.

Operon BTH-II0204-207/BPSS0130-133. Crude ethyl acetate extracts from cultures of *P. aeruginosa* (PA14) transformed with pMMB67EXPH:BTH-II0204-207 were initially partitioned using a modified Kupchan Scheme. The extract was resuspended in 100 ml of 90:10 CH₃OH:H₂O and then extracted 4 times with 100 ml of hexanes. The remaining methanolic mixture was diluted to 60:40 CH₃OH:H₂O and extracted 2 times with 100 ml CH₂Cl₂. Each fraction (hexanes, CH₂Cl₂ and CH₃OH:H₂O) was dried in vacuo and analyzed by reversed phase HPLC-MS. Compounds 3 and 4 were found in the hexanes fraction (3.5 mg-L⁻¹) while compounds **1** and **2** were found in the CH₂Cl₂ fraction (6.0 mg-L⁻¹). The major metabolites 1 and 3 appear in these extracts at approximately 6- and 20-fold higher concentrations than the minor compounds **2** and **4**, respectively. The hexanes and CH₂Cl₂ fractions were each partitioned by silica gel flash chromatography using hexanes:ethyl acetate step gradients. Compounds 3 and 4 coeluted with 90:10 hexanes:ethyl acetate and compounds 1 and 2 co-eluted with 80:20 hexanes:ethyl acetate. Compounds 3 and 4 were separated by preparative reversed-phase HPLC using 52:48 CH₃OH:H₂O (Waters XBridge, C18, 5 µm, 10 x 150 mm; isocratic 52:48 CH₃OH:H₂O with 0.1% formic acid: 7 mL-min⁻¹). Under these conditions compounds **3** and **4** eluted at 50 and 52 min, respectively. Compounds 1 and 2 were separated by preparative reversed-phase HPLC using 28:72 CH₃CN:H₂O (Waters XBridge, C18, 5 mm, 10 x 250 mm; isocratic 28:72 CH₃CN:H₂O with 0.1% acetic acid; 5 mL-min⁻ ¹). Under these conditions compounds **1** and **2** eluted at 117 and 122 min, respectively. X-ray diffraction analysis of single crystals grown from compounds 3 and 4 revealed them to be dimethylated terphenyls that differ in methyl substitution patterns. A comparison of the ¹H and ¹³C spectra for compounds **3** and 4 with those for compounds 1 and 2 indicated 1 and 2 are also terphenyl structures but they each only contain one methyl substituent. Extensive HMBC correlations shown below allowed us to define the position of the methoxy substituents in each metabolite.

Table S4: BIH-IIU204-207:A (1) NMR assignment table, in CD_3COCD_3						
C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC		
1			122.9			
2			148.2			
3	6.81	S	112.9	C1, C2, C5, C1"		
4			128.7			
5			141.4			
6			147.0			
7 (OH)	7.65	S		C1, C2, C3		
8 (OCH ₃)	3.37	S	60.7	C6		
9 (OH)	7.37	S		C4, C5, C6		
1'			135.2			
2'/6'	7.55	d (7.5)	131.7	C1, C2'/C6', C4'		
3'/5'	7.47	t (7.5)	128.8	C1', C3'/C5'		
4'	7.38	t (7.5)	127.7	C2'/C6"		
1"			139.5			
2"/6"	7.70	d (7.5)	130.1	C2"/C6", C4"		
3"/5"	7.45	t (7.5)	128.9	C1", C3"/C5"		
4"	7.35	t (7.5)	127.8	C2"/C6"		

Table S4: BTH-II0204-207:A (1) NMR assignment table, in CD₃COCD₃

HRMS-TOF (m/z): [M + H]⁺ calcd for C₁₉H₁₆O₃, 293.1178; found 293.1182.

BTH-II0204-207:A (1) 1 H NMR ; 600MHz in CD₃COCD₃

BTH-II0204-207:A (1) ¹³C NMR; 150 MHz in CD₃COCD₃

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
1			117.1	
2			152.0	
3	6.55	S	108.3	C1, C2, C4, C5
4			134.4	
5			139.3	
6			149.3	
7 (OH)	7.90	S		C1, C2, C3
8 (OH)	7.73	S	61.0	C1, C5, C6
9 (OCH ₃)	3.40	S		C5
1'			135.3	
2'/6'	7.53	d (7.5)	132.0	C1, C2'/C6', C4'
3'/5'	7.43	t (7.5)	128.5	C1', C3'/C5'
4'	7.32	t (7.5)	127.5	C2'/C6"
1"			139.3	
2"/6"	7 66	d (7.5)	129.6	C4 C1"/C6" C4"
3"/5"	7 49	t (7.5)	129.3	C1" C3"/C5"
4"	7.42	t (7.5)	128.2	C2"/C6"

Table S5: BTH-II0204-207:B (2) NMR assignment table, in CD₃COCD₃

HRMS-TOF (m/z): $[M + H]^+$ calcd for C₁₉H₁₆O₃, 293.1178; found 293.1180.

BTH-II0204-207:B (2) ^1H NMR ; 600MHz in CD_3COCD_3

BTH-II0204-207:B (2) ^{13}C NMR ; 150 MHz in CD_3COCD_3

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
1			118.5	
2			154.6	
3	6.56	S	104.5	C1, C2, C4, C5
4			134.2	
5			140.4	
6			149.2	
7 (OCH ₃)	3.74	S	56.3	C2
8 (OH)	7.75	S		C1, C5
9 (OCH ₃)	3.37	S	61.1	C5
1'			135.3	
2'/6'	7.42	d (7.5)	132.0	C1, C2'/C6', C4'
3'/5'	7.38	m	128.3	C1', C3'/C5'
4'	7.28	t (7.5)	127.4	C2'/C6'
1"			139.5	
2"/6"	7.68	d (7.5)	129.7	C4, C2"/C6", C4"
3"/5"	7.47	t (7.5)	129.3	C1", C3"/C5"
4"	7.39	m	128.4	C2"/C6"

Table S6: BTH-II0204-207:C (3) NMR assignment table, in CD_3COCD_3

HRMS-TOF (m/z): [M + H]⁺ calcd for C₂₀H₁₈O₃, 307.1335; found 307.1325.

Table S7. Crystal data and structure refinement for	BTH-110204-207:C (3).		
Identification code	sean8		
Empirical formula	C20 H18 O3		
Formula weight	306.34		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 10.6588(8) Å	α= 90°.	
	b = 20.2223(14) Å	β= 90.946(3)°.	
	c = 7.4519(6) Å	$\gamma = 90^{\circ}$.	
Volume	1606.0(2) Å ³		
Ζ	4		
Density (calculated)	1.267 Mg/m ³		
Absorption coefficient	0.084 mm ⁻¹		
F(000)	648		
Crystal size	0.20 x 0.15 x 0.05 mm ³		
Theta range for data collection	2.16 to 27.86°.		
Index ranges	-8<=h<=13, -26<=k<=26, -9<=l<=9		
Reflections collected	14907		
Independent reflections	3790 [R(int) = 0.0323]		
Completeness to theta = 27.86°	99.4 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.9958 and 0.9833		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3790 / 0 / 280		
Goodness-of-fit on F ²	1.009		
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.0903		
R indices (all data)	R1 = 0.0604, wR2 = 0.1043		
Largest diff. peak and hole	0.272 and -0.198 e.Å ⁻³		

BTH-II0204-207:C (3) ^1H NMR ; 600MHz in CD_3COCD_3

BTH-II0204-207:C (3) ^{13}C NMR ; 150 MHz in CD_3COCD_3

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
1			124.7	
2			151.0	
3	6.83	S	109.6	C1, C2, C5, C6, C1"
4			128.3	
5			142.4	
6			147.1	
7 (OCH ₃)	3.72	S	56.7	C2
8 (OCH ₃)	3.33	S	60.8	C6
9 (OH)	7.49	S		C4, C5, C6
1'			135.1	
2'/6'	7.44	m	131.7	C1, C2'/C6'
3'/5'	7.43	m	128.9	C1'
4'	7.35	t (7.5)	127.8	C2'/C6'
1"			139.6	
2"/6"	7.71	d (7.5)	130.2	C4, C2"/C6", C4"
3"/5"	7.43	m	128.7	C1"
4"	7.33	t (7.5)	127.9	C2"/C6"

Table S8: BTH-II0204-207:D (4) NMR assignment table, in CD₃COCD₃

HRMS-TOF (m/z): [M + H]⁺ calcd for C₂₀H₁₈O₃, 307.1335; found 307.1317.

Table S9. Crystal data and structure refinement for I	3TH-110204-207:D (4).		
Identification code	sean10		
Empirical formula	C20 H18 O3		
Formula weight	306.34		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbcn		
Unit cell dimensions	a = 18.1916(15) Å	α= 90°.	
	b = 8.3327(7) Å	β= 90°.	
	c = 20.9582(17) Å	$\gamma = 90^{\circ}$.	
Volume	3177.0(5) Å ³		
Ζ	8		
Density (calculated)	1.281 Mg/m ³		
Absorption coefficient	0.085 mm ⁻¹		
F(000)	1296		
Crystal size	0.60 x 0.10 x 0.10 mm ³		
Theta range for data collection	1.94 to 23.26°.		
Index ranges	-20<=h<=19, -9<=k<=8, -14<=l<=23		
Reflections collected	9484		
Independent reflections	2286 [R(int) = 0.0439]		
Completeness to theta = 23.26°	99.9 %		
Absorption correction	Semi-empirical from equivalent	ts	
Max. and min. transmission	0.9915 and 0.9506		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2286 / 0 / 257		
Goodness-of-fit on F ²	1.055		
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.1281		
R indices (all data)	R1 = 0.0853, wR2 = 0.1499		
Largest diff. peak and hole	0.247 and -0.200 e.Å ⁻³		

T 1 1 ~~ . . 11 110204 207.D (4)œ ~

BTH-II0204-207:D (4) ^1H NMR ; 600MHz in CD_3COCD_3

BTH-II0204-207:D (4) ^{13}C NMR ; 150 MHz in CD_3COCD_3

Operon BPSS2111-2113. Crude ethyl acetate extracts from cultures of *P. aeruginosa* (PAK5) transformed with pMMB67EXPH:BPSS2111-2113 were partitioned by silica gel flash chromatography using a CHCl₃:CH₃OH step-gradient (100:0, 99:1, 97:3, 95:5, 90:10, 80:20, and 0:100). Compounds **5**, **6** and **7** eluted with 97:3, 100:0 and 100:0 CHCl₃:CH₃OH, respectively. Preparative reversed HPLC yielded pure **5** (0.6 mg-L⁻¹), **6** (0.4 mg-L⁻¹) and **7** (0.3 mg-L⁻¹) (Waters XBridge, C18, 5 μ m, 10 x 150 mm; gradient 20:80 CH₃OH:H₂O with 0.1% formic acid to 100% CH₃OH with 0.1% formic acid over 25 min; **7** mL-min⁻¹; retention times: **5**, 6.27 min; **6**, 12.25 min; **7**, 14.9 min).

The structure of compound **7** was solved by X-ray crystallography. The X-ray structure of **7** showed it to be a tri-methylthio substituted bicyclic structure. HRMS data together with 1 and 2D NMR indicates that compounds **5** and **6** resemble **7**, expect **5** contains no methylthio substituents and **6** contains only two methylthio substituents. The positions of the two methylthio substituents found in compound **6** were defined by HMBC correlations from the remaining two methyl groups, the lone aromatic proton singlet and the phenolic proton to aromatic carbons in the structure.

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
2	3.37	S	29.3	C3, C8a
3			166.4	
4a			129.4	
5	6.80	d (8.6)	118.2	C4a, C7, C8a
6	6.62	dd (8.6, 2.7)	113.9	C4a, C7, C8
7			153.5	
8	6.73	d (2.7)	113.3	C4a, C6, C7
8a			121.2	
OH	nd			
NH	nd			

Table S10: BPSS2111-2113:A (5) NMR assignment table, in CD₃OD

HRMS-TOF (m/z): [M - H]⁻ calcd for C₈H₇NO₂S, 180.0118; found 180.0116.

$\ensuremath{\text{BPSS2111-2113:A}}$ (5) $^1\ensuremath{\text{H}}\xspace$ NMR ; 600MHz in CD3OD

BPSS2111-2113:A (5) $^{\rm 13}{\rm C}$ NMR ; 150 MHz in CD_3OD

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
2	3.41	S	30.2	C3, C8a
3			163.8	
4a			128.6 ^a	
5			116.4	
6	6.91	S	113.2	C4a, C5, C7
7			153.3	
8			128.7 ^a	
8a			128.5 ^a	
9	2.46	S	17.2	C8
10	2.30	S	18.0	C5
NH	7.95	S		C2, C4a
OH	6.80	S		C6, C7, C8
a				

	Table S11: BPSS2111-2113:B	3 (6) NMR	assignment table,	in CD ₂ Cl ₂
--	----------------------------	-----------	-------------------	------------------------------------

^a, assignments may be interchangeable.

HRMS-TOF (m/z): $[M - H]^{-}$ calcd for C₁₀H₁₁NO₂S3, 271.9873; found 271.9885.

BPSS2111-2113:B (6) ¹H NMR ; 600MHz in CD₂Cl₂

$\mbox{BPSS2111-2113:B}$ (6) $^{13}\mbox{C}\ \mbox{NMR}$; 150 MHz in $\mbox{CD}_2\mbox{Cl}_2$

C/H	δ_{H}	Multiplicity (Hz)	δ_{C}	HMBC
2	3.43	S	30.8	C3, C8a
3			164.6	
4a			132.2	
5			129.5	
6			120.9 ^b	
7			154.7	
8			125.3 ^b	
8a			129.7	
9	2.41	S	19.9 ^c	C8
10	2.41	S	18.0 ^c	C6
11	2.37	S	20.1	C5
NH	8.69	S		C2, C8a
OH	7.45	S		C6, C7, C8
b, c assignments	e may ha intar	shangeable		

Table S12: BPSS2111-2113:C (7) NMR assignment table, in CD_2CI_2

^{b, c}, assignments may be interchangeable.

HRMS-TOF (m/z): [M - H]⁻ calcd for C₁₁H₁₃NO₂S₄, 317.9750; found 317.9754.

ruble 515. Crystal data and structure fermement for	BI 552111-2115.C (7):		
Identification code	sean9		
Empirical formula	C11 H13 N O2 S4		
Formula weight	319.46		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 9.8403(10) Å	α= 90°.	
	b = 17.7022(15) Å	β= 95.805(3)°.	
	c = 15.5474(13) Å	$\gamma = 90^{\circ}$.	
Volume	2694.4(4) Å ³		
Ζ	8		
Density (calculated)	1.575 Mg/m ³		
Absorption coefficient	0.697 mm ⁻¹		
F(000)	1328		
Crystal size	$0.15 \text{ x} 0.10 \text{ x} 0.05 \text{ mm}^3$		
Theta range for data collection	1.75 to 26.37°.		
Index ranges	-12<=h<=12, -22<=k<=20, -16<=l<=19		
Reflections collected	22991		
Independent reflections	5516 [R(int) = 0.0560]		
Completeness to theta = 26.37°	100.0 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.9660 and 0.9027		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5516 / 0 / 363		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0421, wR2 = 0.0901		
R indices (all data)	R1 = 0.0726, wR2 = 0.1033		
Largest diff. peak and hole	1.078 and -0.410 e.Å ⁻³		

Table S13. Crystal data and structure refinement for BPSS2111-2113:C (7).

L.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10