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1 Data 

The data consists of 11 country-level cohorts of European ancestry: Australia and New Zealand 
(AUSNZ), Belgium (BEL), Denmark(DEN), Finland (FIN), France (FRA), Germany (GER), Italy (ITA), 
Norway (NOR), Sweden (SWE), the United Kingdom (UK) and the  United States of America (USA). In 
total there are 47,850 individuals, and the per population breakdown of the sample sizes, after quality 
control (QC) and exclusions, can be found in Supplementary Table 1. Full details of the QC that was 
performed can be found in the Supplementary Materials of the first multiple sclerosis Immunochip 
analysis1. 

Briefly, sample-level quality checks include gender checks (samples excluded if reported gender was 
inconsistent with the observed based on sex chromosome markers), call rate (samples excluded if 
<98%), autosomal heterozygosity (samples excluded if more than 3 standard deviations from the 
mean), ambiguity or inconsistency in the Sequenom finger print ID, and an excess of IBD sharing 
(PI_HAT>0.25). Contrary to the previous analysis1, here we have included individuals that overlapped 
with the 2011 GWAS study2. 

SNP-level quality control was carried out for each population separately, using individuals that passed 
sample QC. The QC consisted of checking (in the following order) whether the SNPs had a call rate of 
<98%, had a HWE P value < 10-5, exhibited differential missingness between cases and controls with a 
P value < 10-3 or were monomorphic. Only SNPs that passed QC in all populations were kept. 

Principal components (PCs) were also calculated separately for each population, using the samples 
and an LD pruned set of SNPs that passed QC.  An additional 1330 samples were removed as being 
outliers from the principal component analysis (PCA). Further details on the choice of SNPs for the 
PCA calculations can be found in Ref. S1. Full Sample and SNP exclusion lists by cohort can be found in 
Suppl. Tables 10 and 11 of Ref. S1, respectively.   

In total, in this study we consider 6,218 SNPs from within the extended MHC region3, from 29.9Mb to 
33.6Mb (Hg19 / GRC37) on Chromosome 6. 

In addition to disease status, we also consider the following secondary phenotypes: 

• Multiple Sclerosis Severity Score (MSSS). 
• Age at onset (AAO). 
• Clinical course (primary progressive or relapsing-remitting disease progression). 

Details on the availability of the secondary phenotypes across the samples can be found in 
Supplementary Table 5. 

2 Imputation of HLA alleles 

Classical HLA types were imputed using the program HLA*IMP:024. Briefly, HLA*IMP:02 uses a 
graphical representation of the haplotype structure (“haplotype graph”) in the extended MHC region 
to statistically infer a sample’s classical HLA alleles. For this study, we created a haplotype graph from 
a pan-European reference panel (“GS&HLARES_EU” from Ref. S5) combining sample data from the 
CEU3, CEU+3, 1958 Birth Cohort (http://www.b58cgene.sgul.ac.uk) and HLARES4,5 datasets. 

http://www.b58cgene.sgul.ac.uk/
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GS&HLARES_EU comprises 6056 SNPs across the xMHC (as defined in Ref. S5) and a varying number 
of individuals with classical HLA type data available (1864 individuals with at least one 4-digit allele 
defined for HLA-A; 2630 for HLA-B; 1502 for HLA-C; 366 for HLA-DQA1; 2031 for HLA-DQB1; 2414 for 
HLA-DRB1; 74 for HLA-DPB1; 282 individuals with at least one 2-digit allele available for HLA-DRB3; 
282 for HLA-DRB4; 282 for HLA-DRB5). 

In the process of standard-HLA*IMP:02 pre-imputation quality control, all SNPs with more than 20% 
“missing data” in the MS dataset were removed and for complementary SNPs strandedness was 
aligned to HapMap. These steps were carried out with the standard HLA*IMP front-end and are 
described in detail in the Supplementary Information of the 2011 GWAS2.  It should be noted that 
these QC steps were conducted on the already QC-filtered dataset that was used for the genome-
wide analysis of MS Immunochip data. 

HLA alleles were imputed at a 4-digit resolution for loci HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, 
HLA-DQB1 and HLA-DPB1, and at a 2-digit resolution for loci HLA-DRB3, HLA-DRB4 and HLA-DRB5 as 
no 4-digit resolution data were available as reference for the latter.  

3 Validation of classical allele imputation for reported alleles 

We assessed imputation accuracy by conducting a 2/3 (training) – 1/3 (validation) cross-validation 
experiment on samples of known HLA types, used as a reference panel for the imputation. We 
employed the same statistical model and the identical set of informative SNPs as were employed in 
the analysis. At 4-digit resolution, without imposing a threshold for calling on the posterior 
probabilities (call rate=100%), accuracy ranged from 0.9 to 0.99 (See Supplementary Table 2).  

We also investigated the sensitivity, specificity and positive predictive value (PPV) of all alleles found 
to be associated with MS or secondary phenotypes (See Supplementary Table 3). Specificity was 
extremely high across all putatively associated alleles. Sensitivity and PPV were above 90% for all 
alleles found to be associated, apart from B*38:01 (PPV = 0.89, DRB1*08:01 (PPV = 0.84) and 
DRB1*01:01 (Sensitivity = 0.82, PPV = 0.90). No systematic pattern in mis-imputation was found for 
B*38:01, while the majority of mis-imputations for DRB1*01:01 and DRB1*08:01 were with other 
alleles of the same 2-digit supertype (e.g. DRB1*01:03 and DRB1*08:02, respectively).  

4 Building a model of HLA risk for multiple sclerosis 

Our aim was to identify the key classical HLA drivers of genetic risk for multiple sclerosis (MS), and 
other effects within the region that are of comparable significance but are not explained through 
linkage disequilibrium to specific HLA alleles.  We use three different approaches to build such a 
model, taking a consensus strategy to summarise findings. 

4.1 Approach 1: Manually curated search with UK focus 
Approach 1 focused initial discovery on the UK cohort, which is the largest of all and most closely 
matched to the imputation training data, and then combine evidence across all cohorts using fixed 
effects meta-analysis (FEM) to confirm (validate and replicate) the association,  estimate effect size 
(odds-ratios) and test for potential heterogeneity between cohorts.  We recognise that if HLA allele 
imputation were perfect and population stratification were completed controlled this approach would 
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lose power relative to a simple joint analysis.  Our approach, therefore, is conservative, but robust to 
particular failures in imputation or control of population stratification. 

We started by incorporating in our model the four HLA alleles which were found to be significantly 
associated with multiple sclerosis in the 2011 GWAS2, namely DRB1*15:01, DRB1*13:03, DRB1*03:01 
and A*02:01.  As anticipated these all replicated in the FEM.  Given that our training data only allowed 
2-digit resolution of DRB5 alleles it was not possible for us to fully resolve the relative contributions of 
the tightly correlated DRB5*01:01 and DRB1*15:01 alleles. Based on the known linkage disequilibrium 
of virtually 100% between DRB1*15:01 and DRB5*01:01 in populations with Caucasian ethnicity, the 
relative contribution of either allele to MS cannot be addressed in this study. 

We then employed a stepwise logistic regression approach where additional parameters (both HLA 
alleles and SNPs in the MHC region) were considered for addition to the model if the strength of 
association in the relevant conditional analysis within the UK cohort had P < 10-5. We only report 
effects which had a combined P < 10-9 in the FEM of the model containing all other alleles identified 
through this iterative process (the ‘full’ model). 5 PCs were included as covariates in all models (these 
PCs were calculated from SNPs genome-wide, not including any from the xMHC region, as described 
in the 2013 multiple sclerosis Immunochip study1). Gender was not included as a covariate. Where 
appropriate, we employed likelihood ratio tests (LRT) to choose amongst competing models where 
they were nested, and otherwise the Bayesian Information Criterion6 (BIC). Below we give details of 
the models considered and the steps taken at each stage of the selection procedure.  A summary of 
the factors identified at each step is shown in Supplementary Figure 2.   

To check consistency, we also rebuilt the model without any prior inclusion.  All the alleles and effects 
reported above and below were included, though in a slightly different order.  In particular, the risk 
effect of DRB1*03:01 appears later (though is still included). 

4.1.1 Baseline model with DRB1*15:01, DRB1*03:01, DRB1*13:03, A*02:01 and departures from 
additivity 

We started by assessing the evidence for deviations from additivity (on the log-odds – logistic - scale) 
for all four alleles of our baseline model, focusing primarily on the UK cohort. Specifically, we 
compared a baseline logistic model where the additive term is: 

𝑀𝐴𝐷𝐷 = 𝑏0 +  𝐺𝐻𝐿𝐴 ∗ 𝑏1 +  𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗ 𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 , 

where 𝐺𝐻𝐿𝐴𝜖{0,1,2} is the genotype for the respective HLA allele, to a model with an additional 
parameter which captures deviations from additivity for that HLA allele (in blue), coded as a 
correction of the effect for samples homozygous for the respective allele: 

𝑀𝐼𝑁𝐷 = 𝑏0 +  𝐺𝐻𝐿𝐴 ∗ 𝑏1 +  𝐼𝐻𝐿𝐴_𝐻𝑂𝑀 ∗ 𝑏1𝐻𝑂𝑀 + 𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗
𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 , 

where 𝐼𝐻𝐿𝐴_𝐻𝑂𝑀 =  �1, 𝑖𝑓 𝐺𝐻𝐿𝐴 == 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�. We refer to this parameter as the homozygote correction term 

for the allele. Models 𝑀𝐴𝐷𝐷 and 𝑀𝐼𝑁𝐷 are nested, and the P value for the added term is obtained 
from the LRT.  Each allele was assessed in turn.   

For DRB1*15:01, there was significant evidence for departures from additivity, with P = 7x10-6 for the 
homozygote correction term and a negative 𝑏1𝐻𝑂𝑀, indicating that the effect of homozygotes is 
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significantly less than double that of the heterozygotes in the log-scale (i.e. the risk effect is partially 
dominant).  The effect remained strong and consistent in the 4-allele model (including parameters for 
DRB1*03:01, DRB1*13:03 and A*02:01). It was therefore decided to include two parameters for the 
DRB1*15:01 effect in the model.   

For DRB1*03:01, the homozygote correction term had much stronger evidence for association with 
the trait in the UK cohort than the additive term (P = 3x10-11 versus P = 4x10-3, respectively). 
Moreover, the additive term appeared to have a protective effect on the trait in the single-allele 
model (only DRB1*03:01 included) but a deleterious one in the 4-allele model. We therefore only 
include a single parameter for DRB1*03:01, assuming a recessive effect for that allele. 

For DRB1*13:03, there was no evidence for departures from additivity (P > 0.05 for the homozygote 
correction term) in neither the single-allele nor the 4-allele models.  Therefore, a single parameter for 
this allele was added in the baseline model, assuming an additive effect on the log-odds scale. 

For A*02:01, the homozygote correction term had a negative coefficient, indicating that the effect of 
two copies of the allele on disease was less than double that of a single allele, but was only marginally 
significant (P = 0.043) in the UK cohort. In the 4-allele model, the effect was consistent with that in 
the single allele model, but with P = 0.08).  Nevertheless, in the light of the interaction analysis (see 
below) showing that deviations from additivity in A*02:01 can mimic weak interactions with A*02:01 
and non HLA loci (Supplementary Fig. 6), it was decided to include two parameters for A*02:01 in the 
model.   

The resulting linear term of in the baseline model is: 

𝑀4 = 𝑏0 +  𝐺𝐷𝑅𝐵1501 ∗ 𝑏1 +  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 ∗ 𝑏1𝐻𝑂𝑀
+  𝐺𝐴0201 ∗ 𝑏2 +  𝐼𝐴0201𝐻𝑂𝑀 ∗ 𝑏2𝐻𝑂𝑀 + 𝐺𝐷𝑅𝐵1303 ∗ 𝑏3 + 𝐼𝐷𝑅𝐵0301𝐻𝑂𝑀 ∗ 𝑏4𝐻𝑂𝑀
+  𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗ 𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 

All terms replicate and validate in the FEM. 

4.1.2 The signal of association at DPB1 
When all HLA alleles and SNPs in the region were added in turn in to the above model (assuming an 
additive effect in the log-scale), the strongest subsequent signal in the UK is seen at rs9277565 with P 
= 1x10-22 (compared to the most associated classical HLA allele, DPB1*03:01, with P = 5x10-16).  
rs9277565 is in moderate LD with DPB*03:01 (r2 of 0.4 to 0.7 across cohorts) and it is likely that they 
are capturing the same effect (no DPB1 signal is seen after conditioning on the SNP).  Given the higher 
strength of association it was decided to include rs9277565 in the model rather than the DPB allele. 
There was no evidence for departure from additivity (P > 0.05 for the homozygote correction term).  
The effect replicates and validates in the FEM. 

4.1.3 A protective effect for B*44:02 
In the 6-allele model, across all SNPs and classical HLA alleles, the most significant effect in the UK was 
for B*44:02 (P = 1x10-12) and B*44:02 was therefore also included in the model; assuming an additive 
effect on the log-odds scale since there was no evidence for departures from additivity (P > 0.05).  
The effect replicates and validates in the FEM.  We note that B*44:02 is in moderate LD with C*05:01 
(r2 = 0.56 in controls), and likely explains previous reports of association of this allele with MS risk7. 
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4.1.4 A protective effect of the rare allele B*38:01 
Across 7-allele models, the strongest signal in the UK came from a SNP, rs2229092 (P = 8x10-11).  
Among classical HLA alleles, the strongest signals were observed at C*15:02 (P = 2x10-7) and B*38:01 
(P = 7x10-7).  However, C*15:02 was found to be in high LD with SNPs which showed stronger 
evidence for association with the disease (e.g. r2 = 0.86 with rs16899166 and r2 = 0.91 with 
rs5009853).  B*38:01 on the other hand, showed stronger evidence for association in comparison 
with all SNPs it was in LD with (and showed no association, r2 > 0.01, to any SNP with stronger 
association). We therefore included B*38:01 in the model at this stage. No evidence for departures 
from additivity was detected.  The effect replicates and validates in the FEM. 

4.1.5 A risk effect for DRB1*08:01 
In the 8-allele model, C*15:02 (P = 3x10-7) and rs2229092 (P = 1x10-10) remained the most associated 
HLA allele and SNP in the UK, respectively. The second most strongly associated HLA allele was 
DRB1*08:01 (P = 2x10-6). Notably this allele had shown suggestive evidence for association in the FEM 
analysis of the original 2011 GWAS2 (P = 2x10-7), but was not highlighted as associated in that study as 
it showed only marginal evidence of association in the UK cohort alone (P = 0.025).  The same allele 
was also reported previously by another study, though also not at genome-wide significance8.  Given 
this prior evidence for association of DRB1*08:01 with MS ,the fact that it was not in high LD (r2 > 0.8) 
with SNPs with stronger evidence for association, and shows no correlation with C*15:02 or 
rs2229092 (r2 < 0.01), we included DRB1*08:01 in the model.  The effect replicates and validates in 
the FEM.  The other effects are discussed below. 

4.1.6 Interaction between DRB1*15:01 and DQA1*01:01, and an effect associated with LTA 
Based on our interaction analysis we next considered an DQA1*01:01-DRB1*15:01 interaction term 
(i.e. a parameter indicating an effect of DQA1*01:01 only when at least one copy of DRB1*15:01 allele 
is carried by the individual; see section below on searching for HLA-HLA interactions). The inclusion of 
this interaction term leads to a better fit than all models containing any of the non-interaction 
variants (P = 2x10-12).  The interaction term replicates in the FEM and was therefore included in the 
model.  We also note that the interaction term shows strong association in a model with DRB1*15:01 
alone (P = 3x10-12 with 2 parameters for DRB1*15:01).  In contrast, the P-value for a marginal effect of 
DQA1*01:01 is 0.033. In the full model, the marginal effect for DQA1*01:01 has P > 0.1, so both 
before and after the other terms have been included in the model, the interaction term shows 
substantially stronger evidence for association than a marginal DQA1*01:01 term.   

When including the interaction term in the model, the signals at C*15:02 and rs2229092 remain. To 
further evaluate their roles,  we ran the FEM on models including the 9 established parameters (2 for 
DRB1*15:01, 2 for A*02:01, a recessive effect for DRB1*03:01, additive effects for DRB1*13:03, 
DRB1*08:01, B*44:02, B*38:01, rs9277565, and the DQA1*01:01-DRB1*15:01 interaction term) 
together with each of C*15:02 and rs2229092 in turn.  In the analysis including rs2229092, this SNP 
exhibited strong evidence for association (P = 1x10-19) in the FEM.  In contrast, in the analysis 
including C*15:02, the evidence for association failed to reach the 10-9 threshold (P = 6x10-9) and is 
seen to be much weaker in the other non-UK cohorts (FEM P = 0.0015).  This C*15:02 allele is in high 
LD with SNPs exhibiting stronger signals of association throughout our stepwise regression approach.  
Consequently, while our results are supportive of a possible role for C*15:02 in risk for MS, the level 
of evidence does not meet the standards applied here for inclusion. We also considered models 
where rs2229092 was included at earlier stages of the model and found no material changes in the 
results for other reported effects. Similarly, when including only rs2229092 (together with 5 PCs as 
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covariates), it is strongly associated in the UK (P = 7x10-5). We therefore included rs2229092 in the 
model rather than C*15:02. 

It should also be noted that while rs2229092 (a missense variant in the LTA gene) exhibits the 
strongest signal in the 10-allele model in the UK and is highly significant in the FEM, it is moderately 
correlated (r2~0.45) with other SNPs which show strong evidence for association, such as rs225798 
and rs2230365, both in the NFKBIL1 gene; these alternate SNPs are also candidates for driving this 
observed association. While the possibility that rs2229092 (or another of these SNPs) are tagging one 
(or more) signals coming from HLA alleles cannot be ruled out, the evidence for association is 
substantially stronger for the SNP than for any HLA alleles included in our analysis suggesting this is 
not the case, at least for more common HLA alleles.  We note that rs2229092 is in moderate LD (r2 = 
0.33 in controls) with the previously reported rs25164899 (and generally lies within an extended LD 
block), though the latter shows weaker association in this analysis. 

 

4.1.7 A deleterious effect for DQB1*03:02 and evidence for interaction with DQB1*03:01 
When looking across the other cohorts for HLA alleles with remaining evidence for association in the 
11-allele model, the only allele with P < 1x10-5 in any of the cohorts is DQB1*03:02 in the SWE cohort 
(P = 2x10-8). DQB1*03:02 exerts a dominant effect on the log-odds scale and also appears significantly 
associated with MS in the FEM across cohorts (P = 2x10-13).  Moreover, there is supporting evidence 
for this effect coming from the automated approaches (see sections 4.2, 4.3 of the supplement). 
Therefore, it was decided to include this allele in the model as well. Interestingly, when conducting 
the interaction analysis (see section 7 of the supplement for details) for DQB1*03:02, we found 
strong evidence (P<10-6) for an interaction between DQB1*03:02 and DQB1*03:01 in the UK cohort 
(Supplementary Figure 3). When including the interaction term in the full model, the effect of the 
interaction term was significantly associated with MS in the FEM across cohorts (P = 10-14). Moreover, 
the DQB1*03:02 association with MS became somewhat stronger and even more significant (P = 
4x10-24, compared to P=2x10-13 before the interaction term was added, Supplementary Table Y). 

 

4.1.8 Remaining signals in the UK and other cohorts 
The only other HLA allele included in the model is B*55:01. Despite showing no evidence for 
association with MS with P < 10-5 in any single cohort, it appeared significantly associated with MS in 
the automated approaches (see sections 4.2, 4.3 of the supplement) and its signal was validated in 
the FEM across cohorts for the full model (P = 10-11). It confers a protective effect with no evidence 
for deviations from additivity. 

Conditioning on the effects described above, no classical HLA allele showed evidence for association 
with MS with P < 10-5 within the UK cohort in the full, 13-allele model.  However, 14 SNPs did show 
evidence for association at that level, with the top hit, rs9267482 (P = 7x10-10) lying in the DDX39B 
(BAT1) gene. This SNP is also highly significant in the FEM (P = 10-21). 
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4.2 Approach 2: Automated model search at of 4-digit HLA alleles with cross-cohort mega-
analysis 

To approach the construction of a general model for HLA-allele risk for multiple sclerosis in a manner 
that is not guided by prior knowledge, we used an automated model search strategy in which all 
cohorts are considered jointly (referred to as a mega-analysis).  Prior to analyses we took the 
following steps: 

• Setting the threshold for imputation to be 0 – i.e. taking the allele call with the highest 
posterior probability in each case and treating this as fixed.  This step is needed to enable 
appropriate model comparison between loci.  By way of comparison, setting a threshold of 
0.5 would remove 2.2% of imputed genotypes across loci. 

• Removing alleles with a combined frequency after imputation across cohorts of 0.5%.  This 
step removed 55 alleles out of 232 across the loci considered. 

• Removing alleles imputed to be in perfect association (r2 = 1) with each other.  This step 
removed 8 of 177 alleles. 

• Removing individuals where the imputed allele was not present in the IMGT database (see 
below).  This step removed 530/47,849 individuals.  

Starting with a base-line model including effects for each cohort (as a factor) and principal 
components, at each stage we performed logistic regression on disease risk for every classical HLA 
allele in turn, considering a general genotype model (i.e. separate coefficients for each genotype).  
Consequently, the allele that led to the highest increase in likelihood was identified and in a separate 
step, the Bayesian Information Criterion (BIC) was used to decide whether the effect was best 
described as additive, recessive, dominant or general.  A range of strategies for backwards elimination 
were considered, though in practice no allele was ever removed.  The model selection process was 
run until the BIC no longer increased.  However, only those effects that also achieve P < 10-9 in the 
FEM are reported.  A summary of the factors identified at each step and how these relate to the 
factors identified by the other approaches is shown in Supplementary Figure 2.   

We note that we also considered an automated search including SNP variants.  However, because 
most classical HLA alleles are well tagged by at least one (and often many) SNPs within the region, we 
commonly observed that effects that are typically interpreted as being driven by classical HLA alleles 
were assigned to SNPs (potentially due to errors in imputation and / or chance fluctuations in 
association).  We therefore only considered classical HLA alleles in the automated approach, though 
compared results to the manually curated selection process to check consistency.   

4.3 Approach 3: Automated model search augmented with allele groupings at 2-digit level 
and by sharing of amino acids at variable residues 

Previous research has demonstrated that some association between groups of classical HLA alleles 
and genetic risk for disease can be explained by the sharing of particular amino acid residues at 
variable sites within the mature protein10.  We therefore considered a separate automated model 
search strategy on the combined cohorts in which we augmented the set of HLA alleles by genotypes 
at allele groups defined by both 2-digit resolution and by the sharing of specific amino acid residues at 
variable sites.  Group membership was inferred from the imputed allele at 4-digit resolution.  Aligned 
amino acid sequences for the imputed alleles were obtained from IMGT 
(http://www.ebi.ac.uk/ipd/imgt/hla/align.html) on March 4th 2015.  In a few instances, full amino acid 
sequences were not available for all alleles imputed.   

http://www.ebi.ac.uk/ipd/imgt/hla/align.html
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As above, we took the following steps: 

• Setting the threshold for imputation to be 0 – i.e. taking the allele call with the highest 
posterior probability in each case and treating this as fixed.   

• Removing alleles / allele groups with a combined frequency after imputation across cohorts 
of 0.5%.  This step removed 108 alleles / allele groups out of 454 across the loci considered. 

• Removing alleles / allele groups imputed to be in perfect association (r2 = 1) with each other.  
This step removed 22 of 346 alleles / allele groups. 

• Removing individuals where the imputed allele was not present in the IMGT database.  This 
step removed 530/47,849 individuals.  

As above, we considered a general genotype model for each allele / allele group at each step, starting 
from a baseline model with coefficients for each cohort and PCs.  At each stage the allele or allele 
group leading to the greatest increase in likelihood was identified and BIC used to assign additive, 
dominant, recessive or general models.  The procedure was run until BIC no longer increased, though 
only effects that achieve P < 10-9 in the FEM are reported.  A summary of the effects identified at each 
stage is shown in Supplementary Fig. 2. 

4.4 Consensus strategy and comparison 
The three model selection strategies identified a series of related, though non-identical effects 
(Supplementary Fig. 2).  Moreover, in two cases, effects identified by the automated approaches were 
better described as interactions.  For example, the homozygous protective effect identified as 
associated with DQB1 alleles with a glycine at residue 70 in step 7 of the augmented model selection 
process is better explained (the data is 400 times more likely) through an interaction with 
DRB1*15:01.   

We therefore used a consensus strategy to combine results from the different approaches to give an 
overall picture of genetic risk for multiple sclerosis, using linkage disequilibrium between risk factors 
to identify sets of related factors (Supplementary Figure 2).  Each effect is labelled with the most 
associated 4-digit allele, though we acknowledge the subjectivity in this choice. 

5 Validation of top hits by comparison of uncertainty-aware and uncertainty-unaware 
analyses 

In order to ensure that the identified associations were not affected by mis-imputation, additional 
analyses where conducted where the uncertainty associated with imputation (quantified by the 
posterior probability of each call) was incorporated into the logistic regression framework, with 
numerical optimisation used to find maximum likelihood estimates. Specifically, models of the 
following form were run: 

𝑀 = 𝑏0 +  𝐺𝐷𝑅𝐵1501 ∗ 𝑏1 +  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 ∗ 𝑏2 +  𝐺𝐴0201 ∗ 𝑏3 + 𝐼𝐴0201𝐻𝑂𝑀 ∗ 𝑏4 +  𝐺𝑂𝑇𝐻𝐸𝑅 ∗ 𝑏𝑂𝑇𝐻𝐸𝑅
+  𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗ 𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 

where two parameters were included for each of DRB1*15:01 and A*02:01, as well as a parameter 
for each other associated allele in turn, together with 5 PCs. Specifically, 𝐺𝑥𝜖 {0,1,2} is the genotype 
for the respective HLA locus 𝑥,  and 𝐼𝑥 a correction to the additive term for homozygotes,  𝐼𝑥 =

 �1, 𝑖𝑓 𝐺𝑥 == 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� . The effect assumed for all other susceptibility alleles was the same as in the 
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uncertainty-unaware models (additive in the log-scale for all but DRB1*03:01 which was modelled as 
purely recessive). 

The results obtained from the above model when applying uncertainty-aware analysis were 
qualitatively identical to these obtained from the uncertainty-unaware one (with 100% call rate), in 
terms of both effect size and P value for significance. These are shown across cohorts for all 
associated alleles in Supplementary Fig. 1. 

6 Secondary phenotypes 

Secondary phenotypes, such as clinical course (Primary Progressive vs Relapsing Remitting MS), 
severity (calculated as Multiple Sclerosis Severity Score, MSSS, which reflects the rate at which 
patients affected with the disease accumulate disability11) and age at onset were available for a 
proportion of the samples studied (Supplementary Table 5).  At first, we sought to assess the evidence 
for an effect of the combined HLA risk score on each of the secondary phenotypes. The HLA risk score 
was estimated from the effect sizes of the alleles included in the 10-allele model and reported in the 
main text, as they were estimated from the FEM, as: 

𝐻𝐿𝐴𝑅𝐼𝑆𝐾 𝑆𝐶𝑂𝑅𝐸 = exp (𝐺𝐷𝑅𝐵1501 ∗ 𝑏1 +  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 ∗ 𝑏1𝐻𝑂𝑀
+  𝐺𝐴0201 ∗ 𝑏2 +  𝐼𝐴0201𝐻𝑂𝑀 ∗ 𝑏2𝐻𝑂𝑀 + 𝐺𝐷𝑅𝐵1303 ∗ 𝑏3 + 𝐼𝐷𝑅𝐵0301𝐻𝑂𝑀 ∗ 𝑏4𝐻𝑂𝑀
+ 𝐺𝐷𝑅𝐵0801 ∗ 𝑏5 + 𝐺𝐵4402 ∗ 𝑏6 + 𝐺𝐵3801 ∗ 𝑏7 + 𝐺𝑟𝑠9277565 ∗ 𝑏8 + 𝐺𝐷𝑄𝐴0101
∗ 𝐼𝐷𝑅𝐵1501𝑏9 + 𝐺𝑟𝑠2229092 ∗ 𝑏10) 

where 𝐺𝑥𝜖 {0,1,2} , 𝐼𝑥 =  �1, 𝑖𝑓 𝐺𝑥 == 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� , 𝐼𝑥𝐻𝑂𝑀 =  �1, 𝑖𝑓 𝐺𝑥 == 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� for each HLA allele or SNP 𝑥. 

The HLA risk score was quantile normalised within each cohort.  We used the HLA risk score as the 
explanatory variable and conducted the following analyses: 

• linear regression with AAO (which is approximately normally distributed) 
• linear regression analysis with MSSS, using the quantile-normalised MSSS values as the 

phenotype, 
• logistic regression analysis of extremes on MSSS, splitting the patients into two groups of low 

(MSSS<2.5) and high (MSSS>7.5) severity and using the resulting binary grouping as the 
phenotype value, and 

• logistic regression analysis on clinical course (PPMS vs RRMS). 

For all models, we included 5 PCs as covariates. When running these on the UK cohort, the HLA risk 
score was found nominally associated with AAO (P = 0.042) but not with MSSS or the clinical course. 
The association of HLA risk score with AAO was confirmed in a FEM across cohorts (P = 7x10-10, Fig. 
4A). Specifically, the difference in age of onset between individuals lying at the 5th and 95th percentiles 
is approximately 2 years (34.23 and 32.26 years respectively). 

6.1 Age at onset 
In order to assess the effect of specific HLA alleles on the age at onset (AAO) of MS, we conducted 
linear regression analysis in a stepwise fashion, considering AAO as the phenotype and including 5 PCs 
as covariates in all models.  All alleles were assumed to exert an additive effect on the trait. The 
models were run separately for each cohort and results were subsequently combined by running a 
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fixed-effects meta-analysis for alleles with nominally significant associations (and the same direction 
of effect) in two or more cohorts.  As for disease risk, joint analysis of the combined cohorts 
controlling from cohort effects and PCs was also carried out using an automated model search 
procedures with and without allele groupings based on 2-digit classifications and sharing of amino 
acid residues. 

6.1.1 Manually curated approach with UK focus 
From the manually-curated approach, across all single-allele models, the strongest signal came from 
DRB1*01:01 (P = 4x10-11, effect size = 1.82 years per allele). DRB1*01:01 is in moderate LD with 
DQA1*01:01 (r2 = 0.6) and DQB*05:01 (r2 = 0.7), which also showed comparable effects in the same 
direction. The second strongest signal came from DQB1*06:02, which decreases the age at onset of 
MS (P = 6x10-11, effect size =-0.98 years per allele). DRB1*15:01 and DQA1*01:02, are both part of the 
extended MS risk haplotype containing DQB1*06:02, and thus as expected also exhibited strong 
associations in the same direction (Supplementary Fig. 7).   

After conditioning on DRB1*01:01, DQB1*06:02 was the only allele that remained associated with 
AAO of MS at the genome-wide significance threshold (P = 2x10-8, effect size = -0.76 years per allele), 
with DRB1*15:01 narrowly missing this (P = 8x10-8, effect size= -0.72 years per allele).  With these 
data it is not possible to definitively establish which of these class II alleles is driving the observed 
association. Hence, and because DRB1*15:01 is driving the association with the main phenotype, it 
was decided to include DRB1*15:01 in the model. When DRB1*15:01 was also included in the model, 
no other allele showed genome-wide significant evidence for association with AAO.  

In order to ensure that the effect of DRB1*01:01 on AAO is not tagging an effect from DQA*01:01 in 
the presence of DRB1*15:01 or vice versa, we conducted a formal model comparison between 
models with  

• both DRB1*01:01 and the interaction term included (‘BOTH’), 
• only DRB1*01:01 included (‘DRB0101 ONLY’), or 
• only the interaction term included (‘DQA0101INT ONLY’), 

for both the binary MS phenotype and the AAO.  5 PCs were included as covariates in both models.  
All other susceptibility alleles were also included in the respective models. Results from the UK cohort 
indicate that a model with only DRB1*01:01 in fits the data better for AAO (both AIC and BIC), 
whereas a model with only the DQA*01:01 - DRB1*15:01 interaction term in fits the data better for 
the main MS phenotype (both AIC and BIC); data not shown.  In summary, the effects of the 
DQA1*01:01 - DRB1*01:01 haplotype MS risk and AAO are best explained through distinct models but 
the evidence separating the alternative is not overwhelming. 

6.1.2 Automated model search across combined cohorts 
The automated model searches (with and without allele groupings) were carried out as for disease 
status on the subset of individuals for which AAO data was available.  The primary factor identified 
when just 4-digit alleles were considered was, as with the manually-curated approach, an additive 
effect for DQB1*06:02 (each copy reducing AAO by 1.2 years), with a subsequence general genotype 
effect for DRB1*01:01 (Het genotype increase AAO by 3.9 years, Hom increases AAO by 5.2 years).  
When allele groupings were also considered, the primary effect identified (a general genotype model 
associated with sharing of a histidine residue at position 30 among DQB1 alleles) correlates with 
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DQA1*01:01 (r = 0.67), DRB1*01:01 (r = 0.52) and DQB1*06:02 / DRB1*15:01 (-0.37 / -0.32), thus 
incompletely capturing the two effects associated with classical HLA alleles.  

6.2 Severity and clinical course 
In order to further assess the effect of HLA alleles on the severity of MS, we more fully explored the 
relationship between HLA alleles and Multiple Sclerosis Severity Score (MSSS)11. We conducted  

• linear regression analysis, using the quantile-normalised MSSS values as the phenotype and 
• logistic regression analysis of extremes, splitting the patients into two groups of low 

(MSSS<2.5) and high (MSSS>7.5) severity and using the resulting binary grouping as the 
phenotype value.  

For both sets of models, 5 PCs were included as covariates.  Under both sets of models, no HLA alleles 
were found to be significantly associated with the severity of MS. There was some suggestive 
evidence for a modest effect of B*08:01 (which is correlated with DRB1*03:01, r = 0.73) towards a 
more severe disease manifestation, more so for the binary analysis (FEM P = 2 x 10-5, OR = 1.32).  
However, this does not reach the level of evidence applied throughout the analysis and is not 
analysed further. 

In order to assess the effect of HLA alleles on the clinical course of MS (Primary Progressive vs 
Relapsing Remitting MS), we conducted logistic regression analysis, considering clinical course as the 
phenotype and including 5 PCs as covariates in all models.  Using this model, we found no evidence 
for association between HLA alleles and clinical course of MS (No alleles with P > 0.05 in the UK and / 
or P > 10-5 in the FEM). 

7 Interactions among classical HLA alleles 

In order to investigate potential interactions between the HLA alleles included in our model and other 
HLA alleles, we first ran models with: 

• two parameters  (one additive, one homozygote correction term) included to model the 
effects of DRB1*15:01 and A*02:01,  

• a single parameter included for each other SNP/HLA allele identified as associated with MS in 
this analysis (additive on the log-odds scale for all alleles apart from DRB1*03:01, 
DQB1*03:02, where a recessive and a dominant effect, respectively, was assumed),  

• a single parameter (additive on the log-odds scale, in blue below) for each other HLA allele in 
turn, and 

• an interaction term (in bold, below) which models the effect of each other HLA allele in the 
presence of the allele under consideration (example below used for investigating interactions 
with DBR1*15:01). 

Models have the following form: 

𝑀𝐼𝑁𝑇−𝐷𝑅𝐵1501 = 𝑏0 +  𝐺𝐷𝑅𝐵1501 ∗ 𝑏1 +  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 ∗ 𝑏2 +  𝐺𝐴0201 ∗ 𝑏3 + IA0201HOM ∗ b4 +
𝐺𝐷𝑅𝐵1303 ∗ 𝑏5 + 𝐼𝐷𝑅𝐵0301𝐻𝑂𝑀 ∗ 𝑏6 + 𝐺𝐷𝑅𝐵0801 ∗ 𝑏7 + 𝐺𝐵4402 ∗ 𝑏8 + 𝐺𝐵3801 ∗ 𝑏9 + 𝐺𝐵5501 ∗ 𝑏10 +
𝐼𝐷𝑄𝐵0302 ∗ 𝑏11 + 𝐺𝑟𝑠9277565 ∗ 𝑏12 + 𝐺𝑟𝑠2229092 ∗ 𝑏13 + 𝐺𝑜𝑡ℎ𝑒𝑟𝐻𝐿𝐴 ∗ 𝑏14 + 𝑰𝑫𝑹𝑩𝟏𝟓𝟎𝟏 ∗ 𝑮𝒐𝒕𝒉𝒆𝒓𝑯𝑳𝑨 ∗
𝒃𝟏𝟓 +  𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗ 𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 . 
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For all models, 𝐺𝑥𝜖 {0,1,2} is the genotype for the respective SNP/HLA allele,  𝐼𝑥𝐻𝑂𝑀 a homozygote 

correction term for HLA allele 𝑥,  𝐼𝑥𝐻𝑂𝑀 =  �1, 𝑖𝑓 𝐺𝑥 == 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� , and 𝐼𝑥 =  �1, 𝑖𝑓 𝐺𝑥 == 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� is an indicator 

of the presence of HLA allele 𝑥  in an individual.  

QQ plots of the interaction term for these analyses are shown in Fig 2 and Supplementary Fig. 3 for 
the UK cohort.  There is evidence (P < 10-6) for an interaction between DRB1*15:01 and three 
strongly-associated HLA alleles: DQA1*01:01 (P = 3x10-9), DQB*05:01 (P = 4x10-8) and DRB1*01:01 (P 
= 1x10-7), all conferring a protective effect on the disease. The association is confirmed in the FEM 
across cohorts (P = 2x10-19). These alleles (DQA1*01:01, DQB*05:01 and DRB1*01:01) are all 
correlated (See Supplementary Table 4) and form part of a common European haplotype. 

Moreover, there is evidence (P=3x10-7) for an interaction between DQB1*03:02 and DQB1*03:01, 
again conferring a protective effect on the disease. This effect replicates in the FEM (Supplementary 
Table Y) 

We also found modest evidence for interactions between A*02:01 and other HLA alleles (though 
none with P < 10-5 in the UK cohort) which was most pronounced for interaction with DRB3*09, 
DRB5*01, DRB5*09 and B*08:01. However, when these interaction terms are included in turn in the 
10-allele model, the fit is either better for the model without the interaction term (for DRB3*09, 
B*08:01) or the P value is not nominally significant in the UK cohort (for DRB5*09, DRB5*01). 
Therefore, there is no significant evidence in favour of interactions between A*02:01 and other HLA 
alleles in MS. 

With the exception of B*44:02, the QQ plots for other HLA allele show no deviation from the 
expectation under the null (Supplementary Fig. 3).  For B*44:02, the inflated QQ plot shows a general 
increase in the P values of the interaction term, although no particular interaction stands out. This 
could indicate slight deviations from additivity, as seen for A*02:01 prior to inclusion of a homozygote 
correction term for it in the model.  However, the homozygote correction term for B*44:02 was not 
nominally significant in either the single-allele or the full model.   

8 Interactions between classical HLA alleles and non-HLA associated loci 

We looked for evidence of interaction between HLA risk alleles and non-HLA associated MS risk loci 
identified in the recent Immunochip study1, by adding a parameter for the effect of the non-HLA 
index SNP in the presence of each of the risk HLA alleles in turn in our model.  Specifically, we started 
by looking at interactions between DRB1*15:01 (and other alleles in turn) and the non HLA SNPs by 
fitting a model with 2 parameters for DRB1*15:01, an additive effect for the index SNP and an 
interaction term (in bold) between the presence of DRB1*15:01 and the respective SNP (together 
with 5 PCs): 

𝑀𝐼𝑁𝑇−𝐷𝑅𝐵1501 = 𝑏0 +  𝐺𝐷𝑅𝐵1501 ∗ 𝑏1 +  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 ∗ 𝑏2 +  𝐺𝑆𝑁𝑃 ∗ 𝑏3 + 𝑰𝑫𝑹𝑩𝟏𝟓𝟎𝟏 ∗ 𝑮𝑺𝑵𝑷 ∗ 𝒃𝟒
+  𝑃𝐶1 ∗ 𝑏𝑃𝐶1 + 𝑃𝐶2 ∗ 𝑏𝑃𝐶2 + 𝑃𝐶3 ∗ 𝑏𝑃𝐶3 + 𝑃𝐶4 ∗ 𝑏𝑃𝐶4 + 𝑃𝐶5 ∗ 𝑏𝑃𝐶5 

where 𝐺𝑥𝜖 {0,1,2} is the genotype for the respective HLA allele or SNP 𝑥,  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 a correction 

to the additive term for DRB1*15:01 for homozygotes,  𝐼𝐷𝑅𝐵1501𝐻𝑂𝑀 =  �1, 𝑖𝑓 𝐺𝐷𝑅𝐵1501 == 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� , and 

𝐼𝐷𝑅𝐵1501 =  �1, 𝑖𝑓 𝐺𝐷𝑅𝐵1501 == 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� is an indicator of the presence of DRB1*15:01 in an individual.  
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We saw no evidence for interaction using this model (Fig 2 and Supplementary Fig. 4).  For A*02:01, 
initial evidence for deviation from the expected uniform distribution of P values led to the 
identification of a weak non-additive effect of the allele, correction for which removes any evidence 
for HLA-nonHLA interactions (Supplementary Fig. 6).  None of the alleles tested showed any 
departure from the null (Supplementary Fig. 4). 

We also looked at whether the effect of HLA alleles on MS is stratified based on the cumulative risk 
from the non-HLA effects. To do this, we divided the samples (combined cases and controls within the 
UK cohort) into quartiles of non-HLA risk score (RS), defined by combining information across the  𝐿 
loci found associated in Ref S1.  Specifically, the RS for an individual j was calculated as: 

𝑅𝑆𝑗 = exp (�𝐺𝑖𝑗

𝐿

𝑖=1  

∗ 𝑏𝑖) 

with 𝐺𝑖𝑗𝜖 {0,1,2} being the genotype for the respective non-HLA SNP 𝑖 and 𝑖 the corresponding log-
odds ratio.  As seen in Fig. 2 and Supplementary Fig. 5, there were no substantial differences in the 
RS-stratified odds-ratios compared to that estimated across all samples combined. 

9 Estimating the contribution of polygenic epistasis 

See Supplementary Note. 

10 List of supplementary figures 

Supplementary Figure 1.  Effects of incorporating uncertainty in classical HLA allele prediction.  
Comparison of P values and odds ratios estimated for each cohort for all classical HLA allele effects 
shown in Fig. 1 under methods taking account of uncertainty in classical HLA allele imputation (y-axis) 
and not taking into account of uncertainty (x-axis).  Values reported are from a model including 
additive and non-additive effects for DRB1*15:01 and PCs, in addition to the indicated allele. 

Supplementary Figure 2.  Summary of the results from the model selection procedures (without 
interaction search) using manual curation (left), automatic model search with alleles at 4-digit 
resolution (middle) and automatic mega-analysis augmented with alleles grouped at 2-digit resolution 
and by sharing of amino acid residues.  Alleles shown in order of inclusion in each approach and 
matched between approaches by linkage disequilibrium (Pearson correlation coefficient across entire 
cohort shown and groups identified by colours).  At each stage, models with additive (no superscript), 
dominant (D), recessive (R) and general (G) risk were tested.  The allele used to refer to each group is 
indicated by bold.  Effects identified that are better explained by interactions between other alleles 
are underlined. Note that DRB1_AA57.S is a near-perfect proxy (r = 0.95) for the presence of either 
DRB1*08:01 or DRB1*13:03, though a model with independent effects for the two alleles provides 
better fit.  We note also that B_AA326.C is weakly correlated with the presence of B*44:02 (r = 0.26), 
though the latter remains significant in FEM if the former is included. 

Supplementary Figure 3.  Evidence for interactions among classical HLA alleles affecting risk for multiple 
sclerosis.  QQ plots showing the distribution of P values for the interaction term between HLA alleles 
reported in the full model and other classical HLA alleles.  For each test, the full model, including non-
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additive effects for DRB*15:01, DRB1*03:01 and A*02:01, is fitted, along with the potential 
interaction. 

Supplementary Figure 4.  Evidence for interactions between classical HLA alleles and non-HLA disease-
associated variants affecting risk for multiple sclerosis.  QQ plots showing the distribution of P values 
for the interaction term between HLA alleles reported in the full model and non-HLA SNP variation 
influencing genetic risk for multiple sclerosis (from Ref. S1).  For each test, the full model, including 
non-additive effects for DRB*15:01, DRB1*03:01 and A*02:01, is fitted, along with the potential 
interaction. 

Supplementary Figure 5.  Interactions between HLA variants and combined non-HLA risk for multiple 
sclerosis.  The effect of the indicated allele or variant among individuals stratified in to quartiles by a 
combined non-HLA risk score, obtained by multiplying odds-ratios associated with each genotype an 
individual carries at non-HLA loci influencing risk (from Ref. S1).  The point estimate and 95% 
confidence intervals for effect size are estimated independently for each quartile of non-HLA genetic 
risk.  Dashed and dotted lines indicate the combined point estimate and 95% confidence interval 
respectively.  All analyses for the UK cohort only.   

Supplementary Figure 6.  Conflation between evidence for interactions and a departure from additivity 
for A*02:01.  A, QQ-plot showing the distribution of P values for interaction terms between A*02:01 
and non-HLA variants known to affect risk of multiple sclerosis (from Ref. S1) under a model where 
A*02:01 acts additively (on the log-odds scale).  B, As for part A, but where a departure from 
additivity is included for A*02:01.  Because potential interactions are modelled as an additional 
additive effect of second allele that only acts in the presence of at least one copy of A*02:01, such an 
effect can partly mimic additive and independent effects of the two loci, but with a departure from 
additivity at A*02:01. 

Supplementary Figure 7.  Classical HLA alleles affecting age-at-onset.  Meta-analysis showing effects of 
pairs of classical HLA alleles in strong linkage disequilibrium (DRB1*15:01 – DQB1*06:02 and 
DRB1*01:01 – DQA1*01:01) on age-at-onset.   

 

11 List of supplementary tables 

Supplementary Table 1.  Number of cases and controls across the 11 cohorts investigated in the study. 

Supplementary Table 2.  Imputation accuracy at 4-digit type resolution in a 2/3-1/3 cross validation 
experiment without applying a call threshold on the posterior probabilities (call rate=100%). 

Supplementary Table 3.  Allele-specific sensitivity, specificity and positive predictive value (PPV) for 
alleles discussed in the main text. Statistics are calculated from 2/3 – 1/3 cross-validation experiment 
at a 4-digit level resolution, without applying a call threshold on posterior probabilities (call 
rate=100%).  

Supplementary Table 4. HLA alleles and SNPs found to be significantly associated with multiple sclerosis 
in this study.  All alleles/SNPs are presented in the order of inclusion in the model (see Supplementary 
Material above for details). Second column contains the number of parameters used for each allele in 
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the full model, while the third describes the effect assumed for each of the parameters (all effects are 
assumed in the log-odds scale). Columns 4-6 contain the P values, estimated odds ratios and 95% CIs, 
respectively, of the alleles / effects in the full model. Estimated values are from the fixed effect meta-
analysis across cohorts. Columns 7-8 contain Cochrane’s Q statistic for heterogeneity and the 
associated P value. Column 9 contains I2, an estimate for the proportion of total variability explained 
by heterogeneity12. The last two columns contain the HLA alleles and SNPs, respectively, in LD with 
the alleles included in the full model (column 2). Entry “None” in these columns means that there is 
no allele with an r2 of 0.5 or more with the reported allele. For HLA alleles (column 10), all alleles with 
an r2 > 0.5 are reported. For SNPs (column 11), only the most associated ones are (with r2 thresholds 
of 0.95, 0.9, 0.8 and 0.5). 

Supplementary Table 5. Patient counts across cohorts for the secondary phenotypes analysed in this 
study.   
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Country Abbr Case Control 

Australia and New Zealand AUSNZ 1021 947 

Belgium BEL 313 1705 

Denmark DEN 890 835 

Finland FIN 471 488 

France FRA 387 354 

Germany GER 2621 6308 

Italy ITA 962 1256 

Norway NOR 911 701 

Sweden SWE 2740 2872 

UK UK 4542 9359 

USA USA 2607 5560 

ALL ALL 17465 30385 

Supplementary Table 1.  Number 
of cases and controls across the 11 
cohorts investigated in this study. 

Locus 
Accuracy 

T=0 
Accuracy 

T=0.7 
Call Rate 

T=0.7 
HLA-A 0.97 0.97 0.98 
HLA-B 0.95 0.98 0.94 
HLA-C 0.97 0.97 0.99 
HLA-DPB1 0.9 0.98 0.85 
HLA-DQA1 0.98 0.98 0.97 
HLA-DQB1 0.97 0.98 0.99 
HLA-DRB1 0.91 0.95 0.9 
HLA-DRB3 0.94 0.96 0.96 
HLA-DRB4 0.98 0.98 0.98 
HLA-DRB5 0.99 1 1 

Supplementary Table 2. Imputation accuracy at 
4-digit type resolution in a 2/3-1/3 cross 
validation experiment without applying a call 
threshold on the posterior probabilities (call 
rate=100%, 2nd column), and with applying a 
threshold of T=0.7 (3rd column, with call rate 
shown at column 4). 

Allele No call threshold T=0.7 

Sensitivity Specificity PPV Sensitivity Specificity PPV 

A*02:01 1 1 0.96 1 1 0.96 
B*44:02 0.99 1 0.98 0.99 1 0.99 
B*38:01 1 1 0.89 1 1 0.92 
B*55:01 1 1 1 1 1 1 
DRB1*15:01 1 1 0.98 1 1 0.98 
DRB1*13:03 0.93 1 1 1 1 1 
DRB1*08:01 1 1 0.84 1 1 0.84 
DRB1*03:01 0.99 1 0.99 0.99 1 1 
DQA1*01:01 1 1 1 1 1 1 
DQB1*03:02 0.97 0.99 0.95 0.97 0.99 0.95 
DQB1*06:02 0.99 1 0.98 0.99 1 0.99 
DRB1*01:01 0.82 0.99 0.9 0.99 0.99 0.9 

Supplementary Table 3. Allele-
specific sensitivity, specificity 
and positive predictive value 
(PPV) for alleles discussed in the 
main text. Statistics are 
calculated from 2/3 – 1/3 cross-
validation experiment at a 4-
digit level resolution, without 
applying a call threshold on 
posterior probabilities (call 
rate=100%), columns 2-4) , and 
with applying a threshold of 
T=0.7 (columns 5-7). 



HLA allele/SNP 
Parameters 

in full 
model 

Effect 
Freq in 

UK 
controls 

FEM p-
value FEM OR FEM 95% CIs Q P_heterog

eneity I2 HLA alleles in LD (UK) SNPs in LD (UK) 

DRB1*15:01 2 
additive 

0.143 
<1e-600 3.92 [3.74,4.12] 21.6 0.017 53.7 DQB1*06:02, DRB5*01, 

DRB5*09 (r2>0.9), 
DQA1*01:02 (r2>0.8) 

rs3135391, rs3135388,  rs3129889, 
rs9271366 (r2>0.95)   correction term 

for homozygotes 8.5E-22 0.54 [0.47,0.61] 14.6 0.149 31.3 

A*02:01 2 
additive 

0.276 
7.8E-70 0.67 [0.64,0.70] 23.9 0.008 58.1 

None rs4713274, rs9295825 (r2>0.9)  correction term 
for homozygotes 3.3E-05 1.26 [1.13,1.41] 9.4 0.493 0 

DRB1*13:03 1 additive 0.009 6.2E-55 2.62 [2.32,2.96] 12.4 0.258 19.5 None None 

DRB1*03:01 
 2 

additive 
0.143 

3.5E-08 1.16 [1.10,1.22] 15.0 0.132 33.4 DQA1*05:01, 
DQB1*02:01 (r2>0.95) 

rs1059615, rs2187668, rs2284189, 
rs9273327, rs2854275, rs3129716, 

rs2856674 (r2>0.95) correction term 
for homozygotes 1.3E-30 2.58 [2.19,3.03] 19.1 0.039 47.6 

rs9277565_T 1 additive 0.206 2.1E-52 1.32 [1.27,1.36] 8.2 0.613 0 DPB1*03:01 (r2>0.5) rs9277561 rs9277567 (r2>0.95) 

B*44:02 1 additive 0.114 4.7E-17 0.78 [0.74,0.83] 9.0 0.528 0 C*05:01 (r2>0.5)  rs9266773 (r2>0.9) 

B*38:01 1 additive 0.011 8.0E-23 0.48 [0.42,0.56] 8.6 0.571 0 None None 

DRB1*08:01 1 additive 0.02 1.0E-23 1.55 [1.42,1.69] 8.8 0.547 0 
DQA1*04:01 (r2>0.95), 
DQB1*04:02 (r2>0.9) 

rs7775055, rs4713586 (r2>0.9) 

DQA1*01:01 
(Interaction 

with 
DRB1*15:01) 

1 

additive effect of 
DQA1*01:01  in 
the presence of 

DRB1*15:01 

0.144 1.3E-17 0.65 [0.59,0.72] 19.4 0.036 48.3 
DQB1*05:01, 

DRB1*01:01 (r2>0.5) 
rs13193645 (r2>0.95) 

rs2229092_C 1 additive 0.060 1.7E-22 1.33 [1.26,1.41] 23.3 0.01 57.1 None None 

B*55:01 1 additive 0.018 6.9E-11 0.63 [0.55,0.73] 10.2 0.42 2.2 None rs3819284, rs3093547, rs9765960 
(r2>0.5) 

DQB1*03:02 1 dominant 0.105 1.8E-22 1.30 [1.23,1.37] 21.4 0.019 53.2 DQA1*03:01 (r2>0.5) 
rs3957146, rs3998159, rs7454108, 
rs9275334, rs9275495, rs9275530, 

rs9275532  (r2>0.95) 

DQB1*03:01 1 Allelic interaction 
with DQB1*03:02 0.187 7.1E-12 0.60 [0.52,0.69] 7.0 0.723 0 None rs5000632, rs9357152, rs9378125 

(r2>0.5) 

Supplementary Table 4.  HLA alleles and SNPs found to be significantly associated with MS in this study.  All alleles/SNPs are presented in the order of inclusion to the model (See 
Supplementary Material for details), with last three entries included after additional evidence from the mega-analysis.  Second column contains the number of parameters used for 
each allele in the full model, while the third describes the effect assumed for each of the parameters (all effects are assumed in the log-odds scale). Columns 4-6 contain the P 
values, estimated odds ratios and 95% confidence intervals (CIs), respectively, of the alleles in the full model. Estimated values are from the fixed effect meta-analysis across 
cohorts.  Columns 7,8 contain Cochrane’s Q statistic for heterogeneity and the associated p-value. Column 9 contains I2, an estimate for the proportion of  total variability explained 
by heterogeneity. Last two columns contain the HLA alleles and SNPs, respectively, in LD with the alleles included in the full model (column 2).  Entry “None” in these columns 
means that there is no allele with an r2 of 0.5 or more with the reported allele.  For HLA alleles (column 10), all alleles with an r2>0.5 are reported. For SNPs (column 11), only the 
most associated ones are (with r2  thresholds of 0.95, 0.9, 0.8 and 0.5). 



Supplementary Table 5: Patient 
counts across cohorts for the 
secondary phenotypes analysed in 
this study. 

cohort AAO Clinical Course MSSS MSSS<2.5 MSSS>7.5 

AUSNZ 794 810 713 177 151 
BEL 298 295 271 79 80 
DEN 889 890 885 231 138 
FIN 275 290 246 63 64 
FRA 366 366 360 93 69 
GER 391 2046 352 130 30 
ITA 910 924 833 439 52 
NOR 812 880 406 123 111 
SWE 2375 2298 1998 699 381 
UK 3909 3651 2001 436 531 
USA 1122 1141 1043 407 161 

Supplementary Table 6: Comparison of models for multiple sclerosis disease risk and age at onset (AAO).  For 
disease risk, all other effects reported in Supplementary Table 4 are included.  All models have the same 
number of parameters, hence the results are equivalent for AIC and BIC.  The model with the highest 
likelihood is identified in orange and the model with the second highest likelihood is identified in yellow. 

Main effect Second effect Second locus effect Disease Risk Age at Onset  
AIC in UK AIC in All AIC in UK AIC in All 

DRB1*15:01 DQA1*01:01 Additive 15751 56435 29296 90472 
DRB1*15:01 DRB1*01:01 Additive 15757 56437 29294 90467 
DRB1*15:01 DQB1_AA70.G Hom 15733 56382 30130 85297 
DRB1*15:01 DQA1*01:01 Interaction 15722 56378 30135 85316 
DRB1*15:01 DRB1*01:01 Interaction 15734 56413 30134 85315 
DRB1*15:01 DQB1_AA70.G Hom interaction 15727 56354 30131 85305 
DQB1*06:02 DQA1*01:01 Additive 15829 56730 29296 90471 
DQB1*06:02 DRB1*01:01 Additive 15837 56737 29293 90466 
DQB1*06:02 DQB1_AA70.G Hom 15825 56701 30130 85296 
DQB1*06:02 DQA1*01:01 Interaction 15812 56695 30135 85316 
DQB1*06:02 DRB1*01:01 Interaction 15821 56723 30134 85314 
DQB1*06:02 DQB1_AA70.G Hom interaction 15826 56696 30131 85305 
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Supplementary Figure 1.  Effects of incorporating uncertainty in classical HLA allele prediction.  
Comparison of P values and odds ratios estimated for each cohort for all classical HLA allele effects 
shown in Fig. 1 under methods taking account of uncertainty in classical HLA allele imputation (y-axis) 
and not taking into account of uncertainty (x-axis).  Values reported are from a model including additive 
and non-additive effects for DRB1*15:01 and PCs, in addition to the indicated allele.
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Manual curation Automatic 4-digit 
mega-analysis 

Automatic augmented 
mega-analysis 

DRB1*15:01G DRB1*15:01G DRB1*15:01G 

A*02:01G A*02:01G A*02:01G 

DRB1*03:01R DQB1*02:01G DRB1_AA57.SD 

DRB1*13:03 DRB1*13:03D DQB1*02:01G 

DRB1*08:01 
 DPB1*03:01 DPB1_AA11.L 

rs9277565 B*44:02 B_AA326.C 

B*44:02 DQB1*04:02 DQB1_AA70.GG 

B*38:01 DQB1*03:02G B*38:01 

DQB1*03:02D B*38:01D B*55:01 

B*55:01 DQA1*03:01R DQB1*03:02D 

B*55:01 

0.99 
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0.81 
0.77 

0.26 

0.52 

Supplementary Figure 2.  Summary of the results from the model selection procedures (without 
interaction search) using manual curation (left), automatic model search with alleles at 4-digit resolution 
(middle) and automatic mega-analysis augmented with alleles grouped at 2-digit resolution and by 
sharing of amino acid residues.  Alleles shown in order of inclusion in each approach and matched 
between approaches by linkage disequilibrium (Pearson correlation coefficient across entire cohort 
shown and groups identified by colours).  At each stage, models with additive (no superscript), dominant 
(D), recessive (R) and general (G) risk were tested.  The allele used to refer to each group is indicated by 
bold.  Effects identified that are better explained by interactions between other alleles are underlined. 
Note that DRB1_AA57.S is a near-perfect proxy (r = 0.95) for the presence of either DRB1*08:01 or 
DRB1*13:03, though a model with independent effects for the two alleles provides better fit.  We note 
also that B_AA326.C is weakly correlated with the presence of B*44:02 (r = 0.26), though the latter 
remains significant in FEM if the former is included. 
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Supplementary Figure 2.  

between HLA alleles reported in the full model and other classical HLA alleles.  For each test, 
DRB*15:01 and A*02:01

 for model details).
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Supplementary Figure 4.  

DRB*15:01
of the supplement for model details).
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Supplementary Figure 5.  Interactions between HLA variants and combined non-HLA risk for multiple sclerosis.  
The effect of the indicated allele or variant among individuals stratified in to quartiles by a combined non-HLA 
risk score, obtained by multiplying odds-ratios associated with each genotype an individual carries at non-HLA 
loci influencing risk (from Ref. S1).  The point estimate and 95% confidence intervals for effect size are estimated 
independently for each quartile of non-HLA genetic risk.  Dashed and dotted lines indicate the combined point 
estimate and 95% confidence interval respectively.  All analyses shown here are for the UK cohort only.  
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DRB1*15:01 (additive) A*02:01 (additive)

Supplementary Figure 6.  Conflation between evidence for interactions and a departure from 
additivity for DRB1*15:01 and A*02:01.  (A, B) QQ-plots showing the distribution of P values for 
interaction terms between DRB1*15:01 (A) and A*02:01 (B), and non-HLA variants known to affect 
risk of multiple sclerosis (from Ref. S1) under a model where the HLA allele acts additively (on the 
log-odds scale). (C,D) As for A,B, but where a term capturing departures from additivity is included
for DRB1*15:01 and A*02:01. Because potential interactions are modelled as an additional additive
effect of the associated SNP that only acts in the presence of at least one copy of the HLA allele, 
deviations from additivity for the HLA effects can partly mimic potential interactions with the non-HLA
variants.
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Supplementary Figure 7.  Classical HLA alleles affecting age-at-onset.  
Meta-analysis showing effects of pairs of classical HLA alleles in strong linkage disequilibrium 
(DRB1*15:01 – DQB1*06:02 and DRB1*01:01 – DQA1*01:01) on age-at-onset.  



Supplementary Note: Estimating genome-wide effect of

epistasis on the HLA loci using linear mixed models

Abstract

To test the total contribution of epistasis to the effect sizes of HLA alleles, we develop a
statistical framework that uses a linear mixed model (LMM) to model the total net impact
of interaction between the HLA allele and an unmeasured polygenic score. We can then use
realised relatedness matrices of “unrelated” (i.e. not closely related) individuals, estimated
from genome-wide SNP data, to fit these models (analogously to how LMMs can be used
to estimate the total contribution of common SNPs to additive heritability e.g.6). In this
appendix we outline the basic model (in which effect sizes are treated as unobserved heritable
traits), demonstrate that this model induces a heritability of HLA alleles within cases pro-
portional to the strength of total epistasis, and give equations to convert between the size of
this induced heritability and the parameters of the epistatic model. We show using simula-
tions that this method is well calibrated, and has high power to detect moderate polygenic
epistasis in studies with at least 3000 cases and 3000 controls. Finally, we apply this model
to the IMSGC Immunochip data and imputed HLA alleles to calculate the total contribution
of epistasis to the HLA odds ratios from variants included on the Immunochip.

A.1 The personalised effect size model

Assume that a continuous phenotype is influenced by a marginal effect of the dosage of a major
locus xi (such as the HLA), with a marginal effect size β̃, as well as additive/additive interactions
between the major locus and L minor loci (e.g. non-HLA loci) with normalized dosages a1 to
aL, each with no marginal effect and each increasing the effect size of the major locus by βxj .

Normalized in this sense means aj =
a′j−2fj√
2fi(1−fi)

, where a′j ∈ (0, 1, 2) is the unnormalized dosage

and fj is the allele frequency. We can write down the overall genetic score for individual i as

yi = β0 + β̃xi +

L∑
j=1

βxjxiaji (1)

We can rewrite this as

yi = β0 + xi

β̃ +
∑
j

βxjaji


= β0 + xiβi (2)

where βi = β̃+
∑
j βxjaji is now a (potentially unobserved) personalised effect size, equivalent

to the amount that the phenotype is increased by the major locus in individuals with a genome
identical to that of individual i.

If we look across a number of individuals, providing that L is large and that the βxj values
are drawn from a distribution that is close to normal, the vector of personalised effect sizes will
be distributed according to

~β ∼ N(β̃,Σv2) (3)

1



where v2 =
∑
j β

2
xj and Σ is the realised relatedness matrix of the individuals. This is defined

as the average covariance in standardized genotypes aij (as defined by6) across the set of SNPs
that interact with the major locus. As we do not know the true set of SNPs that are interacting
with the major locus, we instead use a set of genome-wide SNPs to estimate this relatedness
matrix.

A.2 Binary traits and within case analyses

For binary disease traits, we define a link function g between the continuous score and the prob-
ability of disease, such that

P (di = 1|yi) = g(yi) = g(β0 + βixi). (4)

Usually g(yi) → 1 as yi → ∞, and g(yi) → 0 as yi → −∞. For instance, if g(yi) = logit(yi),
then we have a logistic model with βi corresponding to a personalised log-odds ratio. β0 needs to
be picked such that E[g(yi)] = K, where K is the prevalence of the disease.

We can reverse this model in order to remove (usually unobserved) βi, and instead create
an (approximate) linear mixed model that predicts the dosage of the major allele using the case-
control status and the realised relatedness matrix. Assuming that cases are rare in the population,
or that controls are population controls, most of our information will come from within cases, and
we thus create a within-case model:

~x|(~d = 1) ∼ N
[
µx, σ

2
x

(
h2xΣ + (1− h2x)I

)]
(5)

In this equation h2x is the induced heritability of the major locus dosage in cases. As we show
below, this in heritability is induced in cases by the genome-wide polygenic epistasis, and in the
remainder of this section we describe how the relate this heritability parameter to the original
model parameters.

The probability of a given case having a particular dosage xi at the major locus, conditional
on the case’s personalised effect size, is

P (xi|βi, di = 1) =
g(β0 + βixi)p(xi)∑
x′
i
g(β0 + βix′i)p(x

′
i)

. (6)

The expected dosage of the risk allele in cases is then

µx = E[xi|di = 1]

=

∫
βi

(∑
xi

xiP (xi|βi, di = 1)

)
P (βi)dβi, (7)

where P (βi) is the normal density with mean β̃ and variance v2 (taken from equation A2).
The variance in risk allele dosage in cases is given by

σ2
x = V ar[xi|di = 1]

=

∫
βi

(∑
xi

x2iP (xi|βi, di = 1)

)
P (βi)dβi − E[xi|di = 1]2 (8)

The covariance in major locus dosage between two individuals i and j with a kinship coefficient
Σij can be calculated using

E[xixj |di = 1, dj = 1,Σij ] =

∫
βi

∫
βj

∑
xi

∑
xj

xixjP (xi = 1|βi, di = 1)P (xj |βj , dj = 1)

P (βi, βj |Σij)dβidβj

Cov[xi, xj |di = 1, dj = 1] = E[xixj |di = 1, dj = 1,Σij ]− E[xi|di = 1]2 (9)
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Figure A1: Relationship between kinship coefficient and correlation in major allele count in cases
for different coefficients of variation. K = 0.01, f = 0.3, β = log(2). Crosses represent the actual
values, and the lines show a linear fit by least squares.

where P (βi, βj |Σij) is a multivariate normal density, with mean, variance and covariance taken
from equation 3.

The heritability h2x can be estimated by calculating the covariance for various kinship values,
and fitting a linear model where

Cov[xi, xj |di = 1, dj = 1]

V ar[xi|di = 1]
= h2xΣij (10)

For some choices of link function the true covariance will not be linearly dependent on the kin-
ship coefficient, and so this linear will be an approximation. To test how close this approximation
is, we calculated model parameters under the logit link model, assuming a major allele with a risk
allele frequency of 30% and an odds ratio of 2 for a disease with a prevalence of K = 0.01. We
varied the disease prevalence and the size of the epistatic effect (measured by the coefficient of
variation v

β̃
).

For these parameters the logit model induced a additive heritability of major allele in cases,
in the sense that the correlation in major allele count was very close to linearly proportion to the
coefficient of relatedness (Figure A1).

A.3 Strength of the induced heritability

To investigate the strength of the induced heritability, we calculated model parameters under the
logit link model. As above, we looked at a major allele with a risk allele frequency of 30% and an
odds ratio of 2, and varied the coefficient of variation v

β̃
.

For a relatively rare disease (K = 0.01) genome-wide epistasis creates a detectable heritability
of major alleles in cases (h2x > 0.1) when the coefficient of variation rises around 70% or so (Figure
A2a). For common diseases (K > 0.02) the induced heritability falls off rapidly (Figure A2b).

A.4 Correcting for population stratification

HLA alleles are highly stratified geographically, and this population stratification could also con-
tribute to a heritability of HLA alleles (as geographically close individuals will have both more
similar HLA alleles and higher genome-wide relatedness). However, if cases and controls are well
matched, this heritability due to stratification will be similar in cases and in controls. Thus to
correct for stratification we calculate the heritability of HLA alleles in both cases and controls, and
subtract the with-control heritability from the with-case heritability to estimate the heritability
induced by epistasis h2x.
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Figure A2: Induced heritability of major allele count in cases under a logit link for different
coefficients of variation and prevalence.

A.5 Comparison with GCTA’s GxqE method

Our method above is similar to the gene-environment interaction methods included in GCTA7,
and in particular with the GxqE method for estimating a variance component due to an interac-
tion between polygenic risk and a quantitative environmental exposure. This method estimates
variance components by fitting the following model:

~d ∼ N
(
β0 + β̃~x, VGΣ + VGxqEΣ′ + VeI

)
. (11)

where Σ′ij = Σijxixj (i.e. the product of the genome-wide covariance and covariance in envi-

ronmental exposures). As with standard variance component methods for discrete diseases2, the
binary disease status is approximated as a normally distributed variable.

To see the connection between this random effects model and our own, let us extend our model
given in equation 2 in a similar fashion. We will model the disease status as normal variable given
by a combination of the major locus effect yi (including both marginal and epistasis effects, as in
equation 2), an additive polygenic component li ∼ N(0, VGΣ) and an error term ei ∼ N(0, VeI),
such that

di = yi + li + ei

= β0 + βixi + li + ei. (12)

Assuming no covariance between li and βi (i.e. that effect sizes for additive genetic risk loci
and gene-environment interaction loci are independent) the covariance in disease status is then
given by

Cov[di, dj ] = xixjCov[βi, βj ] + Cov[li, lj ] + Cov[ei, ej ]

= xixjv
2Σij + VGΣij + δijVe (13)

where δij is the delta function (δij = 1 if i = j and 0 otherwise).
By comparison with equation 11, we can see that VGxqE = v2. This means that if the environ-

mental exposure is substituted for the dosage of a major risk locus, the GxqE variance component
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estimated by GCTA is also an estimate of the epistatic variance due to polygenic interaction with
that major locus.

In essence, both GCTA’s GxqE method, and our induced heritability method, aim to infer the
same parameter. However, while our method uses an explicit link function to model case-control
status as a binary variable, and applies the linear mixed model approximation to the conditional
allele dosage xi|di, the GxqE method applies the approximation directly to the disease status di.

A.6 Simulation study

To validate that the method works as expected, and to investigate the power of the method, we
carried out a simulation study. We calculated the power and distribution of estimated induced
heritabilities and p-values across simulations for different values of the simple size N and epistatic
variance v2. In all cases we simulated a disease with K = 0.01, an HLA locus with allele frequency
fHLA = 0.143 and effect size βHLA = log(3.78) (i.e. the observed allele frequency and effect size
for HLA-DRB1*15:01). We assumed that Immunochip variants accounted for 20% of the additive
variance of the disease on the liability scale.

We generated a large simulated Immunochip test population of 1 million individuals to test
the method (i.e. a large enough population to see significant numbers of affected individuals even
with K = 0.01). We constructed this set using seed data from 8783 QC+ UK controls with 161119
QC+ SNPs. We first phased each chromosome using SHAPEIT23 (r790) with default parameters,
and we then generated new simulated individuals from these haplotypes using HAPGEN5 (v2.2.0),
again with default settings.

For a given simulation, we picked 1000 simulated causal variants from the set of all non-HLA
Immunochip variants with a minor allele frequency greater than 0.1%. For each locus g we assigned
an additive effect size βaddg and an epistatic effect size βepig . βaddg were drawn from N(0, σ2

add),
where σadd = 0.046 was chosen such that these variants explained 20% of the additive variance
on the liability scale. βepig were drawn from N(0, v2), as we drawn independently of βaddg . Finally,
we assigned an HLA dosage to each individual, drawn from binomial(2, fHLA).

We then assigned each individual as a case with a probability equal to

P = logit

(
µ+ xHLA(βHLA +

∑
g

√
2fg(1− fg)βepig xg) +

∑
g

√
2fg(1− fg)βaddg xg)

)
(14)

where xHLA and xg are genotype dosages at HLA and non-HLA loci respectively, and where µ
was selected such that E[P (D)] = K. To produce the final simulated dataset we randomly selected
N of these cases and N controls (i.e. non-cases), and then calculated the induced heritability of
the HLA allele in cases and controls. We repeated the whole process 100 times (starting with
drawing the 1000 causal variants) for each tested value of N and v2.

The estimated induced heritabilities across the simulations are shown in Figure A3. The
estimated parameter is distributed around zero in the purely additive case (i.e. when v = 0,
Figure A3a), and the distribution of p-values is uniform. In the presence of epistasis (Figures A3b
and A3c) the estimates of the induced heritability are centered on the true heritability expected
from the equations given in section A.2 above, and the range of the estimates tighten around the
true value as the sample size increases. The power calculations (Figure A4) show that for strong
epistasis (v/βHLA = 1) you only need around 1500 cases and 1500 controls to have over 50%
power to detect epistasis at a significance threshold of p < 0.01. To have a high power to detect
moderate epistasis (v/βHLA = 0.5), you need a study of at least 3000 cases and 3000 controls.

A.7 Application to Immunochip data

We calculated separate realised relatedness matrices for all cases and all controls within each
cohort, using Plink 1.9. We removed all individuals with a high degree of relatedness (π̂ > 0.2),
and used all SNPs that passed QC (described in supplementary methods section 1), excluding
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(a) v/βHLA = 0

(b) v/βHLA = 0.5

(c) v/βHLA = 1

Figure A3: The estimated induced heritability for three different coefficients of variation. The
blue line shows the expected induced heritability using equations 9 and 10.

6



Figure A4: Power curves for detecting different degrees of epistasis on an HLA allele from simu-
lations.

chromosome 6 (to avoid confounding by variants in LD with HLA alleles). We fitted the linear
mixed models using GCTA v1.217, with no constraints on the parameter estimates. For each
combination of cohort, HLA allele and case-control status we estimated the heritability of the
dosage of the HLA allele. The stratification-corrected induced heritabilities for each HLA allele
across all cohorts were then meta-analysed under a fixed-effect model using the R package “meta”4,
and final results less than zero were truncated at zero. These results were converted from induced
heritabilities to coefficients of epistatic variation using the equations in Section A.2 above. The
results are shown in Figure 4 of the main paper. For all alleles the 95% confidence interval for the
coefficient of variation overlapped zero.

For comparison, we also generated the heritability explained by the epistatic variance compo-
nent

VGxqE

VP
given by GCTA (again, calculated within cohorts, meta-analysed using “meta” and

truncated at zero). The results are given below; again, the confidence intervals for all alleles
overlapped zero.

Allele Estimate 95% CI
A*02:01 0 0 - 0.008
B*38:01 0 0 - 0.113
B*44:02 0 0 - 0.017
DRB1*03:01 0.015 0 - 0.031
DRB1*08:01 0.046 0 - 0.090
DRB1*13:03 0.056 0 - 0.123
DRB1*15:01 0.041 0 - 0.123

Note that the parameters calculated do not actually represent the total genome-wide contri-
bution to epistasis, as they only include SNPs present on the Immunochip. However, the Im-
munochip captures a large proportion of genome-wide genetic variation for diseases of immunity.
For instance, Yang et al 1 found that >70% of genetic variation in inflammatory bowel disease
risk tagged by GWAS arrays was also tagged by the Immunochip. Thus, while the contribution
of epistasis is likely underestimated, the degree of underestimation should be small.
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