Supplementary Tables and Figures

The autophagy-related genes *BbATG1* and *BbATG8* have different functions in differentiation, stress resistance and virulence of mycopathogen *Beauveria bassiana*

Sheng-Hua Ying*†, Jing Liu†, Xin-Ling Chu, Xue-Qin Xie and Ming-Guang Feng Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China

†: These authors contributed equally to this work.

Running title: Autophagy-related genes in entomopathogen B. bassiana

Keywords: *Beauveria bassiana*, autophagy-related genes, conidiation, conidial protein, blastospore development, oxidative stress, pathogenicity

*Correspondence: Sheng-Hua Ying, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China; E-mail: yingsh@zju.edu.cn; Tel.: 86-571-88206199 Fax: 86-571-8820 6178

	a 15	Species	Alignment	Alignment	Envelope	Envelope		нмм	_	нмм	НММ	НММ	Bit	
	Gene ID		start	end	start	end	HMM acc	name	Гуре	start	end	length	score	E-value
FUNGI	A2QIL5	A ''' '	30	334	30	336	PF00069.20	Pkinase	Domain	1	258	260	201.7	1.10E-59
	A2QIL5	Aspergillus niger	649	886	646	909	PF12063.3	DUF3543	Family	5	204	238	296.4	1.10E-88
	EJP64020	Beauveria bassiana	25	324	23	326	PF00069.20	Pkinase	Domain	3	258	260	203.4	3.40E-60
	EJP64020		621	896	619	897	PF12063.3	DUF3543	Family	3	237	238	293.4	9.10E-88
	P53104	Saccharomyces	24	322	24	325	PF00069.20	Pkinase	Domain	1	257	260	203.4	3.20E-60
	P53104	cerevisiae	586	893	583	894	PF12063.3	DUF3543	Family	5	237	238	214	1.70E-63
	Q4P0K0	Llatilago moudio	16	333	15	334	PF00069.20	Pkinase	Domain	2	259	260	188.8	9.00E-56
	Q4P0K0	Ustilago maydis	708	957	707	958	PF12063.3	DUF3543	Family	2	237	238	204.3	1.50E-60
	Q52EB3		20	323	19	324	PF00069.20	Pkinase	Domain	2	259	260	198.6	9.60E-59
	Q52EB3	Magnaportne oryzae	658	946	657	947	PF12063.3	DUF3543	Family	2	237	238	320.3	5.50E-96
Q5A649	Q5A649	Candida albiaana	58	352	58	354	PF00069.20	Pkinase	Domain	1	258	260	214.4	1.40E-63
	Q5A649	Candida albicans	619	830	615	834	PF12063.3	DUF3543	Family	6	232	238	154.7	2.30E-45
(Q5BCU8	Achoraillus nidulons	24	329	24	332	PF00069.20	Pkinase	Domain	1	257	260	202.6	5.80E-60
	Q5BCU8	Asperginus nidularis	630	900	628	900	PF12063.3	DUF3543	Family	3	238	238	330.9	3.30E-99
	XP_006672480		269	588	268	590	PF00069.20	Pkinase	Domain	2	258	260	185.3	1.10E-54
	XP_006672480	Cordyceps millians	864	1140	863	1141	PF12063.3	DUF3543	Family	2	237	238	287.4	6.30E-86
	XP_007819690	Matarbinium aminantica	24	328	23	329	PF00069.20	Pkinase	Domain	2	259	260	198.2	1.20E-58
	XP_007819690	Metarnizium anisopilae	634	915	631	916	PF12063.3	DUF3543	Family	4	237	238	281.3	4.60E-84
PLANT	NP_001078281	Arabidopsis thaliana	20	277	20	277	PF00069.20	Pkinase	Domain	1	260	260	240.8	1.30E-71
	EEE58765	On the patient	24	280	24	280	PF00069.20	Pkinase	Domain	1	260	260	248.6	5.40E-74
	EEE58765	Uryza sativa	631	711	554	714	PF12063.3	DUF3543	Family	157	235	238	30.1	2.50E-07

Supplementary Table S1 Domain analysis of ATG1p

ANIMAL	NP_648601	Drosophila	11	273	9	274	PF00069.20	Pkinase	Domain	3	259	260	216.4	3.40E-64
	NP_648601	melanogaster	614	826	614	827	PF12063.3	DUF3543	Family	1	237	238	183.8	2.90E-54
	NP_082171		16	270	14	270	PF00069.20	Pkinase	Domain	3	260	260	234.9	7.70E-70
	NP_082171	Mus musculus	281	347	280	348	PF04212.13	МІТ	Domain	2	68	69	71.1	5.10E-20
	NP_082171		376	444	375	444	PF04212.13	МІТ	Domain	2	69	69	51.3	7.50E-14
	Q6PHR2		16	270	14	270	PF00069.20	Pkinase	Domain	3	260	260	235.6	4.70E-70
	Q6PHR2	Homo sapiens	281	347	280	348	PF04212.13	МІТ	Domain	2	68	69	72.3	2.10E-20
	Q6PHR2		376	443	375	444	PF04212.13	МІТ	Domain	2	68	69	52	4.60E-14

	O and ID	0	Alignment	Alignment	Envelope	Envelope		нмм	Turna	HMM start	нмм	НММ	Bit	F
	Gene ID	Species	start	end	start	end	ним асс	name	туре		end	length	score	E-value
FUNGI	A2QPN1	Aspergillus niger	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	171.7	3.00E-51
	ACJ06588	Magnaporthe oryzae	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	167.6	5.50E-50
	EJP69267	Beauveria bassiana	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	171.9	2.60E-51
	P0C075	Candida albicans	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	160.3	1.10E-47
	D 00400	Saccharomyces	40	110	10	110	DE00004.44	44-0	Demain	4	104	104	160.6	1 405 50
	P38182	cerevisiae	13	110	13	110	PF02991.11	Alg8	Domain	1	104	104	169.6	1.40E-50
	Q5B2U9	Aspergillus nidulans	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	171.1	4.40E-51
	XP_006672688	Cordyceps militaris	51	136	46	136	PF02991.11	Atg8	Domain	19	104	104	141.2	9.00E-42
	XP_007818863	Metarhizium anisopliae	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	171.9	2.60E-51
	XP_761714	Ustilago maydis	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	174.4	4.30E-52
PLANT	NP_001061171	Oryza sativa	14	117	14	117	PF02991.11	Atg8	Domain	1	104	104	175.3	2.20E-52
	NP_178631	Arabidopsis thaliana	14	117	14	117	PF02991.11	Atg8	Domain	1	104	104	173.5	8.20E-52
ANIMAL	NP_727447	Drosophila melanogaster	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	165.7	2.20E-49
	NP_009216	Homo sapiens	13	116	13	116	PF02991.11	Atg8	Domain	1	104	104	168.3	3.30E-50
	NP_065615	Mus musculus	14	116	13	116	PF02991.11	Atg8	Domain	2	104	104	165.5	2.50E-49

Supplementary Table S2 Domain analysis of ATG8p

Primer name	Sequence $(5'-3')^a$	Restriction sites	Purpose of primer design
P _{ATG1} 1	CCG <u>GAATTC</u> CGCTCCCGTCCGTCTATCTGA	EcoRI	Generating 5'-fragment for disruption
P _{ATG1} 2	CGC <u>GGATCC</u> ACTAATCCAAGAATATCGCCAG	BamHI	vector
$P_{ATG1}3$	AAGC <u>TCTAGA</u> CGCCGATTCAGTCACATACCG	XbaI	Generating 3'-fragment for disruption
$P_{ATG1}4$	GG <u>ACTAGT</u> GCTTCGCCTGGTTATTTGCTT	SpeI	vector
$P_{ATG1}5$	GTTGAACTGCTCCGCAAGATAG	/	Screening mutants
$P_{ATG1}6$	GCTGCTCTGGGATGATTAGGC	/	Screening mutants
$P_{ATG1}7$	ggggACAAGTTTGTACAAAAAAGCAGGCTTAACTAAGCTTGACGGTGGCGGC	/	Obtaining the full gene for
$P_{ATG1}8$	ggggACCACTTTGTACAAGAAAGCTGGGTCTGACATCGAGGCCTGTCATGCTAC	/	complementation
$P_{ATG1}9$	CGCCGATTCAGTCACATACCG	/	Proba for Southern blotting
$P_{ATG1}10$	TGCCGAAGAGTTGTTTGTCC	/	Probe for Southern blotting
P _{ATG8} 1	CCG <u>GAATTC</u> GTTCTCGGTCCCATTTGTCTTG	EcoRI	Generating 5'-fragment for disruption
$P_{ATG8}2$	CGC <u>GGATCC</u> CATGTTGGGCAAATATGTGGTA	BamHI	vector
$P_{ATG8}3$	AAGC <u>TCTAGA</u> GAGCAGCATCTACGAGGAACA	XbaI	Generating 3'-fragment for disruption
$P_{ATG8}4$	GG <u>ACTAGT</u> CGAGACCCTGTACGCTGGAGA	SpeI	vector
$P_{ATG8}5$	GTCTTGCACCTTTCTGTACCAC	/	Screening mutente
$P_{ATG8}6$	GTGTTCTCGCCAGAGTAGGTG	/	Screening mutants
$P_{ATG8}7$	ggggACCACTTTGTACAAGAAAGCTGGGTGGGGAGCGTGTCCAGCATTCTTC	/	Obtaining the full gene for
$P_{ATG8}8$	ggggACAAGTTTGTACAAAAAGCAGGCTTCCAGCCACCTTTTTGCCCTC	/	complementation
		/	

Supplementary Table S3 PCR primers used in this study

$P_{ATG8}9$	CGAGAACACCTTTGGCAGCAT	Probe for Southern blotting			
P ATG810	CGTATCAAACCTGCCTACAC	Probe for Southern blotting			
P _{CP} 1	AAAAA <u>GAATTC</u> GTGTTGGACTTCCTGACGAT	Generating 5'-fragment for disruption			
P _{CP} 2	AAAAA <u>GGATCC</u> TGTCTTACACGGGGAGTTGC	BamHI	vector		
P _{CP} 3	AAAAA <u>TCTAGA</u> CCTCACCTTCAAAAACCTCC	Generating 3'-fragment for disruption			
$P_{CP}4$	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	BglII	vector		
$P_{CP}5$	ACCTCGTAGTTTTAGGCAGAT	Screening mutente			
P _{CP} 6	ATGATTGACAAGGCTGATGG	/	Screening mutants		
P _{CP} 7	ggggACAAGTTTGTACAAAAAAGCAGGCTGTTGGACTTCCTGACGAT	Obtaining the full gene for			
P _{CP} 8	ggggACCACTTTGTACAAGAAAGCTGGGTTAGCCGCCACTACCAT	/	complementation		
P _{CP} 9	CCAACCCGAGTCTACCGCCA	Probe for Southern blotting			
P _{CP} 10	GCTCTCCGTTTTCTCATCAT		Frobe for Southern blotting		
GA8-F1	CATG <u>CCATGG</u> TGAGCAAGGGCGAGGAGC	NcoI			
GA8-R1	CATCCTTGAACTTGCTACGCATCTTGTACAGCTCGTCCATGCCG	Eusien of CED gone to $PhATC 9$			
GA8-F2	ATGCGTAGCAAGTTCAAGGATG	Fusion of OFF gene to BDAT 08			
GA8-R2	CGC <u>GGATCC</u> TCAAATGCTGCCAAAGGTGTTCTC	BamHI			
Sur-F	AAG <u>AAGCCT</u> GTCGACGTGCCAACGCCACAGTG	Amplification of Sur gene			
Sur-R	CATG <u>CTCGAGGGTACC</u> GTCGACGTGAGAGCATGCAATTC	XhoI-KpnI	Ampinication of Sur gene		

a: The solid lines indicate the incorporated restriction sites. The sequences of *attB1* and *attB2*, required for Gateway recombination, are indicated with the dotted lines.

Supplementary figures:

Figure S1. Phylogenetic analysis of *Beauveria bassiana ATG1 and ATG8* genes. Relationships among the *ATG1* (**A**) and *ATG8* (**B**) genes were analyzed with Neighbor joining method and the bootstrap values > 50% from 1000 replicates are shown as numbers at each branch of the phylogenetic tree. GenBank accession numbers of autophagic genes are list after the abbreviations of their respective organism, which are shown as following groups, **fungi** (And: *Aspergillus nidulans*, Ang: *A. niger*, Bb: *Beauveria bassiana*, Ca: *Candida albicans*, Cm: *Cordyceps militaris*, Ma: *Metarhizium anisopliae*, Mg: *Magnaporthe grisea*, Sc: *Saccharomyces cerevisiae* and Um, *Ustilago maydis*); **plant** (At: *Arabidopsis thaliana* and Os: *Oryza sativa*); **animal** (Dm: *Drosophila melanogaster*, Hm: *Homo sapiens* and Mm: *Mus musculus*).

Figure S2. Molecular manipulation of *B. bassiana ATG1* and *ATG8* genes. (A) Schematic diagram showing gene locus, gene disruption vector, and expected homologous recombination events. ATGx refers to ATG1 or ATG8 gene, and RE represents the required restriction enzymes. (B) PCR screen of correct recombinant strains. Lane 1 and 4: wild type; lane 2: $\Delta BbATG1$ mutant; lane 3: $\Delta BbATG1::BbATG1$ strain; lane 5: $\Delta BbATG8$ mutant; lane 6: $\Delta BbATG8::BbATG8$ strain; lane 7: $\Delta BbATG1\Delta BbATG3$ mutant and lane M: DNA molecular size standards. (C) Southern blotting analysis of digested genomic DNA from indicated strains. Lane 1 and 5: wild type; lane 2: $\Delta BbATG1::BbATG1$ strain; lane 7: $\Delta BbATG1$ mutant; lane 3: $\Delta BbATG1::BbATG1$ strain; lane 7: $\Delta BbATG1$ mutant; lane 3: $\Delta BbATG1::BbATG1$ strain; lane 7: $\Delta BbATG3$ mutant; lane 3: $\Delta BbATG1::BbATG1$ strain; lane 7: $\Delta BbATG3$ mutant; lane 3: $\Delta BbATG1::BbATG3$ strain; lane 7: $\Delta BbATG3$ mutant; lane 3: $\Delta BbATG1::BbATG3$ strain; lane 7: $\Delta BbATG3$ mutant; lane 3: $\Delta BbATG3::BbATG3$ strain; lane 7: $\Delta BbATG3$ mutant; lane 3: $\Delta BbATG3::BbATG3$ strain; lane 7: $\Delta BbATG3::BbATG3$ strain; lane 4 and 8: $\Delta BbATG1\Delta BbATG3$ mutant. The electrophoretic positions and sizes of the DNA fragments are shown.

Figure S3. Gene disruption of *BbATG1* and *BbATG8* abolishes the autophagic process in B. bassiana. Fungal strains were incubated in SDB media for 2 days, and exposed to starvation stress in CPZ media without carbon and nitrogen sources. Transmission electron images show that the autophagic bodies were accumulated in vacuoles of wild type and complemented strains, and no obvious accumulation was found in gene disruption mutants. Scale bar represents 0.2 µm.

Wild type

 $\Delta BbATG1$

 $\Delta BbATG1 \Delta BbATG8$

$\Delta BbATG1::BbATG1$

 $\Delta BbATG8$

∆BbATG8::BbATG8

Figure S4. The patterns of conidial germination on oligotrohpic surface. Disruption of *BbATG1* and *BbATG8* genes impaired the germination ability of conidia on water agar plates (A) and host cuticles (B). Scale bars, $10 \ \mu m$.

Figure S5. Zymograms for superoxide dismutases (SOD) of wild type, $\Delta BbATG8$ mutant and complementation strains. The 2-day-old mycelia from SDB media were exposed to an 8-h stress under 2 mM menadione, and the mycelia were sampled every 2 hours. Mycelial soluble proteins were extracted, and aliquots of 30 µg protein were resolved by native polyacrylamide gel electrophoresis. The SOD enzymes were visualized on the gel stained with nitroblue tetrazolium solution.

Figure S6. Representative images showing formazan precipitation in fungal cells. Hyphal bodies were harvested from the haemoceol of *Galleria mellonella* infected via injection of conidia from each indicated strain and stained with nitroblue tetrazolium. Scale bar: 5 μm.

Wild type

 $\Delta BbATG8$

 $\Delta BbATG1$

∆BbATG8::BbATG8

∆BbATG1::BbATG1

 $\triangle BbATG1 \triangle BbATG8$

Figure S7. Gene disruption and complementation of *B. bassiana BbCP15* gene. (A) Schematic diagram describing the strategy of gene disruption by homologous recombination of disruption vector on the target gene locus. RE represents restriction sites for generation of DNA fragments in Southern blot. (B) PCR confirmation of correct recombinant strains. Lane 1: wild type; lane 2: complementation strain; lane 3: gene disruption strain and lane M: DNA molecular size standards. (C) Southern blotting analysis for determining correct recombination. Lane 1: wild type; lane 2: complementation strain and lane 3: gene disruption strain. The sizes of the resolved DNA fragments are shown.

