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ABSTRACT Symmetry conditions are derived for global
and local binding processes in biological macromolecules. It is
shown that the conditions applying in the case of the macromol-
ecule as a whole are decoupled from those referring to individual
sites. In the case of two sites, the global binding curve is always
symmetric, and the individual-site binding curves are always
asymmetric, unless the two sites are identical or independent. In
the case ofthree sites or more, individual-site binding curves can
show symmetric or asymmetric behavior. The conditions de-
rived for symmetry in the local description of binding processes
also apply to the case of linkage among different ligands and to
steady-state kinetics. Application to the analysis of oxygen
binding to human hemoglobin under physiological conditions
provides a model-independent interpretation of the asymmetric
nature of the binding curve. Asymmetry of the global binding
curve can coexist with symmetric or asymmetric binding to the
individual a and81chains. If the binding curves ofthe two chains
are symmetric, then subunit heterogeneity and asymmetric
interactions must exist in the hemoglobin tetramer. On the other
hand, if the binding curves of the two chains are asymmetric,
then subunit heterogeneity and asymmetric interactions are not
necessary for global asymmetric binding.

is an even function, then F(z) = F(-z) and any point in the
positive half-plane at z has an image at -z. Symmetry in this
case is specular in the sense that F(z) in one half-plane is the
specular image of F(z) in the other half. On the other hand,
if F(z) is an odd function, then F(z) = -F(-z) and symmetry
is rotational, for F(z) is reproduced exactly when rotated 180°
around z = 0. These two types-of symmetry are related by
differentiation. If F(z) has rotational symmetry, then the
derivative dF(z)/dz has specular symmetry since it has the
same value at z and -z. In view of this fact, it is sufficient to
focus our attention on one type of symmetry only. Rotational
symmetry is the one of major practical interest when dealing
with binding and linkage processes.

Consider a function F(x), where 0 c x s Xo and xm is the
value of x at the center of symmetry. Then, F(x) plotted
versus In x has rotational symmetry if, and only if,

F(xmA) + F(xmA-1) = F(O) + F(oo), [1]

for any A 2 0. At the center of symmetry the value of F(x) is
by definition halfway between the limiting values F(O) and
F(oo); i.e.,

Symmetry permeates many different aspects of biological
structure and function, ranging from the spatial arrangement
of protein subunits to the thermodynamic conditions involv-
ing response functions of the system or else the shape of a
binding isotherm. In some of these aspects symmetry is an
inherent component and arises as a consequence of thermo-
dynamic principles. The mutual interference of different
ligands or binding sites is governed by linkage relationships
(1, 2) that reflect the intrinsic symmetry ofthe abstract metric
space associated with a system at equilibrium (3, 4). In other
cases symmetry may or may not be present as a phenome-
nological aspect of the system. Group symmetry is observed
in the three-dimensional structure of a number of multimeric
proteins (5), and in many cases functional aspects of biolog-
ical function and regulation reflect the structural symmetry of
the system. The idea of relating structural and functional
symmetry in biological macromolecules is a very old one (6,
7) and played a major role in the development of allosteric
models (8, 9). Interest in functional symmetry, especially
when dealing with binding and linkage processes, stems from
the considerable simplification of the mathematical expres-
sions involved. Symmetry introduces constraints among the
parameters defining the partition function of the system and
provides a convenient test for a number of mechanistic
models. Our purpose in this report is to draw attention to
some general aspects of functional symmetry in binding and
linkage processes that can be used in practical applications.

General Considerations on Symmetry

From a mathematical point of view, a function F(z), with -oo
< z '< c, can have a number of symmetry properties. If F(z)

F(xm) = [F(O) + F(oo)]/2 [2]

so that

F(xmA) + F(xmAk1) = 2F(Xm) I [3]

which gives the general definition of symmetry to be used in
what follows. It is rather instructive to notice that shifting the
origin of axes to the point [xm, F(xm)] yields an odd function
if F(x) is symmetric. In other words, the function F(x) -
F(xm) plotted versus ln(x/xm) is odd around x = xm, as can be
seen from Eq. 3 by letting A = x/xm.
The general condition 3 has two important consequences.
COROLLARY 1. If F(x) is symmetric, then the integral

rX.A
I F(x)d(ln x) = 2F(xm)ln A
XmA1

[4]

holds for any A 2 0.
COROLLARY 2. If F(x) is symmetric with a center of

symmetry xm, then the function

rF(x) - F(O)
G(x) = In [F(o) F(x)]x[

is symmetric and has the same center of symmetry.
The validity of Corollary 1 hinges on the properties of the

function F(x) - F(xm) that is odd around x = xm. This implies
that the integral of F(x) - F(xm) from xmAk1 to xm must equal
(in absolute value) the integral ofF(x) - F(xm) fromxm to xmA,
since from Eq. 3 it follows that F(xmA) - F(xm) equals F(xm)
- F(xmA-1) for any A 2 0. Consequently, the integral
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JXMA
I XmA [F(x) - F(xm)]d(ln x) = 0
XmA-1

holds for any A 2 0 and hence Corollary 1. The validity of
Corollary 2 implies that

G(xmA) + G(xmAk1) = 2G(xm) = -2 ln xm [7]

or else that

[ F(XmA) - F(O) F(xmk-1) - F(O) 1
F(oo) - F(XmA)J LF(o) - F(XmA-)] = 1, [8]

which is always true if Eq. 3 holds.

Global Binding Processes

The expressions derived above can be used to find the
conditions for symmetry in ligand binding processes. We
shall consider symmetry of the binding isotherm reflecting
global processes and symmetry of the binding curve reflect-
ing local or site-specific binding processes. The general
aspects of the global and local descriptions are dealt with in
detail elsewhere (2) and will not be repeated here. The
partition function Z(x) for the global description is

Z(x)= A xi [9]
j=o

where Aj is the overall equilibrium constant for binding j
ligand molecules to the free macromolecule (AO = 1) and the
summation runs from zero to the total number of sites t. The
form ofZ(x) in Eq. 9 implies that the macromolecule does not
change aggregation state upon ligand binding. The binding
isotherm in the global description is a measure of the average
number of ligand sites as a function of In x; i.e.,

X(x) = d[In Z(x)] A jAi [10]

j=o

Symmetry of X(x) necessarily demands X(xm) = t/2 and
application of Eq. 4 yields

t t

> AjxjkA = >AjxAkt'j=0 j=0
[11]

Since Eq. 11 must hold for any A, one necessarily has xm =
A,11/. This implies that the center of symmetry is the same as
the mean ligand activity of the system (1, 2), where the
unligated and fully ligated forms of the macromolecule have
the same concentration. Elimination ofxm from Eq. 11 yields
the condition of symmetry for the overall equilibrium con-
stants as follows:

AjAji/ = A,-jAj1,/ [12]
which must hold for any j. The above condition is a well
known result (6) and implies that the partition function Z(x)
is a symmetric polynomial when x is expressed in xm units.
For t = 1 or t = 2, the condition is a mere tautology. The
condition for t = 3 is A3 = (A2/A1)3, and the condition for
t = 4 is A4 = (A3/A1)2 and does not depend on A2. In general,
the condition of symmetry involves all As in the partition
function for t odd and all As but A,1/2 for t even. Therefore,
the doubly ligated species makes no contribution to the
symmetry or asymmetry of the binding curve of a protein

such as hemoglobin, and the same applies to the half-
[6] saturated species of a protein containing an even number of

binding sites.

Local Binding Processes

For local binding processes, we are interested in the behavior
of individual sites of the macromolecule considered as sub-
systems open to interactions with other sites. The connection
between global and local processes is provided by the con-
servation relationship

X(x) = Xl(x) + X2(x) + * * * + X,(x), [13]

where X,(x) is the binding isotherm of site s and is bounded
from zero to 1. The relationship above allows one to draw
some qualitative conclusions about the symmetry properties
of individual sites. When all sites are independent from one
another, then each Xs(x) behaves just as X(x) for t = 1 and
is always symmetric. When all sites are identical and interact
equally, then X(x) is merely tX(x), where X(x) is any Xs(x) in
Eq. 13, and the symmetry properties of an individual site
coincide with those of the macromolecule as a whole. In
general the symmetry properties of X(x) cannot be defined
uniquely from those of individual sites and vice versa. The
sum of symmetric functions is not necessarily symmetric and
conversely the sum of asymmetric functions is not necessar-
ily asymmetric. Even in the simplest case of interest arising
for t = 2, nothing can be said from Eq. 13 on the symmetry
properties ofX1(x) and X2(x) separately, ifX1(x) # X2(x). All
we know is that the sum Xl(x) + X2(x) will always be
symmetric.
To investigate the symmetry properties of local binding

processes, each X,(x) should conveniently be defined in terms
of contracted partition functions (2) that are obtained from Z(x)
when site s is kept in a particular ligation state. The partition
function Z(x) in the local description can be written (2) as

Z(x) = 0Zs(x) + KsxZs(x), [14]

where 0Zs(x) and 1Zs(x) contain all configurations with site s
unligated and ligated, respectively, and Ks is the association
constant for ligand binding to site s when all other sites are
unligated. The local binding isotherm of site s is given by

X,(x) = Kx (X= 1 _ IZs(x)-K-(x)x-
Z(x) L Z(x) J 1 + Ks(x)x

[15]

and unlike X'(x) cannot be obtained from Z(x) by differenti-
ation with respect to In x [except in the trivial case where all
X,(x) in Eq. 13 are identical]. The function K,(x) reflects the
change in the association constant for binding to site s as a
function of x and is given by

5Zs(x)
[16]

The mathematical form ofX,(x) makes Corollary I of very little
practical use. On the other hand, Corollary 2 proves most use-
ful since it states that if X,(x) is symmetric, then the function

G = In{ Xs(x) }

= In K + In [ Zs(x) = In K,(x) [17]

is always symmetric. If x, is the center of symmetry of X,(x),
then by definition X,(x,) = 1/2 and K,(x,)x, = 1. Furthermore,
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x5 coincides with the mean ligand activity of site s, as seen in
the case of the global description, and is also the center of
symmetry of Gs(x). The definition in Eq. 3 applied to GS(x)
yields

'Zs(xs ) Zs(xs =-K2x2 =,2,
0Zs(xs~k)0Zs(xs~k') SKs = t [18]

which is the condition for symmetry ofX5(x). The solution for
an arbitrary number of sites, t, is obtained by writing down
the polynomial expansions for each contracted partition
function as

tf-
0Z5(X)= > aixi [19]

j=o

Zs(x) = >E (3jx, [20]
j=0

where summations run from zero to t - 1 and ao = To = 1.
The coefficients of the contracted partition functions are
related to the overall equilibrium constants as in Eq. 9 by the
simple relationship Ai = ai + KsPif1 for 0 c i - t - 1 and A,
= Ksp,i,. Substitution of Eqs. 19 and 20 into Eq. 18 yields

(3di3 - ,a,^aj)x +jAi< = 0. [21]
i=0 j=0

Since Eq. 21 must hold for any A, one necessarily has

> 2(Ji3Pj-cw2aaj)x'+j= 0, [22]
i-0 j=0

for any i and j, such that i - j is constant. The relationships
above are invariant upon the substitution of i for j, so that
only half of them are truly independent. If i- j = n in Eq. 22,
then

t-1-n
E (p3+npj-w aj+na)x2+n = °. [23]
j=o

There are t such conditions, corresponding to the different
values of n = 0, 1, 2, . . . , t - 1. Each condition taken
separately for a given value of n is necessary but not
sufficient. It is also sufficient to the extent of which the other
conditions hold. On the other hand, if Xs(x) is symmetric,
then any ofthe conditions 23 necessarily applies. One ofthem
is particularly important and is obtained for n = t - 1, i.e.,
A-1 - W2a,1 = 0 or else

Xs = Ks-' a [24]

We can now explicitly solve the problem of symmetry for
local binding processes using two simple examples. For t =
2, the global description yields a binding curve that is always
symmetric. Does this apply to X1(x) and X2(x) as well?
Consider the case of X1(x). The relevant partition functions
are (2)

Z(x) = 1 + (K1 + K2)x + c12KlK2x2,

0Z,(x) = 1 + K2x,

[26]

[27]

and

lZl(x) = 1 + c12K2x, [28]

where c12 is the interaction constant between the sites.
Hence, a, = K2 and X1 = c12K2 and the conditions 23 are given
by

13- w2a, = 0 (n = 1) [29]

and

1 - 2+( 1 2a1x = 0 (n = 0) [30]

and are both satisfied only if a1 = Pf or aL31xj = 1, i.e., if K,
= K2 or c12 = 1. This means that X1(x) is symmetric only if
the two sites have the same association constant or if they do
not interact. The former case corresponds to X1(x) = X2(x)
= X(x)/2, and the latter corresponds to independent sites.
Thus, for t = 2, a site-specific binding curve is never
symmetric, unless the two sites are identical or independent.
For t = 3, the global description yields a binding curve that

is symmetric if A3 = (A2/A1)3. The relevant partition func-
tions for X1(x) are (2)

Z(x) = 1 + (K1 + K2 + K3)x + (C12KjK2 + c13KjK3
+ c23K2K3)x2 + c123KlK2K3x3, [31]

[32]0Z1(x) = 1 + (A2 + K3)x + c23K2K3x2,

and

1Zl(X) = 1 + (Cl2K2 + C13K3)x + C323K2K3x2,
where the constants c are appropriate interaction constants.
Hence, a, = K2 + K3, a2 = c23K2K3, 1P = c12K2 + cU3K3, and
/82 = c123K2K3, and the conditions 23 are given by

P32-w(o2a2 = o (n = 2),

,13- w2a, + (i3132 - w)2ala2)x2 = o (n = 1),

[34]

[35]

which provides a simple and analytical expression for the
center of symmetry and, hence, the mean ligand activity of
site s when its binding curve is symmetric. No such simple
relationship exists for the mean ligand activity of an individ-
ual site in the general case, which is given by the integral
equation (2)

ln(xs) = f In xdXx(x) = - In xd[rZs(x)/Z(x)]. [25]

Solution of the integral above for any value of t is straight-
forward, although somewhat tedious, and involves logarith-
mic and/or inverse trigonometric functions (10). Symmetry
greatly simplifies the solution since it makes (xs) equal to the
center of symmetry xs in Eq. 24 and yields an expression for
(xs) that is of considerable practical use, unlike Eq. 25.

and

1_w2 +(q- c2a')x4+ (Q3 - w'2a)x4l= 0 (n = 0), [361
which demand /32a2 = a2 3j2 and Kj2f1 = aja2, or else.

C123(K2 + K3)2 = C23(cl2K2 + C13K3)2 [37]

and

K2(cl2K2 + C13K3) = C23K2K3(K2 + K3). [38]

Therefore, for t = 3, it is possible for a site-specific binding
curve to be symmetric. The trivial case, where all constants
c are equal to 1, which corresponds to independent sites, is
embodied by the conditions above as a special case. The
other special case where all sites and interaction constants
are identical leads to C123 = C3, where c = c12 = c13 = c23.

Biophysics: Di Cera et al.
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Other special cases can be tested using Eqs. 37 and 38. In
general, for t sites, there will be t conditions to be satisfied
among the site-specific parameters.
Symmetry in the global description does not necessarily

imply symmetry in the local description. For a macromole-
cule containing two binding sites, the global binding isotherm
is always symmetric, whereas the site-specific isotherms are
always asymmetric, except in a few special cases. For a
macromolecule containing three sites, the conditions for
symmetry in the global description are completely decoupled
from those applying in the local description. When all inter-
action constants vanish, the global isotherm is the sum of
three symmetric isotherms but is itself symmetric only if one
of the site-specific association constants is the geometric
mean of the other two (e.g., if K2 = K2K3). When all
site-specific equilibrium constants are identical, the global
isotherm is symmetric when 27c123 = (c12 + c13 + c23)3, and
X1(x) is symmetric when c123 = c23, provided 2c23 = c12 + c13.
For larger values of t, it becomes increasingly evident the
lack of a clear connection between global and local patterns
of symmetry and the considerable complexity of the local
description of binding processes is readily appreciated.

The Case of Hemoglobin

Is there a unique code that translates structural organization
into functional behavior as expressed by binding properties?
The local description of binding processes provides a rigor-
ous framework to address the fundamental question of how
functional symmetry is related to structural features. Human
hemoglobin is a case in point. The oxygen binding curve of
human hemoglobin under conditions of physiological interest
is strongly asymmetric and displays higher cooperativity at
high saturation (11, 12). From a model-dependent analysis,
Weber (13) and Peller (14) have concluded that the asymme-
try is a consequence of the existence of two types of chains
in the hemoglobin tetramer and is due to either asymmetric
pairwise interactions between aa and f3(3 pairs or binding
heterogeneity of the two subunits. The local description of
oxygen binding to hemoglobin provides a model-independent
framework and is based on the partition function

Z(x) = 1 + 2(Ka + Kp)x
+ [CaaK2 + cpK2 + 2(Cap + cap)KaKpx2
+ 2(CaaKa + CapKi)KaKpx3 + CaaGPK,2K2X4, [39]

where Ka and Kp are the binding affinities of the two chains
and the constants c are appropriate interaction constants. A
distinction between cage and ca must be made to take into
account differential pairwise interactions between a1132 and
ai/3l pairs. The existence oftwo pairs of identical subunits in
the hemoglobin tetramer reduces the number of independent
parameters of the local description from 15 to 9 (2). Symme-
try of the global binding curve requires A4 = (A3/AP)2. This
condition per se does not involve the coefficient ofthe second
power ofx in Eq. 39 and, therefore, symmetry (or lack of it)
cannot depend on any of the second-order or pairwise
interaction constants ca, cap, can, or cap. Symmetry requires

CaaPP(Ka + KP)2 = (CaaPKa + CaPKP)2 [401

and depends on the association constants of the two chains
and third- and fourth-order interaction constants. Even if Ka
= Kp, asymmetry is observed whenever 4cact # (ca,, +
c,,l)2, which can be satisfied even if cha3p = caps. Therefore,
symmetry or asymmetry demands neither subunit heteroge-

neity nor asymmetric interactions. On the other hand, if
Caamjp, ca,,, and cams are modeled in terms of pairwise
interactions so that caap = cacap cac2 = c acC,,cC,
and cap = c~pcp,4, then asymmetry necessarily demands
c., :A cap, regardless of subunit heterogeneity, which is the
important result of Weber (13). Does Eq. 40 introduce any
model-independent limitation on the binding properties ofthe
chains? If the oxygen binding curves X,(x) and Xs(x) of the
two chains are symmetric, then one necessarily has from Eq.
24 that the two centers of symmetry are x. = K-1(cap/
CaaP)1/2 and xp = K- (CaaP1CaaPP)112. These centers are
identical to the mean ligand activities of the chains and,
therefore, the square root of their product gives
(CaaK2K2K1/4 [i.e., the mean ligand activity of the system
as a whole (2)]. Hence, Saab = Caa~ca and substitution into
Eq. 40 shows that asymmetry necessarily demands Caab #
cab8y, again regardless of subunit heterogeneity. However, in
the specific case of interest for hemoglobin, the left-hand side
of Eq. 40 far exceeds the right-hand side (11, 12), which
necessarily implies that either (Ka/Ks)2 > caP/caa > 1 or
(Ka/KP)2 < Ca8/Caa3/ < 1. Since the ratio Ka/K#3 is about 4
under physiological conditions, the first inequality applies
and the ratio Ca,/Caa,8 cannot exceed 16. The first inequality
also implies that xa > x, so that the binding curve Xs(x) is
shifted to the right with respect to Xa(x). If Xa(x) and Xs(x)
are not symmetric, there is no need to invoke asymmetric
interactions to obtain a resulting global binding curve that is
itself asymmetric, regardless of subunit heterogeneity.
Knowledge of the shape of chain-specific oxygen binding
curves under physiological conditions is, therefore, neces-
sary to establish whether the asymmetric oxygen binding
curve of human hemoglobin is due to asymmetric interac-
tions.

Symmetry and Linkage

The symmetry conditions derived in the case of local binding
processes also apply in the analysis of linkage effects. The
function K,(x) in Eq. 16 is a change in association constant
for ligand binding to site s due to a change in the ligand
activity. In the local picture the remaining t - 1 sites of the
macromolecule act as "allosteric effectors" of site s. Ac-
cordingly, the derivative d[ln K,(x)]/d(ln x) gives the change
in ligands bound to the remaining t - 1 sites when site s is
ligated and is directly related to the Hill coefficient of site s
(2); i.e.,

d[ln K,(x)]/d(ln x) = 1X(x) - 0X(x) = ns(x) - 1. [41]

The difference in saturation between the remaining t - 1 sites
other than s provides the driving force for cooperative
binding to site s. Linkage relationship 41 is mathematically
equivalent to the change in the equilibrium constant K for
binding ligand Y to the macromolecule due to a change in the
activity of a second ligand X (1), with 17(x) and 0X(x) being
the amount of ligand X bound to the unligated and Y-ligated
form of the macromolecule. Symmetry of In K in this case is
subject to a set of conditions among the coefficients of the
partition functions for ligand X binding to the unligated and
Y-ligated forms of the macromolecule. If aj and fBj are the
coefficients entering the definition of0X(x) and1X(x), Kj is the
value ofK in the absence of ligand X, and xs is the center of
symmetry of In K, then the conditions for symmetry are given
by Eq. 23. Summations in this case run from zero to the
number of binding sites for ligand X. Analogous expressions
arise in the analysis of linkage effects in steady-state kinetics
(15), where K represents either Km or kcat as a function of a
control ligand.
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