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SUPPLEMENT A: JUSTIFICATIONS FOR ALTERNATIVE MODEL

REPRESENTATIONS

We present the justifications separately for the nonrecurrent event setting and the recurrent

events setting.

Nonrecurrent event setting: Let fTZ (·) denote the conditional density function of

T given Z, STZ(·) and ΛT
Z(·) denote the survival function and cumulative hazard function

of T given Z respectively, and SCZ(·) denote the survival function of C given Z. Define

µnr(t) = E{Nnr(t)}. We assume the following regularity conditions:

(D0) T and C are independent given Z;

(D1) βnr0 (τ) is continuously differentiable;

(D2) fTZ (eX
Tβnr

0 (τ))SCZ(eX
Tβnr

0 (τ)) > 0 for τ ∈ (0, τU ] and Z ∈ Z, where τU is some

constant ∈ (0, 1).

Proposition A1. (i) Under conditions (D0) and (D1), model (1) implies model (3); (ii)

Under conditions (D0), (D1), and (D2), model (3) implies model (1) with τ ∈ (0, 1) replaced
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by τ ∈ (0, τU ], i.e.

QT (τ |Z) = exp{XTβnr0 (τ)}, τ ∈ (0, τU ]. (A.1)

Proof of Proposition A1: Peng and Huang (2008) proved that (3) holds under model (1)

and assumptions, (D0) and (D1). Thus we only need to show that (3) implies (A.1) under

conditions (D0)–(D2).

First, we take derivative with respect to τ on both sides of equation (3). Under the

random censoring assumption (D0) that T and C are independent given Z, for τ ∈ (0, 1),

we get

fTZ (eX
Tβnr

0 (τ))SCZ(eX
Tβnr

0 (τ))eX
Tβnr

0 (τ)XTdβnr0 (τ) = STZ(eX
Tβnr

0 (τ))SCZ(eX
Tβnr

0 (τ))
1

1− τ
dτ.

Given the assumption (D2), this implies that for τ ∈ (0, τU ],

dΛT
Z(eX

Tβnr
0 (τ)) =

1

1− τ
dτ. (A.2)

By letting τ approaching 0, equation (3) implies that limτ→0 µ
nr
Z (eX

Tβnr
0 (τ)) = 0. Given (D2),

limτ→0 µ
nr
Z (eX

Tβnr
0 (τ)) = 0 implies eX

Tβnr
0 (0) = 0 and hence ΛT

Z(eX
Tβnr

0 (0)) = 0 for Z ∈ Z.

Therefore, the differential equation (A.2) gives ΛT
Z(eX

Tβnr
0 (τ)) = − log(1− τ) for τ ∈ (0, τU ],

which means STZ(eX
Tβnr

0 (τ)) = 1 − τ and thus QT (τ |Z) = exp{XTβnr0 (τ)} for τ ∈ (0, τU ].

This proves that (3) implies (A.1) under conditions (D0)–(D2).

Remark A1: By Proposition A1, the quantile regression model (1) implies the counting

process model (3) as long as the standard random assumption is satisfied and regression

quantiles in β0(τ) are smooth in τ . Showing the reverse relationship however requires an

additional assumption (D2). In (D2), the density positiveness at regression quantiles is

commonly adopted in quantile regression literature for establishing estimation consistency,

while the other requirement on SCZ(·) is necessitated by the identifiability of model (1) in the

presence of censoring. For example, when the censoring variable C is always smaller than

conditional quantiles at a certain quantile level, say τ ∗, (i.e. SCZ(eX
Tβnr

0 (τ∗)) = 0), βnr0 (τ)
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in model (1) would not be identifiable for τ ∈ (τ ∗, 1). In this case, model (1) cannot be

implied by model (3), which is formulated based on the fully observable counting process

Ni(t) and at-risk process Yi(t). Such a view of condition (D2) may lead to an alternative

interpretation of Proposition A1(ii). That is, under conditions (D0) and (D1), model (3)

implies an identifiable version of model (1), model (A.1) with τU satisfying condition (D2).

Recurrent events setting: Let FW
Z (x) = E{Y (x)|Z}. We assume the following regu-

larity conditions:

(E0) (L,R) is independent of Ñ(·) given Z;

(E1) β0(u) is continuously differentiable;

(E2) µ̇Z(eX
Tβ0(u))FW

Z (eX
Tβ0(u)) > 0 for Z ∈ Z and u ∈ (0, U ].

Proposition A2. (i) Under conditions (E0) and (E1), model (7) implies model (6); (ii)

under conditions (E0)–(E2), model (6) implies (7).

Proof of Proposition A2: Suppose (7) holds. Under the random observation window

assumption (E0), we see that E{N(eX
Tβ0(u))|L,R,Z} = µZ(R ∧ eXTβ0(u))− µZ(L). On the

other hand, by the smoothness of β0(·) stated in (E1) and the definition of τZ(u), we have

L < eX
Tβ0(s) ≤ R is equivalent to µZ(L) < G(s) ≤ µZ(R). As a result,

E
{∫ u

0

Y (eX
Tβ0(s))g(s)ds|L,R,Z

}
= E

{∫ ∞
0

I(µZ(L) < G(s) ≤ µZ(R) ∧G(u))dG(s)|L,R,Z
}

Since G(u) = µZ(eX
Tβ0(u)) for u ∈ (0, U ] under model (7), it follows from the above equation

that for u ∈ (0, U ],

E
{∫ u

0

Y (eX
Tβ0(s))g(s)ds|L,R,Z

}
= µZ(R ∧ eXTβ0(u))− µZ(L).

Consequently, E{N(eX
Tβ0(u))|L,R,Z} = E

{ ∫ u
0
Y (eX

Tβ0(s))g(s)ds|L,R,Z
}

for u ∈ (0, U ],

and therefore (6) is satisfied.

Suppose (6) holds. Under the random observation window assumption in (E0), we get

from taking derivative with respect to u on both sides of equation (6) that

µ̇Z(eX
Tβ0(u))FW

Z (eX
Tβ0(u))eX

Tβ0(u)XTdβ0(u) = FW
Z (eX

Tβ0(u))g(u)du.
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It then follows from (E2) that dµZ(eX
Tβ0(u)) = g(u)du for u ∈ (0, U ].

By equation (6) and condition (E2), we have eX
Tβ0(0) = 0 for Z ∈ Z. This, combined

with dµZ(eX
Tβ0(u)) = g(u)du for u ∈ (0, U ], implies that µZ(eX

Tβ0(u)) = G(u) for u ∈ (0, U ].

This means that (7) is satisfied. The proof of Proposition A2 is completed.

Remark A2: Like in the nonrecurrent event setting, condition (E2) is attached to the

identifiability aspect of model (7) with recurrent events data under window observation.

The result in proposition A2(ii) justifies the use of model (7) to interpret the counting

process model (6) when (E2) is met.

SUPPLEMENT B: PROOFS OF THEOREM 1 AND THEOREM 2

Define B(d) = {b ∈ Rp+1 : infu∈(0,U ] ‖A(b) − A(β0(u))‖ ≤ d}. Here ‖ · ‖ denote the

Euclidean norm. Without loss of generality, we assume SL(n) is a equally spaced grid, and

thus L(n) = U/an, where an = ‖SL(n)‖. Define α0(u) = A(β0(u)), α̂(u) = A(β̂(u)), and

A(d) = {A(b) : b ∈ B(d)}.

Proof of Theorem 1. First, note that for any b1, b2 ∈ B(d0), (b1− b2){A(b1)−A(b2)} =

E[(XTb1−XTb2){N(exp(XTb1))−N(exp(XTb2))}] ≥ 0. Under condition C3, the equality,

(b1 − b2){A(b1)−A(b2)} = 0, holds only when b1 = b2. This implies that A(·) is a one-to-

one map from B(d0) to A(d0). Therefore, there exists an inverse function, denoted by κ(·),

from A(d0) to B(d0), such that κ(A(b)) = b for any b ∈ B(d0).

By the definition of β̂(u), we have maxk=1,...,L(n) ‖νn,k‖ = Op(n
−1), where νn,k = n−1

∑n
i=1

X iNi(exp{XT
i β̂(u)}) − n−1

∑n
i=1

∫ u
0
X iI(Li ≤ exp{XT

i β̂(s)} ≤ Ri)g(s)ds. Define vn(b) =

n−1
∑n

i=1X iNi(exp(XT

i b))−A(b) and ṽn(b) = n−1
∑n

i=1X iI(Li ≤ exp(XT

i b) ≤ Ri)−Ã(b).

Consider the two function classes, G1 = {X
∑∞

j=1 I(L ≤ T (j) ≤ exp(XTb) ∧R) : b ∈ Rp+1}

and G2 = {XI(L ≤ exp(XTb) ≤ R) : b ∈ Rp+1}. Under condition C1, both G1 and

G2 are Glivenko-Cantelli (van der Vaart and Wellner 2000) because the class of uniformly

bounded monotone function functions in the real line is Donsker and thus Glivenko-Cantelli.
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Therefore, supb ‖vn(b)‖ →a.s. 0 and supb ‖ṽn(b)‖ →a.s. 0. These imply rn ≡ sup1≤k≤L(n) ‖ −

vn(β̂(uk)) +
∫ uk
0
ṽn(β̂(s))g(s)ds‖ →a.s. 0.

Under conditions C1–C3, following the same arguments as in Peng and Huang (2008), we

can show that, for k = 1, . . . , L(n), supu∈[uk−1,uk)
‖α̂(u) − α0(u)‖ is bounded above almost

surely by εk ≡ (1 + C3an)k−1(rn + ε0C3an + C1n
−1 + C2an), where Cl (l = 1, 2, 3) are some

positive constants. Given limn→∞ an = 0 and L(n) = U/an, we have limn→∞(1+C3an)L(n) =

eC3U . This, coupled with rn →a.s. 0, then implies that

sup
u∈(0,U ]

‖α̂(u)−α0(u)‖ →p 0. (B.1)

With applications of Taylor expansion of κ(α̂(u)) around α0(u), it follows under condition

C4 that supu∈[v,U ] ‖β̂(u)− β0(u)‖ →p 0.

Proof of Theorem 2. Following the proof of Lemma B.1. in Peng and Huang (2008), we

can show that, given supu∈(0,U ] ‖α̂(u)−α0(u)‖ →p 0,

sup
u∈(0,U ]

∥∥∥n−1/2 n∑
i=1

X i{Ñi(exp(XT
i β̂(u)))− Ñi(exp(XT

i β0(u)))}

− n−1/2{A(β̂(u))−A(β0(u))}
∥∥∥ p−→ 0. (B.2)

and

sup
u∈(0,U ]

∥∥∥n−1/2 n∑
i=1

X i{I(Li ≤ exp(XT
i β̂(u)) ≤ Ri)− I(Li ≤ exp(XT

i β0(u)) ≤ Ri)}

− n−1/2{Ã(β̂(u))− Ã(β0(u))}
∥∥∥ p−→ 0. (B.3)

Let oI(an) denote a term that is op(an) uniformly in u ∈ I. Given n1/2‖SL(n)‖ → 0, by the

definition of Sn(·), we can show that n1/2Sn(β̂, u) = o(0,U ](1). Then (B.1), (B.2) and (B.3)
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imply that

− n1/2Sn(β0, u)

=n1/2{A(β̂(u))−A(β0(u))} −
∫ u

0

n1/2{Ã(β̂(s))− Ã(β0(s))}g(s)ds+ o(0,U ](1)

=n1/2{A(β̂(u))−A(β0(u))}

−
∫ u

0

{J(β0(s))B(β0(s))
−1g(s) + o(0,U ](1)} · n1/2{A(β̂(s))−A(β0(s))}ds+ o(0,U ](1)

Using product integration theory (Andersen, Borgan, Gill, and Keiding 1998), we get

n1/2(A(β̂(u))−A(β0(u))) = φ{−n1/2Sn(β0(u), u)}+ o(0,U ](1), (B.4)

where φ(·) is a linear operator on F , defined as

φ(w)(u) =

∫ u

0

I(s, u)dw(s), (B.5)

where F = {w : [0, U ] → Rp+1, w is left-continuous with right limit, w(0) = 0}, and

I(s, t) = (πu∈(s,t][Ip+1 + (B(β0(u))−1)TJ(β0(u))Tg(u)du])T. Using Taylor expansions and

the uniform consistency of β̂(u) stated in Theorem 1, we then have

n1/2{β̂(u)− β0(u)} = n−1/2
n∑
i=1

ζi(u) + o[v,U ](1),

where ζi(u) = B(β0(u))−1φ(ξi) with ξi(u) = X i{Ni(exp{XT
i β0(u)})−

∫ u
0
I(Li ≤ exp{XT

i β0(s)}

≤ Ri)g(s)ds} (i = 1, . . . , n). By Donsker theorem, n1/2{β̂(u)− β0(u)} converges to a mean

zero Gaussian process with the covariance matrix

Σ(s, t) = E{ζ1(s)ζ1(t)}. (B.6)

This completes the proof of Theorem 2.

SUPPLEMENT C: JUSTIFICATION FOR THE PROPOSED COVARIANCE

ESTIMATION

Given the closed form for the asymptotic covariance in (B.6), the key step to justify the

proposed covariance estimation is to prove that n−1/2En(u)D−1n (u) and n−1/2Ẽn(u)D−1n (u)

provide uniformly consistent estimates for B(β0(u)) and J(β0(u)) respectively.
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Proposition C1: Under the regularity conditions in Theorem 2, we have

lim
n→∞

sup
u∈[v,U ]

‖B(β0(u))−n−1/2En(u)D−1n (u)‖ = 0, lim
n→∞

sup
u∈[v,U ]

‖J(β0(u))−n−1/2Ẽn(u)D−1n (u)‖ = 0.

Proof of Proposition C1: Let R(b) = E[{XN(eX
Tb)}⊗2]. By Glivenko-Cantelli Theo-

rem, limn→∞ supu∈(0,U ] ‖Ωn(u) −R(β̂(u))‖ = 0. Following the lines for (B.1), we can show

limn→∞ supu∈(0,U ] ‖R(β̂(u))−R(β0(u)‖ = 0. Thus, we have supu∈(0,U ] ‖Ωn(u)‖ = Op(1) and

then supu∈(0,U ] ‖En(u)‖ = Op(1). Here ‖ · ‖ with a matrix argument means the entrywise

Euclidean norm. As a result,

lim
n→∞

sup
u∈(0,U ]

‖n−1/2{Ln(bn,j(u))−Ln(β̂(u))}‖ = lim
n→∞

sup
u∈(0,U ]

‖n−1/2en,j(u)‖ = 0 (C.1)

Applications of Glivenko-Cantelli Theorem further give limn→∞ supu∈(0,U ] ‖n−1/2Ln(bn,j(u))−

A(bn,j(u))‖ = 0 and limn→∞ supu∈(0,U ] ‖n−1/2Ln(β̂(u))−A(β̂(u))‖ = 0. These, coupled with

(B.1) and (C.1), imply

sup
u∈(0,U ]

‖A(bn,j(u))−A(β0(u))‖ →p 0. (C.2)

Therefore, we can get (B.2) with β̂(u) replaced by bn,j(u). Given the uniform consistency

result in Theorem 1, it then follows that

Ln(bn,j(u))−Ln(β̂(u)) = {B(β0(u))+εn,j(u)}·n1/2{bn,j(u)−β̂(u)}, j = 1, . . . , p+1. (C.3)

with supu∈[v,U ] ‖εn,j(u)‖ →a.s. 0. Therefore, limn→∞ supu∈(v,U ] ‖B(β0(u))−n−1/2En(u)D−1n (u)‖ =

0.

By mimicking the proof for Theorem 4 of Huang and Peng (2009), given supu∈[v,U ] ‖β̂(u)−

β0(u)‖ →p 0 and supu∈[v,U ] ‖bn,j(u)− β0(u)‖ →p 0 (implied by (C.2)), we have

sup
u∈[v,U ]

‖L̃n(bn(u))− L̃(β0(u))− n1/2{Ã(bn(u))− Ã(β0(u))}‖ →p 0,

where bn(u) can be either β̂(u) or bn,j(u). Therefore, we get from applying Taylor expansion

that

L̃n(bn,j(u))− L̃n(β̂(u)) = {J(β0(u)) + ε∗n,j(u)} · n1/2{bn,j(u)− β̂(u)}, j = 1, . . . , p+ 1,
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where supu∈[v,U ] ‖ε∗n,j(u)‖ →a.s. 0. This shows that limn→∞ supu∈[v,U ] ‖J(β0(u))−n−1/2Ẽn(u)

D−1n (u)‖ = 0.
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