Supplemental Data

Sample	lgM (ug/ml)	M IgG IgM ml) (ug/ml) (ug		lgG (ug)	Day of Death	
3mo #1	231	51	70	15	D8	
3mo #2	255	14	70	4	D14	
3mo #3	270	0	70	0	D14	
3mo #4	273	0	70	0	D8	
3mo #5	310	0	70	0	D4	
3mo #6	355	0	70	0	D6	
3mo #7	421	0	70	0	D5	
3mo #8	375	0	70	0	D5	
3mo #9	388	0	70	0	D5	
3mo #10	402	0	70	0	D6	
3mo #11	348	38	70	0	D7	
3mo #12	486	0	70	0	D14	
3mo #13	466	0	70	0	D4	
3mo #14	326	0	70	0	D14	
3mo #15	332	0	70	0	D4	
3mo #16	386	0	70	0	D14	

Sample	lgM (ug/ml)	lgG (ug/ml)	lgM (ug)	lgG (ug)	Day of Death	
18mo #1	292	0	70	0	D4	
18mo #2	60	0	60	0	D5	
18mo #3	387	0	70	0	D5	
18mo #4	397	0	70	0	D4	
18mo #5	639	0	70	0	D4	
23mo #1	195	22	70	8	D6	
23mo #2	366	668	70	128	D9	
23mo #3	350	0	70	0	D3	
23mo #4	225	496	70	154	D5	
23mo #5	287	290	70	71	D4	
23mo #6	155	0	70	0	D5	
24mo #1	181	0	70	0	D4	
24mo #2	388	43	70	8	D3	
24mo #3	178	0	70	0	D3	
24mo #4	399	411	70	72	D3	
24mo #5	231	37	70	11	D4	

Holodick Suppl Figure 1

Supplemental Figure 1, Related to Figure 1: Ig characteristics from serum samples and corresponding day of death for recipients used in the pneumococcal infection experiment. All serum samples were obtained from 3, 18, or 23-24-month old male BALB/c-ByJ mice at time of euthanasia. The amount of IgM and IgG post protein G depletion is shown (μ g/ml). The amount (μ g) of serum IgM and remaining IgG (if present) injected into each animal is shown. The day post injection the animal succumbed to infection is also indicated.

Supplemental Figure 2, Related to Figure 2: Serum levels of anti-PC and anti-PPS3 specific IgM from aged and young mice. Serum was collected from 3 (n=9), 18 (n=5), 23-month (n=6) old BALB/c-ByJ mice at time of euthanasia. Serum samples were analyzed for **(A)** PC-specific IgM, and **(B)** PPS3-specific IgM. Black bars represent 3-month old mice, grey bars represent 18-month old mice, and white bars represent 23-month old mice. Values are displayed as the mean (±SEM) of individual mouse serum samples. Statistics were performed using unpaired, two-tailed student's t-test. PC-specific IgM: 3-month vs. 23-month p=0.001.

Holodick Supplemental Figure 2

Holodick Supplemental Figure 3

Supplemental Figure 3: Serum levels of total IgA and anti-PC specific IgA from aged and young mice. Serum was collected from 3 (n=5) and 15-month (n=3) old BALB/c-ByJ mice at time of euthanasia. Serum samples were analyzed for (A) total IgA, and (B) PC-specific IgA. (C) The total amount of PC-specific IgA was normalized as a percent of total IgA in each sample. Black bars represent 3-month old mice and grey bars represent 15-month old mice. Values are displayed as the mean (\pm SEM) of individual mouse serum samples. Statistics were performed using unpaired, two-tailed student's t-test. Total IgA: 3-month vs. 15-month p=0.0004. PC-specific IgA: 3-month vs. 15-month p=0.06.

Holodick Supplemental Figure 4

Supplemental Figure 4, Related to Figure 3: Hydrophobicity and mutational analysis of PC+ peritoneal B-1a cell IgM from 3- and 16-month old mice. PC+ peritoneal B-1a cells were single cell sorted from 3 and 16-month old (as indicated) male BALB/c-ByJ mice. The VH region was amplified and sequenced as detailed in the Materials and Methods section. (A) The average charge of the CDR-H3 loop region of IgM from peritoneal B-1a cells from 3-month (black circles) and 16-month old mice (grey triangles) is shown (p=0.04, Mann-Whiteny test, two-tailed). (B) The average mutational rate (mutations per 1000 base pairs) is 5.9 in IgM from 3-month old mice and 7.4 in IgM from 16-month old mice. Values are displayed as the mean (±SEM).

Age of BALB/c-ByJ (months)	Numbe in	Total number of			
	0 at both	0 at V-D ≥1 at D-J	≥1 at both	0 at D-J ≥1 at V-D	sequences
3	46	8	23	22	157
7-12	27	21	35	18	197
18-24	32	14	34	20	76
7-24	28	19	34	18	273

Holodick Supplemental Figure 5

Supplemental Figure 5, Related to Figure 4: N-region addition analysis of IgM from peritoneal B-1a cells obtained from aged and young adult mice. Peritoneal B-1a cells were single cell sorted from 3, 7, 9, 10, 12, 18, 23, and 24-month old BALB/c-ByJ mice. The VH region was amplified and sequenced as detailed in the Materials and Methods section. The percent of sequences with zero N-additions at both junctions, one or more N-additions at both junctions, zero N-additions at V-D and 1 or more at D-J junctions, or zero N-additions (0 at both, 0 at V-D, \geq 1 at both, and 0 at D-J) with 2 populations (4 x 2 Chi-square analysis): 3-month vs 7-12month p<0.0001; 3-month vs 18-24month p=0.06; 3-month vs 7-24month p<0.0001.

Holodick Supplemental Figure 6

Supplemental Figure 6, Related to Figure 4: Hydrophobicity and mutational analysis of peritoneal B-1a cell IgM from 3- and 7-24-month old mice. B-1a cells were single cell sorted from 3, 7, 9, 10, 12, 18, 23, and 24-month old BALB/c-ByJ mice. The V_H region was amplified and sequenced as detailed in the Materials and Methods section. (A) The average charge of the CDR-H3 loop region of IgM from peritoneal B-1a cells from 3-month (black circles) and 7-24 month old mice (grey triangles) is shown (p<0.0001, Mann-Whiteny test, two-tailed). (B) The average mutational rate (mutations per 1000 base pairs) is 8.8 in IgM from 3-month old mice and 11.2 in IgM from 7-24-month old mice (p=0.01, Mann-Whiteny test, two-tailed). Values are displayed as the mean (\pm SEM).

Accession Numbers for 3-month peritoneal B-1a cells

Accession Numbers for 7-24-month peritoneal B-1a cells

KU927047	KU927096	KU927145	KU927194	KU927207	KU927256	KU927305	KU927354	KU927403	KU927452
KU927048	KU927097	KU927146	KU927195	KU927208	KU927257	KU927306	KU927355	KU927404	KU927453
KU927049	KU927098	KU927147	KU927196	KU927209	KU927258	KU927307	KU927356	KU927405	KU927454
KU927050	KU927099	KU927148	KU927197	KU927210	KU927259	KU927308	KU927357	KU927406	KU927455
KU927051	KU927100	KU927149	KU927198	KU927211	KU927260	KU927309	KU927358	KU927407	KU927456
KU927052	KU927101	KU927150	KU927199	KU927212	KU927261	KU927310	KU927359	KU927408	KU927457
KU927053	KU927102	KU927151	KU927200	KU927213	KU927262	KU927311	KU927360	KU927409	KU927458
KU927054	KU927103	KU927152	KU927201	KU927214	KU927263	KU927312	KU927361	KU927410	KU927459
KU927055	KU927104	KU927153	KU927202	KU927215	KU927264	KU927313	KU927362	KU927411	KU927460
KU927056	KU927105	KU927154	KU927203	KU927216	KU927265	KU927314	KU927363	KU927412	KU927461
KU927057	KU927106	KU927155	KU927204	KU927217	KU927266	KU927315	KU927364	KU927413	KU927462
KU927058	KU927107	KU927156	KU927205	KU927218	KU927267	KU927316	KU927365	KU927414	KU927463
KU927059	KU927108	KU927157	KU927206	KU927219	KU927268	KU927317	KU927366	KU927415	KU927464
KU927060	KU927109	KU927158		KU927220	KU927269	KU927318	KU927367	KU927416	KU927465
KU927061	KU927110	KU927159		KU927221	KU927270	KU927319	KU927368	KU927417	KU927466
KU927062	KU927111	KU927160		KU927222	KU927271	KU927320	KU927369	KU927418	KU927467
KU927063	KU927112	KU927161		KU927223	KU927272	KU927321	KU927370	KU927419	KU927468
KU927064	KU927113	KU927162		KU927224	KU927273	KU927322	KU927371	KU927420	KU927469
KU927065	KU927114	KU927163		KU927225	KU927274	KU927323	KU927372	KU927421	KU927470
KU927066	KU927115	KU927164		KU927226	KU927275	KU927324	KU927373	KU927422	KU927471
KU927067	KU927116	KU927165		KU927227	KU927276	KU927325	KU927374	KU927423	KU927472
KU927068	KU927117	KU927166		KU927228	KU927277	KU927326	KU927375	KU927424	KU927473
KU927069	KU927118	KU927167		KU927229	KU927278	KU927327	KU927376	KU927425	KU927474
KU927070	KU927119	KU927168		KU927230	KU927279	KU927328	KU927377	KU927426	KU927475
KU927071	KU927120	KU927169		KU927231	KU927280	KU927329	KU927378	KU927427	KU927476
KU927072	KU927121	KU927170		KU927232	KU927281	KU927330	KU927379	KU927428	KU927477
KU927073	KU927122	KU927171		KU927233	KU927282	KU927331	KU927380	KU927429	KU927478
KU927074	KU927123	KU927172		KU927234	KU927283	KU927332	KU927381	KU927430	KU927479
KU927075	KU927124	KU927173		KU927235	KU927284	KU927333	KU927382	KU927431	KU927480
KU927076	KU927125	KU927174		KU927236	KU927285	KU927334	KU927383	KU927432	KU927481
KU927077	KU927126	KU927175		KU927237	KU927286	KU927335	KU927384	KU927433	KU927482
KU927078	KU927127	KU927176		KU927238	KU927287	KU927336	KU927385	KU927434	KU927483
KU927079	KU927128	KU927177		KU927239	KU927288	KU927337	KU927386	KU927435	
KU927080	KU927129	KU927178		KU927240	KU927289	KU927338	KU927387	KU927436	
KU927081	KU927130	KU927179		KU927241	KU927290	KU927339	KU927388	KU927437	
KU927082	KU927131	KU927180		KU927242	KU927291	KU927340	KU927389	KU927438	
KU927083	KU927132	KU927181		KU927243	KU927292	KU927341	KU927390	KU927439	
KU927084	KU927133	KU927182		KU927244	KU927293	KU927342	KU927391	KU927440	
KU927085	KU927134	KU927183		KU927245	KU927294	KU927343	KU927392	KU927441	
KU927086	KU927135	KU927184		KU927246	KU927295	KU927344	KU927393	KU927442	
KU927087	KU927136	KU927185		KU927247	KU927296	KU927345	KU927394	KU927443	
KU927088	KU927137	KU927186		KU927248	KU927297	KU927346	KU927395	KU927444	
KU927089	KU927138	KU927187		KU927249	KU927298	KU927347	KU927396	KU927445	
KU927090	KU927139	KU927188		KU927250	KU927299	KU927348	KU927397	KU927446	
KU927091	KU927140	KU927189		KU927251	KU927300	KU927349	KU927398	KU927447	
KU927092	KU927141	KU927190		KU927252	KU927301	KU927350	KU927399	KU927448	
KU927093	KU927142	KU927191		KU927253	KU927302	KU927351	KU927400	KU927449	
KU927094	KU927143	KU927192		KU927254	KU927303	KU927352	KU927401	KU927450	
KU927095	KU927144	KU927193		KU927255	KU927304	KU927353	KU927402	KU927451	

Supplemental Figure 7. GenBank accession numbers for B-1a Cell sequence data. Sequencing data was deposited into NCBI's Genbank (<u>http://www.ncbi.nlm.nih.gov/genbank/</u>). The accession numbers for the sequences are listed.